
Abstract—The paper describes a new method for estimating 
the poles of an ARMA model using higher-order crossings. 
The method involves transforming counts of crossing events 
into estimates of ARMA poles via the autocorrelation domain. 
An important advantage of the method is that the crossing 
counts are the only features that need to be stored from the 
original data.  The poles of an ARMA model of a control loop 
correspond to the roots of the characteristic equation and are 
thus useful for evaluating control performance. 

I. INTRODUCTION

ANY processes including feedback control loops can 
be modeled as white noise passing through a 

dynamic system [1].  A process is called ARMA (Auto-
Regressive Moving Average) when the dynamic system is a 
linear rational discrete transfer function and the noise 
signal is an independent and identically distributed (IID) 
sequence of random variables.  
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Figure 1: An example SISO ARMA process 

Figure 1 shows a general ARMA process where t  is the 
random variable and: 
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where 1z  is used here as a backward-shift operator such 
that: d

t t dY z Y .
Identification of an ARMA model consists of two main 

steps: (1) finding an appropriate order; and (2) estimating 
parameters values. The focus of this paper is on the second 
part and it is assumed that the user specifies an appropriate 
order. Methods for ARMA parameter estimation are 
described in standard textbooks on time series analysis, 
e.g., [2]-[4]. Because textbook methods usually require 
storing a batch of data and/or some form of nonlinear 
optimization for parameter estimation [5], they are not well 
suited for online application in low-cost devices.  
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Recently, new methods for performance assessment have 
been developed for control systems that require estimation 
of an ARMA model [6], [7]. A typical and often unstated 
assumption is that these methods will be used in 
conjunction with an off-line time series analysis program 
that will process a batch of data. However, in low-cost 
industries such as building automation, access to these 
programs can be limited and it may not always be possible 
to store sufficient data. It is therefore difficult for these 
industries to take advantage of the new technologies. 
Recursive approaches to ARMA estimation are available, 
but they usually involve local linearization [8], [9] or high-
order AR approximation [10]. The linearization approach 
can be susceptible to robustness problems and entrapment 
in false minima [11], [12], while the AR approach will 
perform poorly if the order is not properly selected [13].   

One way to address the non-linearity issue associated 
with ARMA parameter estimation is to split the problem 
into two parts: estimation of the numerator 1( )B z  and 

estimation of the denominator 1( )A z . By adopting an 

approach based on autocorrelation lags, 1( )A z  can be 
calculated by solving a set of linear equations known as the 
modified (or extended) Yule Walker equations [14]-[16]. In 
control applications, the denominator is often of more 
interest than the numerator because it relates to the 
characteristic equation of a feedback loop. Although the 
use of autocorrelation lags facilitates a linear problem 
formulation, traditional approaches for estimating these 
lags still require storing and processing a batch of data. 

This paper proposes using higher-order crossings as a 
way to obtain autocorrelation lags without having to store a 
batch of data. A computationally efficient and low-storage 
procedure for ARMA pole estimation is introduced based 
on combining the higher-order crossings and modified 
Yule-Walker techniques. The use of higher-order-crossings 
represents a frequency-based approach to ARMA 
estimation and is therefore related to other frequency-based 
methods such as those described in [17]. The paper 
demonstrates the utility of the method by using it to detect 
oscillatory modes in a SISO feedback control loop. 
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II. ESTIMATION OF ARMA POLES USING 
AUTOCORRELATION LAGS

For the ARMA process shown in Figure 1, the signal tY
is given by: 
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It is well known that the parameters in an ARMA(n,m)
process of the type in (2) can be related to a sequence of 
autocorrelation lags by taking expectations [3]. In 
particular, the parameters in the autoregressive part (i.e., 
the denominator) of an ARMA model are related linearly to 
the sequence of autocorrelation lags as follows: 
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for k m . The parameters in the denominator of an 
ARMA(n,m) model can therefore be determined from the 
autocorrelation lag-k values by solving a set of 
simultaneous linear equations.  This approach has been 
referred to as the modified or extended Yule-Walker 
method in [14]-[16], where it has been used to estimate AR 
models in the presence of colored noise.  

Given the sample estimates ˆ ˆ,k k n  of the 
autocorrelation lag values for a signal tY , the coefficients 
in the denominator of the generating ARMA model can be 
estimated from: 

1ˆ ˆ ˆ, for A P k m  (4) 
where:
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The poles, ,z iz p , of the ARMA model are obtained by 
solving for the roots of the equation 

1
1

ˆ ˆ ˆ( ) n n
nA z z a z a .

