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Abstract— We examine the stability and behavior of a pla-
toon of autonomous vehicles which operate in a decentralized
manner and communicate to achieve formation control objec-
tives. We are interested in communication networks that are
time-varying, with each vehicle interacting with different sets
of vehicles as the system evolves. We are particularly interested
in networks which are disconnected, and in which basic control
objectives such as stability cannot be achieved, in a frozen-
time sense. Graph theoretical concepts are used to help model
the platoon and provide a framework for stability analysis.
Periodic fast switching, a tool from the field of switching
theory, is adopted to assess stability of systems with time-
varying communication networks. We show that if switching
is sufficiently fast, then a platoon of autonomous vehicles
can be stabilized even when the communication network is
disconnected in frozen time.

I. INTRODUCTION

The properties and behavior of distributed dynamical
systems are important areas of research in a number
of scientific and technological fields [1]. Communication
among components is an essential factor in the operation
of many distributed systems, and a significant amount of
research in the field of robotics has investigated the effect
of communication in vehicle platoon control and estimation
activities [2], [3].

For the purpose of illustrating the role of communication
in distributed systems, we examine the behavior of an
autonomous underwater vehicle (AUV) platoon. It should
be emphasized that in this paper, our purpose in examining
AUV behavior is neither to develop a realistic application
model nor to propose a practical control algorithm, but
rather to establish a framework for investigating networked
system communication issues. A platoon of AUVs is a par-
ticularly compelling framework, since underwater commu-
nication bandwidth is severely limited. Practical examples
of underwater vehicle platoons are presented in [4] and
[5]. In both cases, vehicles communicate only when they
surface.

Analysis of networked systems often relies on concepts
from the field of graph theory [6]. In this section, graph
theoretical concepts suitable for describing communication
networks are defined, and the motivation for and contribu-
tion of our research is presented.

A. Graph Theoretical Characterization of Communication
Networks

Concepts from graph theory [7] are helpful in understand-
ing communication networks. A network of communicating
agents can be viewed as a graph G, which is defined
by a set of vertices V and a set of edges E connecting
the vertices. The vertex vi ∈ V, with i ∈ {1, . . . , N},
corresponds to agent i, and the edge (vi, vj) ∈ E, with
i, j ∈ {1, . . . , N}, corresponds to an active communication
link between agents i and j. The adjacency matrix A =
[aij ] ∈ {0, 1}N×N , where

aij =

{
0 (vi, vj) /∈ E

1 (vi, vj) ∈ E

indicates which vertices are connected by an edge, and
therefore which agents communicate. Communication be-
tween agents is bidirectional if the graph representing the
network is undirected, i.e. if A = AT .

The following definitions relate properties of communi-
cation networks studied in this paper to characteristics of a
graph G.

Definition 1.1: A communication network is time-
invariant if a constant E defines the graph for all time.

Definition 1.2: A communication network is time-
varying if G = G(t) depends explicitly on time t, a
condition which amounts to switching between a finite
number of edge sets E1, . . . , Er, with r ∈ N, as the graph
evolves.

Definition 1.3: A communication network is T -periodic
if G(t) = G(t + T ) for all t, where T > 0.

Definition 1.4: A time-invariant communication network
is connected if a path exists between every pair of vertices
in G, i.e. for each i, j pair, there is an m ∈ {0, . . . , N − 1}
such that aij,m > 0, where [aij,m] = Am.

Definition 1.5: A time-invariant network is disconnected
if it is not connected.

Definition 1.6: A time-varying network is disconnected
in frozen time if G(t) is disconnected for all t.

Definition 1.7: A time-varying network is jointly con-
nected over a time interval [t0, tf ] if the union of its frozen-
time edge sets E1 ∪ . . .∪Er during the interval constitutes
a connected graph [8].
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Note that a network which is disconnected in frozen time
may be jointly connected.

