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Abstract— In contrast to engineering applications, in which
the structure of control laws are designed to satisfy prescribed
function requirements, in biology it is often necessary to infer
gene-circuit function from incomplete data on gene-circuit
structure. By using the feed-forward loop as a model system,
this paper introduces a technique for classifying gene-circuit
function given gene-circuit structure. In simulations performed
on a comprehensive set of models that span a broad range
of parameter space, some designs are robust, producing one
unique type of functional response regardless of parameter
selection. Other designs may exhibit a variety of functional
responses, depending upon parameter values. We conclude
that, although some feed-forward loop models have designs
that lend themselves to unique function inference, others have
designs for which the function type may be uncertain.

I. INTRODUCTION

In cells, gene expression is often influenced by molecular
signals. The genes and gene products involved in the
response to a signal comprise a genetic regulatory circuit,
and the set of genetic regulatory interactions in a cell
defines its genetic regulatory network. As with engineered
systems, there are certain designs that may recur in different
parts of a cell’s genetic regulatory network. For example,
it has recently been found that certain patterns of genetic
regulatory interactions occur more frequently in Escherichia
coli than would be expected in randomized networks with
similar connection statistics [9]. The feed-forward loop is
one such design, an example being regulation of araBAD
by both the local transcription factor AraC and the global
transcription factor CRP in E. coli (see review [8] and
references therein). An example of a feed-forward loop with
an arbitrarily selected configuration is shown in Fig. 1.

Given that there are recurring structural designs found in
genetic regulatory networks, it is logical to ask: a) What is
the function of a design and b) why might one design be
preferred over other designs?

The first question addresses the issue that even once a par-
ticular circuit configuration is selected, the function of the
circuit is not necessarily transparent. For the feed-forward
loop, Mangan and Alon [5] explored several possible circuit
functions by using a mathematical model of feed-forward
loops in which a signal Sx interacts with X , and a different
signal Sy interacts with Y . For a constant level of Sy,
they noticed pulsing, on/off, and off/on behaviors in gene
expression levels in response to a step function input in
Sx. Their efforts produced a preliminary classification of
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Fig. 1. Feed-forward Loop Network Motif. X and Y represent tran-
scription factors. Z is the target (effector) gene. Activator connections are
drawn as normal arrows and repressor connections are drawn as arrows
with T-shaped ends. Signal effects are shown with characters {+, -, 0}.

functional responses for feed-forward loops, but in order to
more thoroughly characterize feed-forward loop function,
it is desirable to explore a larger range of parameters than
were considered in their study, and to consider circuit types
in which the same signal can interact with both X and Y .

Answering the second question requires an understanding
of performance criteria relevant to natural selection in gene
circuits. Elucidation of design principles is a subject of
interest to biologists and engineers alike [10]. Broad clas-
sification of possible circuit functions can eventually help
clarify why certain circuit designs are preferable to others.
For example, the feed-forward loop simulations presented
in this paper show that the function of some circuit designs
is more robust to parameter changes than for other circuit
designs.

This paper presents a method for classifying possible
functions of a gene-circuit given the structural configura-
tion. Temporal responses of a comprehensive set of feed-
forward loop models are calculated for a range of param-
eter values. The responses are clustered, and the relation
between clusters and circuit types is analyzed.

II. FEED-FORWARD LOOP

Protein levels in bacteria are often controlled at the level
of transcription. Proteins called transcription factors can
bind to regulatory regions of DNA upstream of a gene
of interest to either assist in enabling transcription or to
block the transcription process. When transcription occurs,
the downstream genetic information is copied to a strand of
mRNA and then translated into a protein, which can effect a
physical change in the cell (e.g. break down sugars present
in the environment). The protein encoded by the expressed
gene could, alternatively, be another transcription factor that
will activate or repress the transcription of a gene elsewhere
in the cell. Because of this structure, it is possible to see
chains of transcription factors that ultimately lead to the
expression of a target gene.
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The feed-forward loop network motif has 2 transcription
factors, X and Y , which control expression levels of a target
gene Z. X additionally regulates transcription of Y . The
term functional response refers to the expression level of Z
as a function of time.

If the presence of a transcription factor X enables tran-
scription of Y , then it is said that X activates Y . If the
presence of X inhibits transcription of Y , X represses Y .