A traditional method for calculating the autocorrelation 
lags for a uniformly sampled signal is to collect a batch of 
data and calculate ˆk  at lag k  from: 
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where q k q   and  
1

1 q

t
t
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q

. Online calculation 

of ˆk  using this approach requires storing a batch of data. 
In this paper, we present an alternative method for 
calculating the autocorrelation lags that eliminates the need 
to store a batch of data. The method is based on higher-
order crossings and is explained in the following section. 

III. REVIEW OF ZERO-CROSSINGS THEORY

Kac [18] and Rice [19] were among the first to derive 
relationships between the frequency at which a stationary 
signal crosses its expected value and spectral properties. 
Rice’s work, in particular, led to a mathematical framework 
for zero-crossings analysis that has since been formalized 
in standard textbooks, e.g., Cramér and Leadbetter [20]. 
More recently, Kedem [21]-[23] advanced the theory by 
providing a thorough treatment of discrete signals and 
introducing the concept of higher-order crossings. 

Zero-crossings analysis is mostly restricted to stochastic 
signals that are stationary and Gaussian.  The assumption 
of Gaussianity leads to certain simplifications, but other 
distributions can be treated via minor modifications [24]. 
The basic idea behind zero-crossings analysis is simply to 
count the number of times a signal crosses its expected 
value. Because amplitude is not needed for the analysis, a 
clipped version of the signal can be considered instead. For 
example, if 1, , NY Y  is a zero-mean stationary time series, 
a clipped series { }tX  is created from: 
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An expression for the number of zero-crossings in the 
original series { }tY  is then: 
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where 1D   is the number of zero-crossings. The subscript 
on D is used here as an index to distinguish higher-order 
crossings, which are explained in the next section. An 
important theoretical result is the relation between the 
number of zero-crossings and the lag-one autocorrelation 
for a stationary Gaussian time series. This relation is 
referred to as the “cosine formula” and is given by: 
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where an early derivation of (9) can be found in [25]. 
Given a finite sample of data, an estimate of the lag-one 
autocorrelation can be made by substituting the actual 
number of zero-crossings counted in the data for the 
expected value. 

IV. HIGHER-ORDER CROSSINGS

Further signal properties can be obtained from zero-
crossing counts on filtered versions of the original data 
series.  In principle, any linear filter can be applied to 
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construct new relationships between signal properties and 
zero crossing counts. In this paper, we use a differencing 
operation, which is a very simple high-pass filter. Repeated 
application of filter operations and the associated zero-
crossings counts are referred to as “higher-order crossings”, 
or HOC. Application of a difference operation is denoted 
by: 

1
1 (1 )t t t tY Y Y z Y  (10) 

where  is the difference operator. In general, the kth

difference of { }tY  is: 
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It is now useful to define kD  as the number of zero 

crossings in the series 1k
tY .  The HOCs have some 

interesting properties, such as their monotonicity where: 
1 20 [ ] [ ] ( 1)E D E D N .  Also, if  is the highest 

frequency in the spectrum, [ ] /( 1)kE D N  as 
k .  For any signal that is mixed with white noise, 
is then always the Nyquist frequency. In contrast, when 
only a single frequency exists (e.g., a pure sine wave), all 

[ ]E D  values are equal.
For a Gaussian signal, it can be proven that higher-order 

crossings uniquely determine the spectral distribution 
function up to a constant [23]. One representation of the 
relationship between the spectral distribution function and 
HOCs obtained from differencing operations is: 
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where ( )F   is the spectral density function. Higher-order 
crossings can also be related to a signal’s autocorrelation 
sequence and a derivation of this relationship can be found 
in [23]. The relationship is reproduced here without proof: 
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Equation (13) thus enables calculation of a signal’s 
autocorrelation sequence from an HOC series 1 1, , kD D .
Re-arrangement of (13) yields:   

1 1( 1) cos [ ]k
k kE D  (14) 

where 1 1 1 1 ( 1)k kD D N   are the set of higher-order 
crossings, normalized by the sample size; also: 
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Equations (14) and (15) therefore enable lag-k
autocorrelation values to be estimated from an HOC 
sequence.

V. SUMMARY OF THE METHOD

The proposed method is computationally inexpensive, 
easy to implement and only requires storage of the number 
of times a considered signal and its differences cross their 
expected values. The method can be broken down into four 
main computational steps as described below. 

1. Count the number of times an observed signal, e.g., 
tY , and its differences cross their expected values 

and create the normalized HOC sequence: 

1{ , , }m nD D .
2. Estimate the autocorrelation lags from the sequence 

of HOC using (14) and (15). 
3. Estimate the parameters in the denominator of the 

ARMA process by solving the modified Yule-
Walker equations given in (4). 

