
Introduction to the MultiUAV2 Simulation and Its Application
to Cooperative Control Research

S. J. Rasmussen ∗, J. W. Mitchell †, P. R. Chandler ‡, C. J. Schumacher §, A. L. Smith ¶
AFRL/VACA, Wright-Patterson AFB, OH 45433

∗ Steven Rasmussen is a General Dynamics on-site Contractor.
steven.rasmussen@wpafb.af.mil

† Jason Mitchell is an Aerospace Scientist for Emergent Space Technologies, Greenbelt, MD.
Jason.Mitchell@emergentspace.com

‡ Phillip Chandler is a Senior Controls Engineer.
philip.chandler@wpafb.af.mil

§ Corey Schumacher is a Senior Aerospace Engineer.
corey.schumacher@wpafb.af.mil

¶ Austin Smith was a Student Trainee (Aerospace Engineer) from Purdue University.

Abstract— This paper describes the MultiUAV2 simula-
tion and how it has been applied to cooperative control of
autonomous uninhabited air vehicles (UAV). MultiUAV2 is
a simulation based on SIMULINK, MATLAB, and C++ that
is capable of simulating multiple UAVs which cooperate to
accomplish tactical missions. First there is a discussion of
cooperative control of UAVs and then the background of
the MultiUAV2 simulation. Next, the simulated mission is
explained, including how users can introduce new missions.
Next, there are descriptions of the major elements of
MultiUAV2, which are: targets/threats, vehicle dynamics,
sensors, communications and cooperative assignment algo-
rithms. In the final section, an example of the simulation
event flow is presented.

I. OVERVIEW

Advances in technology have made it possible to
field autonomous uninhabited air vehicles (UAVs) that
can be deployed in teams to accomplish important
missions such as suppression of enemy air defenses; and
combat intelligence, surveillance, and reconnaissance.
While it is technically possible to field these UAVs,
work is needed to develop cooperative control strate-
gies/algorithms to enable them to perform these types
of missions. To facilitate cooperative control algorithm
development the MultiUAV2 simulation was developed.

MultiUAV2 is a simulation capable of simulating
multiple UAVs which cooperate to accomplish tactical
missions. It is based on the MATHWORKS’ SIMULINK

and MATLAB programming environments, see [1], and
on compiled C++ functions. MultiUAV2 is organized
using SIMULINK blocks, but most of the functionality is
written in MATLAB script functions. MultiUAV2 is a non-
real-time simulation that contains cooperative control

algorithms, six-degree-of-freedom (6DOF) vehicle dy-
namics models, simple target models, and inter-vehicle
communication models. The nominal simulated mission
is wide area search and destroy in which UAVs search
a predefined area and cooperate to prosecute any targets
that are discovered.

MultiUAV2 has been used for many different projects
such as developing and testing cooperative control al-
gorithms, implementing time-optimal trajectories, and
examining effects of communication difficulties on co-
operative control algorithms. It is available to the pub-
lic and has been provided to many researchers from
government, academia, and industry. The latest re-
leased version of MultiUAV2 can be downloaded from
http://www.isrparc.org/, select the link: “USAF Simula-
tion and Research Program”.

This paper starts with background on cooperative
control of UAVs and moves to a background of the
MultiUAV2 simulation. After that, there is a discussion
of how missions are implemented in MultiUAV2. Next
the major elements of MultiUAV2 are explained. These
include target/threats, vehicle dynamics, sensors, com-
munications, and cooperative control algorithms. The
paper concludes with a sample of the flow of events
during the simulation.

II. COOPERATIVE CONTROL BACKGROUND

Major portions of proposed UAV missions can be
preplanned, but due to limited information about enemy
positions and assets in the battlefield area, the UAVs
will have to react to changes in perceived enemy state

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

FrB16.1

4490

during execution of the mission plan. By cooperating
with each other, the UAV team will be able to optimize
the use of their combined resources to accomplish
the goals of their mission. If the UAVs are unable
to cooperate with each other in online planning and
execution of the mission, then either group autonomy
will be traded for high levels of manned intervention
or more vehicles/resources will be required to perform
the mission. While cooperation of this kind is desirable,
it can be very complicated to implement. To perform
these missions, acceptable algorithms must be solved
with given time constraints and be robust to uncertainties
arising from sources such as sensors, communications,
and plan execution. MultiUAV2 has been used to develop
and test many candidate cooperative control algorithms.
These algorithms are discussed in §V-E.