B. Research Motivation and Contribution

Much of the existing distributed system research con-
ceives communication among agents as a time-invariant
network, or as a time-varying network whose frozen-time
connectivity supports satisfactory operation, an example of
which is the study of the robustness of connected systems
to communication failures [9]. However, it is sometimes
not possible for practical systems to meet such frozen-
time connectivity requirements. Communication may be
constrained by a number of factors, including bandwidth
limitations and environmental obstacles, that prevent a net-
work from possessing suitable connectivity at any point of
time. At present, the behavior of distributed systems which
are disconnected in frozen time is relatively unexplored.

One recent investigation of systems that are disconnected
in frozen time is [10], which examines connectivity in
evolving networks of agents that communicate expiring
messages. Synchronization of oscillators associated with the
agents is used to probe network connectivity. A main result
of the paper is that robust synchronization can occur if
the network evolution generates paths of communication
at time scales compatible with message dynamics, even if
the frozen-time connectivity is below the threshold required
for robust synchronization, and even if groups of agents are
unable to communicate at every point in time.

Another relevant investigation is reported in [8], in which
a group of mobile agents coordinates direction of movement
through communication among neighboring agents. Neigh-
borhoods are allowed to change as agents move relative to
one another. The results are shown to apply when the level
of connectivity that would be required of a time invariant
network does not exist at any point in time. Using a graph
theoretical approach, the authors introduce the concept of
a jointly connected system, in which the union of the
graphs representing the frozen-time communication patterns
is equivalent to a connected graph.

In studying the behavior of distributed systems with
time-varying communication patterns, results from switched
system theory are useful [11], [12]. Switched, or hybrid,
systems are characterized by piecewise continuous dynam-
ics, and a switching policy that specifies how the dynamics
change at distinct points in time. A number of useful tech-
niques are available for switched system stability analysis,
including common Lyapunov function, multiple Lyapunov
function, and dwell time techniques. However, many of
these strategies are ineffective when applied to distributed
dynamical systems which lack frozen-time communication
connectivity.

In this paper, we investigate the effect of a switched
system technique, fast switching, on the behavior of an
AUV platoon with a periodic communication network that is
disconnected in frozen time. We show that if the switching
period is sufficiently small, the response of the switched

system is stable and approximates the response of the time-
invariant system whose dynamics are defined by the convex
combination of the underlying piecewise continuous dynam-
ics. To illustrate the results of our theoretical investigation,
we examine a platoon in which each vehicle communicates
with at most one other vehicle at any point in time. We
propose a simple decentralized controller for the platoon,
due to which vehicles travel in formation while regulating
their average position.

Our first step is to introduce fast switching theory.

II. FAST SWITCHING THEORY

Consider the linear time-varying system

ẋ = A(t)x (1)

where x ∈ R
n, and A(t) ∈ R

n×n is T -periodic and
switches between r constant matrices A1, . . . , Ar, so that

A(t) =
r∑

i=1

Aiχi(t) (2)

The indicator function χi(t) with support [(k+εi−1)T, (k+
εi)T ), for i ∈ {1, . . . , r} and k ∈ {0, 1, 2, . . .}, specifies
which constant matrix Ai applies at a particular point in
time. The constant scalars εi represent switching times and
satisfy

0 = ε0 < ε1 < . . . < εr−1 < εr = 1

The fraction of time that Ai is active is δi = εi − εi−1.
The main result of this section is to show that if

Ā =
r∑

i=1

δiAi (3)

is Hurwitz, then there exists a T ∗ such that the state
equation (1) with coefficient matrix (2) is uniformly asymp-
totically stable if 0 < T < T ∗. To obtain this result for
switched systems, we first establish a result which applies
to time-varying systems in general. The following lemma,
adapted from [13], provides a bound on the transition matrix
of a linear time-varying system.

Lemma 2.1: Consider the linear time-varying system

ẋ = F (t)x

where x ∈ R
n and F (t) ∈ R

n×n, and suppose that

‖F‖∞ = sup
t≥0

‖F (t)‖

exists. Then for all Γ > 0 the transition matrix associated
with F (t) satisfies

Φ(τ + Γ, τ) = eΓFΓ(τ) + R(τ, Γ) (4)

where

FΓ(τ) =
1
Γ

∫ τ+Γ

τ

F (σ)dσ (5)

and
‖R(τ, Γ)‖ ≤ ‖F‖2

∞Γ2eΓ‖F‖∞
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Proof: The expression for the transition matrix (4) is
determined from its Peano-Baker series representation

Φ(τ + Γ, τ) = I + ΓFΓ(τ)

+
∞∑

k=2

∫ τ+Γ

τ

F (σ1)
∫ σ1

τ

. . .