Signaling molecules also play a significant role in gene
expression. Signals may be small-molecule metabolites or
other molecules that bind to the transcription factor, en-
abling or blocking its activity.

As in Mangan & Alon [5], we consider feed-forward loop
models in which each of 3 genetic regulatory interactions
can take on one of two possible values ({activator, repres-
sor}). Unlike their study, which only considers changes in
a signal that enables the global activity of X , we consider
models in which a signal may have one of 3 effects ({+,
-, 0}) on each genetic regulatory interaction. Instead of
considering just 8 (= 23), we consider 216 (= 2333) different
ways of wiring a feed-forward loop. Fig. 1 is just one
example.

III. MATHEMATICAL MODELS

The general feed-forward loop is modeled using a pair
of nonlinear ordinary differential equations:

Ẏ = By + αyH

(
SyxX

Kyx

)
− βyY (1)

Ż = Bz + αzH

(
SzyY

Kzy

)
H

(
SzxX

Kzx

)
− βzZ. (2)

Recall, X and Y are transcription factors and Z is the target
gene. X is treated as an independent variable, modeled here
as a constant, as in [5]. This assumes constitutive production
of X; formation of X does not depend on the presence of
any specific substrate.

Bi is the basal transcription rate, the rate of protein
production that cannot be controlled through transcriptional
regulation. αi is the regulatable transcription rate and βi

is the decay rate through degradation and dilution. Sij ,
discussed in further detail below, is a binary value that
describes the signal effect. Kij is a threshold value, also
described below.

The Hill function, H(x), that appears in Eqns. 1–2
describes how well the transcription factor is bound to the
DNA. It maps the ratio of a transcription factor level to
threshold (e.g. X/Kyx) to a scalar value between 0 and
1 that describes how effectively the transcription process
occurs. High values indicate more effective transcription.

The Hill function is described by

H(x) =
1

(1 + xnij )
, (3)

where nij is negative if the connection is an activator and
positive if it is a repressor. Reference [6] provides a general
introduction to equations like 1–3.

The Hill function coefficient nij determines how rapidly
the function transitions between 0 and 1. As |nij | → ∞,
the Hill function becomes a step function. Real biological
systems tend to have |nij | close to 2. Step function approx-
imations can be solved analytically, however.

The threshold value Kij is the value of j at which
the Hill function is equal to 0.5. The Hill function can
be derived from equations describing the chemistry of
DNA/transcription factor binding.

Signal interactions are modeled by inserting a binary
term, Sij ∈ {0, 1}, in the Hill function argument. The
value Sij takes on depends upon the level of signal in the
environment and the type of signal interaction ({+, -, 0}).
Table I is used to determine Sij .

Signal < Threshold Signal > Threshold
+ 0 1
- 1 0
0 1 1

TABLE I

Sij VALUES

IV. SIMULATIONS

The initial conditions for all simulations are the steady
state values of Y and Z when the signal is below the
threshold level. For the feed-forward loop, analytical ex-
pressions for Y (0) and Z(0) can be found from the steady
state versions of Eqns. 1 and 2. We are interested in the
dynamical behavior that results from changing signal levels.

Fig. 2 shows the response of one representative feed-
forward loop to changing signal levels. The level of tran-
scription factor Y , increases to its steady state value follow-
ing a decaying exponential curve. Nonlinear effects cause
overshoot in Z before it reaches steady state.

There are 9 parameters in Eqns. 1–2 that can be varied.
Through a change of variables Bi (i = y, z) can be

eliminated from the equations. Its presence causes multi-
plicative and additive shifts in the functional response. As
discussed in Section V-C, neither of these properties are
important in clustering. The Bi parameters are arbitrarily
set to zero.

The values of αi and βi are selected randomly from a
reasonable range ([0.1, 10] for data shown in the following
section). For each of the 4 parameters, a random number,
r, is mapped using a power law:

10(2r−1)log10Mαβ , (4)

where Mαβ is the maximum value αi or βi can take on
(10 for this example). This mapping ensures that it is
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Fig. 2. Sample functional response. Simulation results for levels of X , Y ,
and Z expression as a function of time. The input signal and threshold are
shown in the top plot. The configuration of the simulated system is {X-Y,
Y-Z, X-Z} = {activator, repressor, activator} and {Signal X-Y, Signal Y-Z,
Signal X-Z} = {+, +, +}. Parameter values shown here are: αi = βi =

Kij = 1, Bi = 0.1, X = 10, |nij | = 2.

equally likely to assign values less and greater than 1 to
the parameters.