III. MULTIUAV2 BACKGROUND

Construction of MultiUAV2 satisfies the need for a sim-
ulation environment that researchers can use to develop,
implement and analyze cooperative control algorithms.
Since the purpose of MultiUAV2 is to make cooperative
control research accessible to researchers it was con-
structed primarily using MATLAB and SIMULINK. Some
of the simulation functions are programmed in C++.
C++ is used for functions that require faster execution
and do not need to be modified by researchers. For
example, the cooperative control algorithms are coded
in MATLAB scripts and the vehicle dynamics are coded
in C++.

The simulation is implemented in a hierarchical man-
ner with inter-vehicle communications explicitly mod-
elled. During construction of MultiUAV2, issues concern-
ing memory usage and functional encapsulation were
addressed. MultiUAV2 includes plotting tools and links
to an external program for post-simulation analysis,
see [2]. Each of the vehicle simulations include 6DOF
dynamics and embedded flight software. The embedded
flight software consists of a collection of managers that
control situational awareness and responses of the vehi-
cles. Managers included in the simulation are: Tactical
Maneuvering, Sensor, Target, Cooperation, Route,
and Weapons.

During the simulation, vehicles fly predefined search
trajectories until a target is encountered. Each vehicle
has a sensor footprint that defines its field of view.
Target positions are either set randomly or they can be
specified by the user. When a target position is inside of
a vehicle’s sensor footprint, that vehicle runs a sensor

simulation and sends the results to the other vehicles.
With actions assigned by the selected cooperative control
algorithm, the vehicles prosecute the known targets. For
the nominal simulation, the vehicles are destroyed when
they attack a target. During prosecution of the targets the
vehicles generate their own minimum-time trajectories
to accomplish tasks. The simulation takes place in a
three dimensional environment, but all of the trajectory
planning is for a constant altitude, i.e. two dimensions.
Once each vehicle has finished its assigned tasks it
returns to its predefined search pattern trajectory. The
simulation continues until it is stopped or the preset
simulation run time has elapsed.

IV. SIMULATED MISSION

In MultiUAV2 the mission is made up of the partic-
ipants, e.g. UAVs and targets, the mission objectives,
e.g. find and destroy the targets, and the tactics, i.e.
how the UAVs meet the mission objectives. The nominal
mission 1 in MultiUAV2 is a wide area search and destroy
(WASD) mission. MultiUAV2’s WASD mission objective
is to find an destroy all of the targets. The UAVs search a
predefined area for targets. If a suspected target is found
the UAVs must classify it to make sure that it is a target.
Once a target is classified the vehicles attack it and then
verify that it has been killed.

The WASD mission is implemented in MultiUAV2 by
giving the UAVs the capability to perform tasks, based
on the perceived status of the target, such as, search,
classify, attack, and verify destroy. To do this the UAVs
must keep track of the state of the targets and cooperate
to determine which UAV performs which task. Target
state functions, see Figure 1, are implemented on each
vehicle, for each target, to make it possible for the
vehicle to keep track of the state of all of the targets.
Based on the target’s current state, the vehicle deter-
mines which task is necessary to transition the target
to the next state. Algorithms to compute trajectories are
defined for each task type. UAVs generate trajectories for
all of the current tasks and communicate the information
required for cooperation to the other UAVs. The UAVs
run their cooperation algorithms and implement their
assignments.

In order to modify existing or add new missions one
can change the participants, mission objective, or tactics.
New targets §V-A, and vehicles, see §V-B, can be added
to the simulation or existing ones can be modified. The

1The “nominal” mission is the default mission supplied with the
released version of MultiUAV2.