∫ σk−1

τ

F (σk)dσk . . . dσ1

= eΓFΓ(τ) + R(τ, Γ)

where

R(τ, Γ) = −
∞∑

k=2

ΓkF k
Γ (τ)
k!

+
∞∑

k=2

∫ τ+Γ

τ

F (σ1)
∫ σ1

τ

. . .

∫ σk−1

τ

F (σk)dσk . . . dσ1

The norm of each multiple integral satisfies

∥∥∥ ∫ τ+Γ

τ

F (σ1)
∫ σ1

τ

. . .

∫ σk−1

τ

F (σk)dσk . . . dσ1

∥∥∥
≤ ‖F‖k

∞

∫ τ+Γ

τ

∫ σ1

τ

. . .

∫ σk−1

τ

dσk . . . dσ1 =
Γk‖F‖k

∞
k!

Because FΓ(τ) represents the average value of F (t) over
an interval, ‖FΓ(τ)‖ ≤ ‖F‖∞. Therefore

‖R(τ, Γ)‖ ≤
∞∑

k=2

Γk‖F‖k
∞

k!
+

∞∑
k=2

Γk‖F‖k
∞

k!

≤ 2
(

Γ2‖F‖2
∞

2

) ∞∑
k=2

Γk−2‖F‖k−2
∞

(k − 2)!

= Γ2‖F‖2
∞eΓ‖F‖∞

Having established a transition matrix bound for general
linear time-varying systems, we next derive a stability result
for periodically switched systems. The matrix measure

µ(M) = lim
γ↓0

‖I + γM‖ − 1
γ

for M ∈ R
n×n is used to obtain this result. A useful

property of the matrix measure is [14]

‖eMT ‖ ≤ eTµ(M)

Another useful property is [13]

µ(M) =
1
2
λ̄(P 1/2MP−1/2 + P−1/2MT P 1/2) (6)

where λ̄(Q) is the maximum eigenvalue of Q ∈ R
n×n, and

P ∈ R
n×n is symmetric positive definite.

The following theorem establishes stability conditions for
T -periodic systems with fast switching.

Theorem 2.1: Suppose that (3), defined relative to (2),
is Hurwitz. Then there exists a T ∗ > 0 such that (1) is
uniformly asymptotically stable if 0 < T < T ∗.

Proof: AT (τ), defined using (5), satisfies

AT (0) =
1
T

∫ T

0

A(σ)dσ =
r∑

i=1

δiAi = Ā

By Lemma 2.1, the transition matrix associated with (2)
over a switching period is Φ(T, 0) = eĀT +R(0, T ), where

‖Φ(T, 0)‖ ≤ ‖eĀT ‖ + ‖R(0, T )‖
≤ eTµ(Ā) + ‖A‖2

∞T 2eT‖A‖∞ (7)

We next show that µ(Ā) < 0, following a line of
argument similar to one presented in [13]. Because Ā is
Hurwitz, there is a symmetric positive definite P ∈ R

n×n

that satisfies the Lyapunov equation ĀT P + PĀ = −I .
Then (6) yields

µ(Ā) =
1
2

λ̄(P 1/2ĀP−1/2 + P−1/2ĀT P 1/2)

=
1
2

λ̄(P−1/2[PĀ + ĀT P ]P−1/2) = − 1
2

λ̄(P−1)

All of the eigenvalues of P−1 are positive, due to the
positive definiteness of P . Therefore µ(Ā) < 0.