4. Find the roots of the estimated ARMA denominator 
using a standard root finding algorithm. 

The proposed approach is best illustrated by an example. 
We consider an ARMA(2,1) process where 

1 1
1( ) 1B z b z  and 1 1 2

1 2( ) 1A z a z a z . Let the 
output of the ARMA process be tY  and assume that 
crossing counts have been made on the output up to some 
point in time. The raw output signal is therefore 
transformed into a set of normalized crossing counts such 
that: 1... 1 2 3{ } { , , }TY D D D . Note that only three crossing 
counts are required because the process is ARMA(2,1). For 
an ARMA(n,m) process, the total number of counts would 
be n m .
 The normalized crossing counts 1 2 3{ , , }D D D  are the 
only variables that need to be calculated directly from the 
data. In an on-line set-up, this is useful because these 
counts require very little computation and storage. All other 
calculations could be carried out off-line, either 
periodically, or on demand. Once the zero crossing counts 
have been obtained, the next step is to calculate the 
autocorrelation lags using Equations (14) and (15). For the 
three required lags, the equations resolve to: 

1 1ˆ cos( )D  (16) 

4460



2
1

2 2
0 1

1 1
2 1 2

0
1

1 2 1

ˆ ˆ( 1) ( 1) 2 cos( )

ˆ( ( 1) )

ˆ ˆ(2 2)cos( ) 1 2

D

D

 (17) 

4 4
2 1

4 4 4 4
1 1 0 1

2 2
3 1 2 3

1
1 2

1 2 3 1 2

ˆ ˆ ˆ( 1) 2 ( 1) 2 cos( )

ˆ ˆ( 1)

ˆ ˆ ˆ ˆ(6 8 2 )cos( ) (4 7 4 )

D

D

 (18) 

Once the autocorrelation lags have been calculated, the 
modified Yule-Walker equations can be used to estimate 
the coefficients in 1( )A z , i.e., using Equation (4): 

1
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a

a
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Estimates of the coefficients in 1( )A z  are thus obtained 
by solving a set of simultaneous linear equations. The roots 
of 1( )A z  correspond to the poles of the ARMA process 
and would be calculated for this example by solving the 
standard quadratic expression. 

An important practical advantage of the zero-crossings 
approach is that it is resistant to the presence of extreme 
values in amplitude because it uses information only from 
the frequency domain.  

The algorithm can be easily modified to include 
exponential forgetting of past data by adjusting the way in 
which the crossing counts are updated.  For example, the D
values may be obtained by calculating an exponentially 
weighted moving average (EWMA) of the number of 
samples between crossing events. The reciprocal of this 
average period is then an estimate of the normalized zero-
crossing frequency D . An EWMA estimate of the period 
between zero-crossings is calculated from: 

1(1 )j j jT T T  (20) 
where 0 1  is a forgetting factor, jT   is the number of 
samples between the previous and current crossing events, 
and jT   is EWMA of the period. An estimate of the average 

number of zero-crossings per sample is simply: 1 jD T .

VI. EXAMPLE RESULTS

This section presents results of using the method to 
estimate the poles in three different ARMA processes, one 
being a SISO feedback control loop.  

A. ARMA(1,1) and ARMA(2,1) estimation 
In this section, the method was applied to signals 

generated by passing 10,000 samples of an IID Gaussian 
noise sequence through two example transfer functions: 
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where application of 1
1,1 ( )G z  and  1

2,1 ( )G z  yield 
ARMA(1,1) and ARMA(2,1) processes respectively.  
TABLE 1: RESULTS OF ARMA(1,1) AND ARMA(2,1) ESTIMATION 

System 1
1,1( )G z 1

2,1 ( )G z

Number of Samples 10000 10000 

HOC sequence 

1 2 3{ ; ; }D D D ) 2088; 6338; __ 268; 3249; 6355 

Lags from HOC 

1 2 3ˆ ˆ ˆ{ ; ; }
0.792; 0.754; 

__ 0.996, 0.989, 0.979 

Lags from Eq. (6)

1 2 3ˆ ˆ ˆ{ ; ; }
0.784; 0.742; 

__ 0.996; 0.987; 0.976 

Poles from HOC 

1 2{ ; }r r 0.952; __ 0.968; 0.870 

Poles from Eq. (6) 

1 2{ ; }r r 0.946; __ 0.962; 0.870 

RMSE  (HOC) 0.028 0.154 

RMSE  (Eq. (6)) 0.047 0.078 

2

2
1

1 ˆRMSE
ˆ

N

t t
tY

Y Y
N

, t̂Y  is the predicted 

value and 2ˆY  is the estimated sample variance of tY .

The method was applied to the signals tY  from the two 
processes in order to determine the poles in the transfer 
functions. TABLE 1 shows autocorrelation lag estimates 
and pole estimates obtained from HOC and from the 
traditional batch process, i.e., using (6).  The results 
indicate that the HOC approach provides comparable 
accuracy to the batch process but with significantly fewer 
computational operations and less storage.  