4491

Fig. 1. Target state transition diagram.

mission objectives and tactics are encoded in the target
states and the task algorithms. The target states can be
modified the cause the UAVs to perform different tasks
or tasks in a different order and thus perform different
missions. New task algorithms can be added or existing
algorithms can be modified to cause the vehicles to
perform tasks in a particular manner.

V. ORGANIZATION OF MULTIUAV2

MultiUAV2 is organized into two major top-level
blocks, Vehicles and Targets, see Figure 2. The other
two blocks at the top level, Initialization and DataFor-
Plotting, call functions to initialize the simulation and
save simulation data for plotting. Nominally, the top-
level blocks contain the sub-blocks and connections
required to implement simulation of vehicles and targets,
see Figures 3–6. Information flow between the vehicles
is facilitated with a communication simulation, see §V-
D. Information flow between blocks within each vehicle
is implemented using SIMULINK wires and, sparingly,
global MATLAB memory. To facilitate simulation truth
data flow between the objects in the simulation a truth
message passing mechanism is used, see §V-D.

Nominally there are 8 vehicles and 10 targets imple-
mented in MultiUAV2. By changing global parameters,
the number of targets and vehicles used in a simulation
can be decreased. The number of vehicles and targets
can be increased by adding more blocks and making
changes to global parameters. By default, all of the
vehicles in this simulation are homogeneous and share

Fig. 2. MultiUAV2 Top level blocks.

the same simulation structure. The same is true for the
targets. Therefore, to implement the simulation only
one vehicle block and one target block needs to be
built and then copies of these blocks can be used to
represent the rest of the vehicles and targets. To simplify
simulation model modifications, a vehicle and a target
block were implemented and then saved in a SIMULINK

block library. This block library was used to create
additional instances of the Vehicle and Target blocks.
When one uses a block from a block library, a link from

4492

Fig. 3. MultiUAV2 Vehicle blocks.

Fig. 4. MultiUAV2 Blocks that make up a vehicle.

4493

Fig. 5. MultiUAV2 Target blocks.

Fig. 6. MultiUAV2 Blocks that make up a target.

4494

the block to the library is created so when the library
is updated the linked blocks are also updated. Therefore
the first vehicle or target block is the real block and the
rest of the blocks are links to a copy of the real blocks
in the block library.

Each vehicle model contains the Embedded Flight
Software (EFS) blocks necessary to implement coop-
erative control of the vehicles. EFS is a collection of
software managers that cause the vehicle to perform the
desired tasks, see Figure 7. The following managers have
been implemented:

Tactical Maneuvering Manager
This manager is used to perform all of the
functions necessary for near-term guidance of
the vehicle. At this time the Tactical Maneu-
vering Manager is only being used to generate
autopilot commands to cause the vehicle to
follow given waypoints.

Sensor Manager
This manager is used to perform all of the
functions necessary to monitor the sensors and
process sensed data. It also contains the sensor
process part of the sensor simulation, see V-
C.2.

Target Manager
This manager creates and manages list of
known and potential targets. Also manages the
target state functions for the vehicle.

Cooperation Manager
Calculates assignments for the vehicle based
on information gathered from all of the vehi-
cles.

Route Manager
This manager is used to plan and select the
route for the vehicle to fly. Part of the function-
ality is calculation of the lowest cost route to
all known targets, based on each target’s state.
The Route Manager also monitors the status of
the vehicle’s assigned task.

Weapons Manager
Weapons Manager Selects a weapon and then
simulates its deployment.

While it is important to understand the operation of
the EFS managers to be able to add new cooperative
control algorithms to MultiUAV2 it is also important
to understand the other major elements of MultiUAV2.
To that end the following sections describe the major
elements of MultiUAV2, i.e. targets/threats, vehicle dy-
namics, sensors, communications, and cooperative as-

signment algorithms.