Defining

g(T ) = eTµ(Ā) + ‖A‖2
∞T 2eT‖A‖∞

we make the following observations: g(T ) is continuous in
T ; g(0) = 1; g(T ) → ∞ as T → ∞; and d

dT g(T )|T=0 < 0.
These observations allow us to conclude that there exists a
T ∗ > 0 such that g(T ∗) = 1 and g(T ) < 1 for T ∈ (0, T ∗).
Therefore ‖Φ(T, 0)‖ < 1 for all T ∈ (0, T ∗).

The following corollary is a direct extension of Theo-
rem 2.1 to linear time-invariant systems with periodically
switched state feedback control laws.

Corollary 2.1: Consider the linear time-invariant system

ẋ = Ax + Bu

with the T -periodic state feedback control u = K(t)x,
where K(t) =

∑r
i=1 Kiχi(t) switches between r constant

matrices K1, . . . , Kr, and χi(t) is defined as in (2). Suppose
that K̄ =

∑r
i=1 δiKi is such that A+BK̄ is Hurwitz. Then

there exists a T ∗ > 0 such that

ẋ = [A + BK(t)]x

is uniformly asymptotically stable for all T ∈ (0, T ∗).

III. AUV PLATOON CONTROL

For the purpose of illustration, we consider a simple one-
dimensional model of a platoon of AUVs which are tasked
with traveling in formation. The objective for the platoon
is twofold. First, the mean position of the vehicles should
follow a specified trajectory. Second, the relative positions
of the vehicles should match a desired configuration.

Platoon control is performed in a decentralized manner,
with each vehicle ultimately responsible for controlling its
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own movement. However, vehicles do not operate indepen-
dently, because communication between vehicles is used
to achieve the formation control objectives. Each vehicle
measures its own position, and it shares that information
with other vehicles.

A. Time-Invariant, Connected Communication Network

We first consider control of a platoon whose communica-
tion network is time-invariant and connected. We consider
this case initially because it establishes results that are
useful in addressing the switched communication problem.
Additionally, simulations of the time-invariant, connected
system provide a reference against which simulations of
the switched system may be evaluated.

As a simplification, we assume that vehicle movement in
one dimension is decoupled from movement in all other
dimensions. The vehicles are modeled as integrators in
a single dimensional coordinate system. Defining q =
[q1 . . . qN ]T ∈ R

N as the vector of vehicle positions and
u = [u1 . . . uN ]T ∈ R

N as the vector of velocity command
inputs, the state equation for the platoon is written as

q̇ = u (8)

The scalar h̃ is defined as the desired average position
of the platoon, and q̃h = [h̃ . . . h̃]T ∈ R

N consists of h̃
repeated N times. The actual mean position of the vehicles
is h = (1/N)

∑N
i=0 qi, and qh = [h . . . h]T ∈ R

N is
defined similarly to q̃h.

Because control is decentralized, vehicles calculate the
average position of the platoon individually. If a vehicle
communicates with every other vehicle, then it can compute
the true average position. In the absence of full communi-
cation, a vehicle must calculate an approximation of the
mean, using the positions of the vehicles about which it
has information. The vector q̂h ∈ R

N contains the average
platoon position computed by each vehicle. The equation

q̂h = Gq (9)

indicates how the calculation is performed. The matrix
G = [gij ] ∈ R

N×N is nonnegative, i.e. gij ≥ 0 for all
i, j ∈ {1, . . . , N}. Because vehicles use their own position
measurements to calculate the average position, gii > 0.
If a communication link exists between vehicles i and j,
then gij > 0 and gji > 0. Otherwise, gij = gji = 0. It
is not necessarily the case, though, that gij = gji when
a link exists, i.e. G �= GT in general. The asymmetry of
G is due to the fact that each vehicle’s calculation of the
average depends on the number of vehicles with which it
communicates. The nonzero elements in each row gi are
equal, and

∑N
j=1 gij = 1 for all i. For example, for a

platoon of three vehicles in which communication exists
between vehicles 1 and 2 and between vehicles 1 and 3

G =

⎡
⎢⎣

1
3

1
3

1
3

1
2

1
2 0

1
2 0 1

2

⎤
⎥⎦

The vector q̃d ∈ R
N contains the desired offsets of

the vehicle positions from the mean position. Consistency
requires that

∑N
i=1 q̃di = 0, where q̃di is the desired offset

for vehicle i. The vector d = q − qh contains the actual set
of relative distances, and qd = q−q̂h contains each vehicle’s
approximation of its distance from the average position.