Additionally, the threshold parameters, Kij , are varied.
The ratio of transcription factor concentration to the thresh-
old value is the relevant quantity (e.g. X

Kyx
). These three

ratios are allowed to take on values less than 1, equal to
1, and greater than 1. All 27 possible combinations are
considered.

Recognizing symmetry in signaling effects reduces the
size of this problem and decreases computation time.

V. CLUSTERING FUNCTIONAL RESPONSES

An infinitely large number of feed-forward loops can be
modeled with these techniques. For each of the 216 wiring
patterns there are multiple threshold and rate parameters
that are either unknown or uncertain in biological systems.
Broad range limits on parameter values can be assumed
to make the problem tractable, but the number of systems
remains large.

Although a great number of feed-forward loops can be
modeled through this approach, many of the functional
responses appear to be similar. The number of systems we
consider is so large that an automated approach is necessary
to classify functional responses into different categories
based upon their similarity. A clustering algorithm is used
to tackle this problem.

A. Clustering Algorithm

The method used to cluster functional responses is a
greedy approximation algorithm developed by Hochbaum
and Shmoys [4]. The algorithm requires a metric d(x, y)
on a set Y (x, y ∈ Y ) that characterizes the distance

between x and y. For a point y ∈ Y and S ⊆ Y define
d(y, S) = min{d(y, s) : s ∈ S}.

The clustering problem this algorithm solves can be
stated as follows: Given an input of a set X of n points
x1, ... xn and a metric d on X , find a set C of K points
c1, ... cK ∈ X that minimizes max

1≤i≤n
d(xi, C).

The clustering algorithm is performed as follows. First, K
points must be selected as cluster centers. The first center,
c1, is chosen at random. After that (i = 2, ... K) let ci be
the point x of X that maximizes d(x, {c1, ... ci−1}). This is
equivalent to assigning all the remaining non-center points
to clusters, determining which is furthest from its center
point, assigning that point as a new center, and throwing
the rest of the points back into the pool of non-centers.
After all K centers have been assigned, the remaining points
xK+1, ... xn are assigned to clusters.

This algorithm is used to cluster functional responses.
Defining a distance measure, d, is the primary complication
in extending the clustering algorithm to the present task.
Each functional response is a vector z ∈ R

N where the
vector contains the values of Z running from t = 0 to
t = N − 1.

A correlation coefficient is used to measure the distance
between two functional response vectors, z1 and z2:

d(z1, z2) =
1

2
−

< z1 − z̄1 , z2 − z̄2 >

2 ||z1 − z̄1||2 ||z2 − z̄2||2
. (5)

This distance function is designed so that d(z1, z2) = 0
if z1 = z2 and d(z1, z2) = 1 if the two signals are very
different.

B. Maximum Error versus Number of Clusters

The maximum error is defined as the largest cluster
“radius”, max

1≤i≤n
d(xi, C). This value can be plotted as a

function of K, the number of clusters. Clearly, at K = 1,
we will have a large maximum error value if the functional
responses are not all nearly identical. For K = total #
of functional responses, we will have 0 error since every
functional response is associated with its own individual
cluster. The shape of the intermediate curve is of particular
interest.

Fig. 3 shows that, even for large numbers of functional
responses, the maximum error drops off rapidly as the
number of clusters is increased.

C. Singular Value Decomposition

Since each cluster may contain a large number of func-
tional responses, plotting all the functional responses asso-
ciated with an individual cluster on top of one another is
overwhelming. In some clusters, there may be thousands of
responses. Singular value decomposition is used to generate
a representative trace that describes the most significant
principal component of all of the functional responses in
the cluster.
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Fig. 3. Maximum Error versus K, the number of clusters. The results of
clustering on two distinct data sets are shown.

Singular value decomposition has been used in other
biological applications to compress data into a simplified,
more understandable form [11]. In this work the singular
value decomposition of a matrix A ∈ R

M×N is taken:

A = USV T . (6)

M is the number of functional responses we are comparing
and N is the number points in time. S, U, and V come from
the standard definition of singular value decomposition.

The first right singular vector (the first column of V )
is the singular vector associated with the largest singular
value. This vector describes the principal component of
all of the functional responses listed in the A matrix
and provides a single representative functional response to
associate with a cluster.