A. Target/Threats

Since the targets in MultiUAV2 can also be configured
to destroy UAVs, they can also act as threats. The
nominal targets are fairly simple, i.e. they can calculate
where they are, calculate damage from explosions, and
calculate if they have shot down a UAV, see Figure 5
and 6. Nominally the targets are stationary, but they can
be given trajectories to follow by modifying a MATLAB

script file that sets the position of the target.

B. Vehicle Dynamics

Vehicle dynamics in MultiUAV2 are generated us-
ing a simulation called Variable Configuration Vehicle
Simulation (VCVS). VCVS is a nonlinear six-degree-
of-freedom vehicle simulation that includes a control
system which reconfigures the simulation for new aero-
dynamic and physical vehicle descriptions. VCVS is
written entirely in C++ and can run more that 20 times
faster than real time. Vehicle dynamics are based on two
configuration files, one containing aerodynamic data and
the other physical and control system parameters. The
aerodynamic configuration file contains tables of non-
dimensional forces, moments, and damping derivatives.
The vehicle model calculates aerodynamic forces and
moments by using the vehicle’s state and control deflec-
tions as independent variables to look-up values from
the aerodynamic tables. During the look-up process,
linear interpolation is used for states and deflections not
found in the tables. The non-dimensional values obtain
from the tables are combined with vehicle state data
to calculate forces and moments acting on the center
of gravity of the vehicle. These forces and moments
are combined with external forces and moments, i.e
forces and moments from an engine. The forces and
moments are used, along with the physical parameters,
to calculate the equations of motion. Included in the
model are first-order actuator dynamics, including rate
and position limits, and first-order engine dynamics.

VCVS uses a dynamic inversion control system with
control allocation as its inner loop control system, see
Figure 8. A rate control system was wrapped around the
inner loop to move from angular acceleration commands
to angular rate commands. The outer most loop is an al-
titude, heading, sideslip, and velocity command control
system. Gains for the rate controllers and the outer-loop
controllers can be adjusted by changing parameters in

4495

Fig. 7. MultiUAV2 Managers.

the parameter input file. New vehicle dynamics can be
introduced by changing the physical and aerodynamic
parameters. When new parameters are introduced, the
control system uses control allocation to reconfigure for
different numbers of control effectors and the dynamic
inversion controller compensates for changes in response
to control inputs.

Interfaces between VCVS and MATLAB/SIMULINK

were constructed to aid in vehicle dynamics develop-
ment and testing. This made it possible to run VCVS
separately from MultiUAV2. VCVS has been used outside
of MultiUAV2 to develop algorithms such as formation
control, rejoin trajectory control, and surveillance tra-
jectory control. Vehicle models ranging from the size of
micro-UAVs to the size of the Global Hawk have been
implemented in VCVS.

C. Sensors

MultiUAV2 separates the sensor simulation into two
parts: sensor footprint and sensor process. The sensor
footprint is used to determine if a target is visible to
the vehicle and the sensor process is used to produce
simulated output from the sensor. This makes it possible

to implement the sensor footprint in C++ with the
vehicle model as discussed in § V-C.1. The sensor
process, in the released version of MultiUAV2, simulates
an automatic target recognition (ATR) sensor, discussed
in §V-C.2.

1) Sensor Footprint: In order to make sure that the
sensor footprint reports every target that it passes over, it
must be updated at the same rate as the vehicle dynamics
model. Since the vehicle dynamics are updated at a
faster rate than the rest of MultiUAV2 it was necessary
to implement the sensor footprint in a C++ class, that is
executed with the vehicle dynamics. This class contains
functions that can calculate rectangular or circular sensor
footprints. To check if targets are in the circular footprint
the function compares the difference between each of the
target positions and the calculated center of the footprint.
If this distance is less than the sensor radius then
the target is in the footprint. The rectangular footprint
function transforms the coordinates of the targets into a
coordinate system aligned with the rectangular footprint.
After transformation the coordinates of each target are
compared to the limits of the sensor and any targets
inside the limits are reported.

4496

Fig. 8. VCVS Schematic.