Control must address the two platoon objectives specified
above. In terms of the quantities that have been defined,
tracking the desired trajectory with the mean vehicle po-
sition amounts to driving the error h − h̃ to zero, and
maintaining the desired arrangement around the average
position amounts to driving the error d − q̃d to zero. Each
vehicle attempts to control its movement in a manner that
reduces these errors, using its knowledge of the system
state.

The following feedback control law for (8) is proposed

u = −kh (q̂h − q̃h) − kd (qd − q̃d)

where kh and kd are scalar gains. The closed loop system
can then be written as

q̇ = − [khG + kd(I − G)] q + khq̃h + kdq̃d (10)

The feedback algorithm is implemented in a decentralized
manner, because the control input associated with each
vehicle depends only on the information available to that
vehicle. The following lemma provides sufficient stability
conditions.

Lemma 3.1: If the gains kh and kd satisfy

kd ≥ kh > 0 (11)

then the system (10) is uniformly asymptotically stable.

Proof: Uniform asymptotic stability is guaranteed if
the coefficient matrix

− [khG + kd(I − G)] = −kd

[(
kh

kd
− 1

)
G + I

]
(12)

is Hurwitz. Defining κ = kh/kd − 1, if the condition (11)
is satisfied, then −1 < κ ≤ 0. Recalling the characteristics
of G, κG + I = [bij ] is a matrix for which bii > 0, −1 <

bij ≤ 0 for i �= j, and
∑N

j=1 bij = κ + 1 > 0 for all i.
The Geršgorin disc theorem [15] states that the eigen-

values of D = [dij ] ∈ R
n×n are located in the union of

discs
n⋃

i=1

{z ∈ C : |z − dii| ≤ si(D)}

where

si(D) =
n∑

j=1, j �=i

|dij | , 1 ≤ i ≤ n

is the deleted absolute row sum of D for row i. The
properties of B = κG + I indicate that bii > si(B) for
every row. Therefore the eigenvalues of B are all located
in the positive real half-plane, and the coefficient matrix
(12) is Hurwitz.
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B. Time-Varying, Disconnected in Frozen Time Communi-
cation Network

We now apply fast switching theory to the platoon
formation control problem. We consider the case where the
communication network is disconnected in frozen time, but
periodically time-varying and jointly connected across time.

We define a time-varying matrix

G(t) =
r∑

i=1

Giχi(t) (13)

to replace the time-invariant matrix in (9). The matrix G(t)
indicates how the vehicles communicate and calculate the
average position of the platoon as the network configuration
switches. One of the constant matrices G1, . . . , Gr is active
at any point of time.

The state equation for the platoon is the time-varying
version of (10)

q̇ = − [khG(t) + kd(I − G(t))] q + khq̃h + kdq̃d (14)

Control design consists of selecting the communication
patterns and switching times in such a way that the coeffi-
cient matrix − [

khḠ + kd(I − Ḡ)
]

is Hurwitz, where Ḡ =∑r
i=1 δiGi and δi has the same meaning as in (3). Control

design also involves choosing the gains kh and kd, and
sufficiently small switching period T , for an asymptotically
stable response. For a given switching period T , the bound
on the norm of the transition matrix Φ(T, 0) associated with
(14) can be calculated using (7). As discussed in Section II,
uniform asymptotic stability is guaranteed if ‖Φ(T, 0)‖ < 1,
given that (14) is T -periodic. So (7) can be used to identify
the switching period T ∗ below which stability is assured.

IV. AUV PLATOON SIMULATIONS

In this section, we simulate the AUV platoon using
the model and control laws developed in Section III. The
simulated platoon consists of three vehicles, each of which
may communicate with at most one other vehicle at any
point in time. The simulations investigate the movement of
the vehicles in a single dimension.