B. Application to a closed loop system 
Figure 3 shows an example linear discrete-time 

representation of a closed loop system containing a 
controller, plant, and noise process. In Figure 2, and in 
most situations, the control error in a closed-loop system 
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under stochastic regulatory operation can be modeled quite 
well as an ARMA process.

The closed-loop transfer function between the error 
signal and the noise input resolves to the following form: 

1
1

1 1

( )
( )

1 ( ) ( )
n

L
c p

G z
G z

G z G z

ARC
ARD DSB

 (22) 

where te   is the error signal and { }ta   is an IID sequence 
of Gaussian random variables. Note that the error signal te
could be replaced by the difference between the controlled 
variable ty  and its expected value, where the expected 
value might be estimated.  
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C z
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tr tu ty
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controller plant

noise 
process
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1( )cG z 1( )pG z
1( )nG z

Figure 2: Discrete-time control loop block diagram 

For this example, we assume that the noise and plant 
models are equivalent so that D A  and 1C . For a first-
order plus time-delay plant transfer function: 

1

(1 )
1

d

p

z
G

z
, and an integrating controller, 

11
c

c

K
G

z
, the closed loop system becomes an 

ARMA(MAX(2,d),1) process where: 
1

1
1 2

(1 )( )
1 (1 ) (1 )L d

c

z
G z

z z K z
   (23) 

Consider now the case where 0.9, 2d  in LG
yielding the following second-order system: 

1
1

1 2

1( )
1 1.9 (0.9 0.1 )L

c

z
G z

z K z
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The method was used to estimate the poles in (24) for 
different values of cK . Because the process had just two 
poles, a (continuous-time) damping ratio was calculated to 
characterize the aggressiveness of the loop. The damping 
ratio was calculated by assuming that the discrete poles 
( )zp  map onto their continuous-time counterparts ( )sp

through the relation / ln( )s zp t p , where t  is the 
sampling period. When the continuous-time poles are 
complex conjugates such that sp a ib , the damping 
ratio is calculated from: 

2

2 2

a
a b

 (25) 

Otherwise, when ,1 ,2{ , }s sp p  are both real, 

,1 ,2

,1 ,2

( )

2
s s

s s

p p

p p
 (26) 

The HOC estimation method was tested by generating 
10,000 samples from the closed loop system of (24) using 
four different values for the controller gain: 

[0.05;0.1;0.5;0.75]cK . Snapshots of the setpoint error 
signal are presented in Figure 3 with cK  increasing 
clockwise from the top left graph.  
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Figure 3: Variation of damping ratio with increasing controller gain 

The results of the parameter estimation are shown in 
Table 2.  The actual damping ratio varied from 0.69 to 0.05 
and the results show that the accuracy of the parameter 
estimates improved as the damping ratio became smaller. 
One reason for higher accuracy of the parameter estimates 
at smaller damping ratios is that peaks in the spectral 
density function become more pronounced as the damping 
ratio decreases thereby reducing uncertainty in frequency-
based estimation schemes. The results show that the 
damping ratio, , provides a good measure of 
aggressiveness and could serve as a way to detect 
oscillations. For higher-order loops, conjugate pairs of 
poles could be transformed to damping ratio values to 
detect the presence of oscillatory modes in the signal. This 
oscillation detection procedure can be easily implemented 
online, and requires little process knowledge compared to 
earlier methods proposed by [26], [27]. 
Table 2: Results of parameter estimation for closed loop system. 

Actual Values Estimated Values 
cK

,{1,2}zp ,{1,2}zp
0.05 0.8912±0.0696i 0.69 0.9500±0.0500i 0.82 
0.1 0.9252±0.0980i 0.46 0.9500±0.0866i 0.56 
0.5 0.9482±0.2185i 0.11 0.9500±0.2179i 0.12 
0.75 0.9506±0.2701i 0.05 0.9500±0.2693i 0.04 

An important issue that needs to be considered when using 
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the proposed method is that of correct order selection. 
Model order should also be chosen to take into account the 
possibility of pole-zero cancellation [28]. 

VII. CONCLUSION

A new method was presented for estimating the poles in 
an ARMA process using higher-order crossings. The 
method involves calculating autocorrelation lags from 
higher-order crossings counts and solving a set of linear 
equations to obtain the autoregressive parameters. Poles are 
obtained by applying a root finding algorithm to the AR 
parameters. An important advantage of the proposed 
method is that it does not require storing a batch of data. 

The method was tested with three different ARMA 
processes including an SISO feedback control loop. The 
results showed that the method provided comparable 
accuracy to a traditional approach based on using a batch of 
data. The results also demonstrated that the method could 
be used to detect oscillatory modes in feedback control 
loops for the purpose of control loop performance 
assessment. 
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