2) Automatic Target Recognition Sensor: The major
attribute of an ATR sensor simulated in the MultiUAV2
simulation is heading dependence. That is, the quality
of target identification of many ATR sensors depends
on the viewing direction of the target. In order to
simulate the functionality of an ATR simulation
heading dependent equations were developed. Given
the targets length (L), width (W) and aspect angle2

(θ) the single ATR value (ATRs) is calculated using
Equations 1a and 1b.

ATRs =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W arccos(θ) + L arcsin(θ)
L + W

× SF

for 0 ≤ θ ≤ π

2
−W arccos(θ) + L arcsin(θ)

L + W
× SF

for
π

2
< θ ≤ π

−W arccos(θ) − L arcsin(θ)
L + W

× SF

for π < θ ≤ 3π

2
W arccos(θ) − L arcsin(θ)

L + W
× SF

for
3π

2
< θ < 2π

(1a)

2Angle definitions are shown in Figure 9.

SF = 0.8
L + W√
W 2 + L2

(1b)

A representative plot of ATRs vs. θ is shown in
Figure 10. Note that the maximum ATR value is 0.8. In
the nominal mission an ATR value greater than or equal
to 0.9 is required before a target can be attacked. In
order to increase the ATR value, the value from a single
sighting of the target can be combined with another
sighting of the target. Given the values for ATRs and the
respective angles θ, two single ATR values for a target
can be combined into to one (ATRc) with the following
equations:

ATRc = (ATR1 + ρ × ATR2) − (ATR1 × ρ × ATR2)
(2a)

ρ = 1.0 − e−0.3|θ2−θ1| (2b)

If more than two single ATR values exist for a target,
combined ATR values are calculated for all pairwise
combinations of the single values. The largest value from
the set of combined values is used for that target.

D. Inter-Vehicle/Simulation Truth Communications

The MultiUAV2 simulation has two mechanisms for
passing messages between objects in the simulation,
one for communication messages and one for simulation
truth messages. Previous releases of the MultiUAV2 sim-
ulation provided vehicle-to-vehicle communication via a

4497

Fig. 9. Angle definitions for ATR.

Fig. 10. ATR template.

signal bus denoted by CommBus, while a second aggre-
gated signal bus, labeled SimBus, contained the truth
information for the simulation. The combination of these
two data buses represented the complete information
state of the simulation. This perfect information state
was available to all vehicles at every simulation time-
step. From many perspectives, perfect information ac-
cess is unacceptable, particularly when considering com-
munication and processing delays. Thus, to incorporate
communication and processing delays into MultiUAV2,
a new communication framework was introduced, see

Fig. 11. Schematic of the communications framework.

Figure 11. In order to make it possible to distribute the
MultiUAV2 over many computers, a similar framework
was introduced for passing truth information between
objects in the simulation.

Maximum design flexibility is a significant and yet
vague requirement that must be met by any potential
communication design. By maintaining genericity, we
ensure that the resulting solution will accommodate the
simulation of specific communication requirements, e.g.
protocol-specific, theater-specific, or hardware-specific,
while providing a simple and general framework to
quantify vehicle-to-vehicle communication needs, e.g.
peak or average data-rate.

To provide flexibility in implementation of communi-
cation simulations that contain varying levels of detail,
a generic message passing scheme was chosen as the
Virtual Communication Representation (VCR). In this
design, specific message types and their format are
defined centrally in the VCR and made globally avail-
able to the various Embedded Flight Software Managers
(EFSMs) as context requires3. Minimally, a message def-
inition must contain a unique message identifier, time-
stamp(s), message layout enumeration, and data field to
be written by the EFSM context. Particular messages
may be selected by the EFSM context as output resulting
from a computation that must be remotely communi-
cated. Outgoing messages, which include data, from
each vehicle are stored centrally, and pointers to these
messages are distributed to an individual input queue
for each vehicle. These pointers are composed of the
original message header and should minimally inform
the receiver of the message type, time sent, quality or
priority of the message, and which central repository
contains the associated message data. A user defined
rule component controls the distribution of incoming
messages to all vehicles based on the message headers.