Fig. 4. Singular Value Decomposition Example. a) Three representative
functional responses from one cluster. b) The first right singular vector
of a matrix containing all functional responses from the cluster that the
responses shown in a) are drawn from.

An example of how singular value decomposition can be

used to represent many functional responses is shown in
Fig. 4. The top plot of Fig. 4 shows 3 functional responses
plotted on top of each other. In reality, this is a small subset
of all functional responses that fall into this cluster type. The
primary singular vector associated with the complete set of
functional responses is shown in the bottom plot of Fig. 4.
Note that the distance function (Eqn. 5) evaluates to zero
for functional responses that differ only by a multiplicative
scaling factor and an offset.

VI. RESULTS

The clustering approach associates the functional re-
sponses of 216 feed-forward loop models with a small
number of distinct patterns. These distinct patterns can be
used to classify the behavior of an individual circuit over a
range of parameter values. The number of clusters it takes
to describe a particular circuit configuration can be used as
a measure of how robust a circuit is to parameter variation.

A. Representative Cluster Traces

A relatively simple example is presented to illustrate the
utility of clustering. The data shown in Fig. 6 are the result
of clustering on a set of 3,456 functional responses. All 216
possible circuit configurations are represented. Within each
configuration only parameters αi and βi (i = y, z) from
Eqns. 1–2 are varied.

K = 11 clusters is chosen as a cutoff point because the
maximum error is acceptably small (see # of functional
responses = 3,456 in Fig. 3). Beyond this point additional
cluster types represent similar functional responses but
with differing temporal characteristics. For example, the
rise times, settling times, and overshoot behavior may be
different for the additional cluster types. The utility of
clustering lies in its ability to segregate functional responses
into broad class types, allowing for a qualitative under-
standing of possible circuit functionality. In particular, this
method will be useful for considering circuits that have
more complicated responses (e.g. responses to input signals
that are more complicated than a step function).

Fig. 6 shows representative singular vectors from each
of the 11 clusters. These are the functional responses (Z
vs. time) of various systems in response to the input signal
shown in Fig. 5.

Threshold

Fig. 5. Signal level as a function of time.

When the threshold values, Kij , are varied in addition to
αi and βi all relevant parameters in Eqns. 1–2 are explored.
The result is a large set of functional responses that do
not segregate as logically into individual clusters. Even
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SignalSignalSignal
X-YY-ZX-Z X-Y Y-Z X-Z A B C D E F G H I J K L M N O Entropy
act rep rep + + + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep + + 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep + + - 0.41 0 0.51 0.02 0 0 0 0 0.01 0 0 0 0 0.06 0 1.45
act rep rep + 0 + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep + 0 - 0.38 0 0.51 0.03 0 0 0 0 0.01 0 0 0 0 0.07 0 1.51
act rep rep + - + 0.90 0 0 0 0.09 0 0 0 0 0 0 0 0.01 0 0 0.52
act rep rep + - 0 0 0.11 0 0 0.06 0 0 0 0 0 0.50 0 0.33 0 0 1.62
act rep rep + - - 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep 0 + + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep 0 + 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep 0 + - 0.48 0 0.52 0 0 0 0 0 0 0 0 0 0 0 0 1.00

TABLE II

PERCENTAGE OF CLUSTER TYPES EXHIBITED BY CIRCUIT CONFIGURATIONS

(SUBSECTION OF A LARGER TABLE)

Fig. 6. Representative functional responses (Z vs. time) from each of
11 clusters. Letter labels are used for reference in Table II.

when this is the case, the clustering technique can still
be applied to yield a qualitative picture of possible func-
tional responses. The case with 16,848 functional responses
shown in Fig. 3 corresponds to a widely explored range of
parameters, but the maximum error still drops off rapidly.
If an acceptable error value is chosen, clustering can be
performed to within this margin of error.

In an exploration of the more complete parameter space,
the cluster types seen in Fig. 6 are preserved, but several
additional clusters are added. For example, selecting K =
15 clusters with 16,848 functional responses produces the
4 additional cluster types shown in Fig. 7.

Even when exploring the complete parameter space,
some system configurations fall into the same cluster type
regardless of the parameter values selected for αi, βi, and
Kij . The functional responses of these genetic regulatory
configurations are robust because they are particularly in-
sensitive to changes in parameters.