We choose the matrix G(t) in (13) so that the jointly
connected communication network represents a system in
which each vehicle communicates with every other vehicle.
With three vehicles, three constant matrices G1, G2, G3 are
required

G1 =

⎡
⎣ 1

2 1 0
1 1

2 0
0 0 0

⎤
⎦ , G2 =

⎡
⎣0 0 0

0 1
2 1

0 1 1
2

⎤
⎦ , G3 =

⎡
⎣ 1

2 0 1
0 0 0
1 0 1

2

⎤
⎦

Choosing the duty cycle associated with the Gi as δ1 =
δ2 = δ3 = 1/3, the equivalent time-invariant matrix is

Ḡ =
3∑

i=1

δiGi =
1
3

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦

The control gains are selected as kh = 0.5 and kd = 1.
The desired average position of the platoon is defined as

constant h̃ = 10, and the desired offsets from the mean as
constant q̃d = [−15 5 10]T . The initial vehicle positions
are q(0) = [10 20 − 25]T . Using (7), the switching period
below which stability is guaranteed is calculated as T ∗ =
256 milliseconds.

The simulations demonstrate the effect of switching on
the behavior of the system. The first simulation corresponds
to the time-invariant communication associated with Ḡ.
Figure 1 shows the trajectory of the three vehicles when
no switching is involved.
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Fig. 1. Vehicle Trajectories, Time Invariant Communication.
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Fig. 2. Vehicle Trajectories, Switched Communication, Period = 1 sec.

Figures 2 and 3 show the vehicle trajectories for sys-
tems with switched network configurations. Apart from the
switching itself, these two simulations are run under condi-
tions identical to the time-invariant system simulation. The
only difference between the two time-varying simulations
is the switching frequency. The switching period in the
simulation corresponding to Figure 2 is T = 1 second.
Figure 3 demonstrates the effect of much faster switching,
with T = 1 millisecond.

There are several notable aspects of the switched system
behavior. Primarily, the vehicle trajectories are bounded in
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Fig. 3. Vehicle Trajectories, Switched Communication, Period = 1 msec.

the time-varying simulations, and they approach the steady
state trajectories of the vehicles in the time-invariant simu-
lation, indicating that a switched communication network
can support stable behavior. However, the time-varying
simulations reveal oscillations in the vehicle movements,
which are pronounced in the system with larger switching
period. Deviations from the time-invariant system behavior
highlight the role of switching frequency, and suggest that
considerably faster switching is needed to reduce error
between the desired and actual vehicle trajectories.

V. CONCLUSION

The theory and simulations presented in this paper
demonstrate that periodic fast switching can be applied
effectively to distributed dynamical systems, such as au-
tonomous vehicle platoons, in which communication is
an essential aspect of control, and in which frozen-time
communication capabilities do not support stable behavior.
The theory establishes the existence of a switching period
that guarantees an asymptotically stable response. It also
provides an outline of a procedure for determining an
appropriate period. For practical systems, the size of the
switching period is a relevant issue, one that influences
whether this control strategy is implementable.

Under the heading of time average control, [16] dis-
cusses periodically switched systems and comments that the
switching period must be an order of magnitude faster than
the fastest frozen-time system time constants. It is apparent
from the simulations in this paper that if the control gains
are scaled by a common factor, that the same qualitative
system response can be obtained by adjusting the switch-
ing frequency proportionally. So selecting an appropriate
switching period depends heavily on the dynamics of the
system being controlled. The question of switching period
magnitude remains an open area of investigation.

Another current area of research involves applying
switched system techniques to more complex, possibly
nonlinear, control problems. Autonomous vehicles are often

given the task of measuring an environmental process, and
controlling their movement based on those measurements. It
is easy to imagine how the simple platoon control objectives
considered in this paper could be placed in the context of
an environmental process. Moreover, whereas this paper has
focused on applying switching techniques to a decentralized
control problem, the theory is equally applicable to estima-
tion problems. The effectiveness of switching in distributed
systems that perform estimation or combined estimation and
control is another open area of investigation.
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