3The message structure discussed here refers to the format dictated
by the MultiUAV2 package, rather than to messages related to a specific
communication system model.

4498

Fig. 12. UAV virtual team structure.

We avoid adhering to a specific communication model
in MultiUAV2 by isolating the message delivery rules in
user controlled components. Thus, end-users are free to
choose any preferred communication model. Moreover,
the genericity of the VCR specification provides for easy
extension. For more information on the communications
design see [3, 4, 5, 6]

E. Cooperative Assignment Algorithms

MultiUAV2 was constructed in parallel with the de-
velopment of the following cooperative assignment al-
gorithms. As the algorithms were developed they were
implemented and tested using MultiUAV2. When defi-
ciencies were found in MultiUAV2 new capabilities were
added.

1) Redundant Central Optimization: Many of the
cooperative control algorithms are implemented in a Re-
dundant Central Optimization (RCO) manner to control
the cooperation of vehicles while they carry out their
mission to find, classify, kill, and verify the targets in
the simulation. RCO consists of vehicles that are formed
into a team that contains team members and a team
agent as shown in Figure 12. The team agent makes and
coordinates team member assignments through the use
of a centralized optimal assignment selection algorithm
that is based on partial information. The redundant
portion of the RCO structure comes about because each
team member implements a local copy of the team agent.
Because of this, each of the team members calculates
assignments for the entire team and then implements
the assignment for itself.

2) Single Assignment Tour vs Multiple Tour Assign-
ment: A single task tour assignment algorithm is an
algorithm that assigns each UAV to a target to accom-
plish one task, i.e. classification, attack or verification.
In order to make single assignments both trajectory
planning and assignment algorithms must be considered.
While trajectory planning for single assignment tours is
not trivial, it is possible to use computational geometry
to generate optimal trajectories. During the assignment

process, trajectories are generated from all of the UAVs
to all of the known targets based on the tasks that need to
be accomplished on those targets. For task assignment,
a capacitated transshipment algorithm can be used to
assign the UAVs to the targets, based on the cost of
traversing the candidate paths.

Assigning UAVs based on a single tour can be very
inefficient, as it doesn’t take into account coupling that
occurs between performing tasks on targets. That is,
when a UAV plans to accomplish a task on a particular
target, such as classification, it is much more efficient if
that UAV also can take into account the next required
task for that target, such as attack. When more than
one task is taken into account during the planning and
assignment process, the algorithm can be said to be
based on multiple task tours.

The need to included multiple-tours in path-planning
and assignment algorithms increases the complexity of
these algorithms significantly. This complexity is not
only due the to possible combinatorial explosion of
possible trajectories and assignments, but also due to
the requirement that the tasks for each target must
be accomplished in a specified order. The following
sections describe different algorithms that have been
implemented for both single and multiple task tour
assignments. For more information see [7] and the
references cited at the end of each section.

3) Capacitated Transhipment Network (Network
Flow) (Single Task Tours): A network optimization
model is used to calculate the vehicle task assignments.
Network optimization models are typically described in
terms of supplies and demands for a commodity, nodes
which model transfer points, and arcs that interconnect
the nodes and along which flow can take place. There
are typically many feasible choices for flow along arcs,
and costs or values associated with the flows. Arcs
can have capacities that limit the flow along them.
An optimal solution is the globally minimum cost (or
maximum value) set of flows for which supplies find
their way through the network to meet the demands. To
model weapon system allocation, we treat the individual
vehicles as discrete supplies of single units, tasks being
carried out as flows on arcs through the network, and
ultimate disposition of the vehicles as demands. Thus,
the flows are 0 or 1. We assume that each vehicle
operates independently, and makes decisions when new
information is received. These decisions are determined
by the solution of the network optimization model. For
more information on the Network Flow algorithm see
[8, 9].