Fig. 7. Representative functional responses (Z vs. time) for cluster
types added when additional parameters are varied. Letter labels are used
for reference in Table II.

B. Distributions of Functional Responses

Table II lists cluster types for various system configura-
tions. Each row corresponds to one particular configuration,
a set of genetic regulatory and signal interaction types (act
= activator, rep = repressor). The columns labeled A–O
correspond to the cluster types labeled in Figs. 6 and 7.
The numbers in the row tell into which cluster this system’s
functional responses fall. For some system configurations,
varying parameter values causes the functional response to
fall into different clusters. The rows are normalized by the
total number of cases with different parameter values that
were run.

Table II’s entries list the percentages of functional re-
sponses that fall into each cluster type for each config-
uration, but these data do not indicate how “different”
responses are within a cluster. Selecting the number of
clusters (Fig. 3) sets the upper bound on the error within
each cluster. For the 15 cluster case, all functional responses
within a cluster are within a distance of 0.18 of each other,
as measured by Eqn. 5.

The entropy of each function distribution in Table II
is calculated by using the standard definition of Shannon
entropy:
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−
15∑

i=1

p(i) log2 p(i), (7)

where p(i) is the percentage of functional responses that
fall into cluster i.

In the context of the previous discussion on robustness,
rows which have a 1 associated with one cluster type and
0’s for all the rest (entropy = 0) are particularly robust
because parameter variations do not change the function
of the system.

Note that the exact entries in the table are dependent upon
the details of parameter selection and the distance measure
used to cluster data. General trends, however, can still be
concluded from these data.

The entries shown in Table II are a subset from a larger
table. If all possible genetic regulatory and signal interaction
types were shown, the table would have 216 rows. The
12 configurations types shown are illustrative examples;
although these circuits do not exhibit a significant number
of responses that fall within clusters F , G, H , L, and O,
other circuits may exhibit such responses, and have patterns
of diversity similar to those shown here.

C. Biological Interpretation

Clustering provides a logical grouping of response types
without prior knowledge of the behavior that a network
may exhibit. The response pattern of a cluster can then be
interpreted in a biologically meaningful way. For example,
cluster A (Fig. 6) is associated with repressible circuits,
for which gene expression decreases upon an increase in
signal level. Cluster C is similarly associated with inducible
circuits, for which gene expression increases upon increase
in signal. For circuits associated with cluster B, gene
expression is unresponsive to changes in signal. Pulsed gene
expression responses, both with and without steady state
changes, are seen in the remaining cluster types.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a method for identifying functional
capabilities of a genetic network given its structure. The
feed-forward loop network motif is used to demonstrate
the utility of the technique. In our analysis of feed-forward
loop models, functional responses were organized into a
relatively small number of clusters. Some feed-forward
loop types show non-robust behavior, suggesting that these
circuits do not have unique information processing roles.
The clustering technique presented allows for such quick,
qualitative intuition into the function of a system. Insight
from clustering will be particularly helpful if the state space
and parameter space are even larger than those presented in
the feed-forward loop example here.

Although we consider models of feed-forward loops in
isolation, in Nature gene circuits are embedded within
the context of the entire molecular network of the cell.
Nevertheless, considering isolated gene-circuit models can

reveal insights into the cellular response to signals. Such
models have already proved to be useful in design of
synthetic gene circuits, for example, in the design of a
toggle switch [3], an oscillator [2], and a circuit whose
design may be selected to exhibit either toggle switch or
oscillatory behavior [1]. The present technique can help
to narrow down which system types and parameter ranges
exhibit a desirable behavior, given a broad class of possible
designs.

In the future it will be interesting to explore the im-
plications of robustness of functional responses in real
biological systems. In particular, is robustness necessarily
a desirable trait for a genetic circuit? If the circuit is
locked into one role it may not be capable of evolving
in alternative environments. However, robustness leads to
reliable functionality. In addition, natural selection can act
to enhance the populations of organisms that are sensitive
rather than robust to mutations in gene circuits. This process
has been used previously to explain patterns in the use of
activator and repressor control in natural genetic regulatory
interactions [7]. It would be interesting to consider tradeoffs
involving robustness in the context of the evolution of
feed-forward loop configurations and other aspects of gene
circuit design.
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