4499

4) Iterative Network Flow (Multiple Task Tours):
Due to the integrality property, it is not normally pos-
sible to simultaneously assign multiple vehicles to a
single target, or multiple targets to a single vehicle.
However, using the network assignment iteratively, tours
of multiple assignments can be determined. This is
done by solving the initial assignment problem once,
and only finalizing the assignment with the shortest
estimated time of arrival. The assignment problem can
then be updated assuming that assignment is performed,
updating target and vehicle states, and running the
assignment again. This iteration can be repeated until all
of the vehicles have been assigned terminal attack tasks,
or until all of the target assignments have been fully
distributed. The target assignments are complete when
classification, attack, and battle damage assessment tasks
have been assigned for all known targets. Assignments
must be recomputed if a new target is found or a UAV
fails to complete an assigned task. For more information
on the Iterative Network Flow algorithm see [10].

5) Iterative Auction (Multiple Task Tours): Using the
same strategy as the Iterative Network Flow, the Iterative
Auction builds up multiple task tours of assignments
for the vehicles by using a Jacobi auction solver. The
auction is used to find an initial set of assignments,
freezes the assignment with the shortest estimated time
of arrival and then repeats this process until all possible
tasks have been assigned. For more information see the
explanation of the Iterative Network Flow algorithm in
§V-E.4

6) Relative Benefits (Multiple Task Tours): This
method requires a relaxation of the optimality require-
ment, but can potentially produce good paths and assign-
ments quickly. One major problem with this and other
resource allocation methods is the absence of a good
metric to judge its efficacy. There are some possible
algorithms that will return results that are very close to
optimum, but none of them have been implemented for
this type of problem. The central theme of this algorithm
is that multiple assignment tours can be developed
by making single assignment tours and then trading
assignments between the UAVs based on the relative
benefit of one UAV taking on the assignment of another.
For more information on the Relative Benefits algorithm
see [7].

7) Distributed Iterative Network Flow (Multiple Task
Tours): The Iterative Network Flow algorithm was
initially implemented in a RCO manner, see V-E.1.
For the Distributed Iterative Network Flow, the original
Iterative Network Flow algorithms were implemented in

a distributed manner, i.e. each vehicle calculates benefits
for its self to complete the required tasks at each iteration
and then sends these benefits to the other vehicles. All
the vehicle run the Network Flow algorithms and then
move on to the next iteration.

8) Distributed Iterative Auction (Multiple Task
Tours): The Iterative Auction algorithm was initially
implemented in a RCO manner, see V-E.1. For the Dis-
tributed Iterative Auction, the original Iterative Auction
algorithms were implemented in a distributed manner,
i.e. each vehicle calculates bids for the required tasks at
each iteration and sends these bids to the other vehicles
for use in an asynchronous distributed auction.

VI. SIMULATION EVENT FLOW EXAMPLE

During the progress of the simulation the EFS man-
agers cause the vehicle to react to changes in target
states, vehicle tasks, and task assignments. As an ex-
ample of the information flow between EFS managers
during the simulation, when the CapTransShip algorithm
is selected the following is a sequence of events that
occur when a previously undetected target is discovered:

1) Vehicle Dynamics senses target.
2) Based on the vehicle’s heading and the target ID,

the vehicle’s SensorManager calculates a single
ATRvalue.

• The vehicle sensing the target sends an ATRS-
ingle message to all of the vehicles. This mes-
sage contains a time stamp and the target’s
single ATR value, sensed heading, estimated
pose angle, and estimated type.

3) Each vehicle’s SensorManager calculates com-
bined ATR values for the target. These values are
based on all of the information that the vehicle has
obtained about the target.

4) TargetManagers on all vehicles update the tar-
get state based on the combined ATR calculated
locally.

• For each vehicle, if any of the targets change
state, the vehicle sends a TargetStatus mes-
sage. This message contains a time stamp and
the status of the targets.

5) Based on the change in target status, the Route-
Managers, on all of the vehicles, calculate the
optimal route, estimated time of arrival (ETA), and
cost to perform the required tasks on all of the
known targets.

4500

• Each vehicle sends the ETACostToSearch
message to all of the other vehicles. This
message contains the vehicle’s ETA , cost of
performing the tasks, and the return to search
distance for each of the known targets.

6) CooperationManagers on all vehicles calculate
optimal assignment for all of the vehicles to per-
form the next required task on each of the targets
based on the supplied costs.

7) RouteManagers on all vehicles implement the
route assigned for that vehicle.

8) Tactical Maneuvering Managers functions on
all vehicles read assigned waypoints and calculate
commands that will cause the autopilot to cause
the vehicle to fly to the waypoints.

9) VehicleDynamics read the autopilot commands
and run the vehicle dynamics simulation. This ma-
neuvers the vehicle along the trajectory to perform
the assigned task.

10) If the assigned task is attack, the vehicle’s
WeaponsManager determines where the explo-
sion occurred and sends the WeaponsRelease truth
message. This message contain a time stamp,
weapon ID, weapon type, and weapon aim point.

11) Using the weapon type and aim point, each target
calculates damage to it due to the explosion.

12) New replanning cycles are triggered each time a
target changes state or if a vehicle fails its assigned
task.

VII. CONCLUSION

The MultiUAV2 simulation has been constructed to be
capable of simulating multiple UAVs performing coop-
erative control missions, while ensuring accessability to
researchers. It is a very flexible simulation that can be
modified to perform missions requiring modifications
to the existing vehicles, targets, and tactics. The vehi-
cle dynamics simulation, VCVS, uses 6DOF equations
of motion and nonlinear aerodynamic look-up tables
to produce good fidelity dynamics and can be used
separately from MultiUAV2 for other types of research.
MultiUAV2has been used to perform cooperative control
research on areas such as task assignment, path planning,
and communication effects. MultiUAV2has been released
to the public and has been provided to many government
agencies, universities and companies.

REFERENCES

[1] MATLAB and SIMULINK. The Mathworks Inc.
[Online]. Available: http://www.mathworks.com

[2] AVDS. RasSimTech Ltd. [Online]. Available:
http://www.RasSimTech.com

[3] AFRL/VACA, MultiUAV2 Simulation User’s Man-
ual, AFRL/VACA, Wright-Patterson AFB, OH
45433, 2005.

[4] J. W. Mitchell, S. J. Rasmussen, and A. G. Sparks,
“Communication requirements in the cooperative
control of wide area search munitions using iter-
ative network flow,” in Proceedings of the Fourth
International Conference on Cooperative Control
and Optimization, 2003.

[5] J. W. Mitchell, C. J. Schumacher, P. R. Chandler,
and S. J. Rasmussen, “Communication delays in
the cooperative control of wide area search muni-
tions via iterative network flow,” in Proceedings
of the AIAA Guidance, Navigation, and Control
Conference, Austin, TX, 2003.

[6] J. W. Mitchell and A. G. Sparks, “Communication
issues in the cooperative control of unmanned
aerial vehicles,” in Proceedings of the Forty-First
Annual Allerton Conference on Communication,
Control, & Computing, 2003.

[7] S. J. Rasmussen, C. Schumacher, and P. R. Chan-
dler, “Investigation of single vs. multiple task tour
assignments for uav cooperative control,” in Pro-
ceedings of the 2002 AIAA Guidance, Navigation,
and Control Conference, Monterey, CA, 2002.

[8] K. E. Nygard, P. R. Chandler, and M. Pachter,
“Dynamic network flow optimization models for
air vehicle resource allocation,” in Proceedings
of the American Control Conference, Arlington,
Virginia, 2001.

[9] C. J. Schumacher, P. R. Chandler, and S. J. Ras-
mussen, “Task allocation for wide area search
munitions via network flow optimization,” in Pro-
ceedings of the AIAA Guidance, Navigation, and
Control Conference, Montreal, Canada, 2001.

[10] ——, “Task allocation for wide area search muni-
tions via iterative network flow optimization,” in
Proceedings of the AIAA Guidance, Navigation,
and Control Conference, Monterey, CA, 2002.

4501

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialNarrow-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Oblique
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

