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Abstract— Based on a differential inclusion approach, the
notion of quadratic H∞ performance is introduced for a rather
general class of nonlinear descriptor systems. The approach
is specialized to the performance analysis and controller syn-
thesis of descriptor systems with norm bounded uncertainties.
In this case quadratic H∞ performance can be characterized
by means of parameterized linear matrix inequalities (LMIs).

I. INTRODUCTION

The term “descriptor variable” was introduced in [16] as
the natural variables to describe a given system. Cartesian
coordinates, for example, may be considered as natural
variables for mechanical systems. Formally, descriptor sys-
tems (sometimes also termed differential-algebraic equation
systems or DAE systems, singular systems, or semi-state
systems) refer to system descriptions of the form

0 = f(ẋ(t),x(t),u(t),w(t), t) (1)

where f : IRnx × IRnx × IRnu × IRnw × IR → IRnx

denotes some possibly non-linear vector-valued function.
The arguments of this function are the descriptor vector
x(t) ∈ IRnx and its derivative ẋ(t) ∈ IRnx , the control
input vector u(t) ∈ IRnu and additional inputs w(t) ∈ IRnw

which may at this point be interpreted as disturbances.
Finally, for time-varying systems, also the time t explicitly
occurs as an input variable to the function f .

In contrast to the standard state-space description ẋ(t) =
f(x(t),u(t),w(t), t), Eq. (1) admits an implicit depen-
dency on ẋ(t) and especially the notation (1) includes the
possibility that certain components of ẋ do not explicitly
appear in the system description. In this case the corre-
sponding component of the descriptor vector x(t) is termed
algebraic variable (the other variables are called differential
variables).

Descriptor system descriptions cover a broad class of
systems not only of theoretical interest but also of great
practical significance. Models of chemical processes, for ex-
ample, typically consist of differential equations describing
the dynamical balances of mass and energy while additional
algebraic relations account for thermodynamic equilibrium
relations, steady-state assumptions, empirical correlations,
etc. [15], [11]. In mechanics, descriptor system descriptions
result from holonomic and non-holonomic constraints [24].
Especially they are encountered in multi-body and mecha-
tronical system descriptions [19], [9]. Also in electronics

[13] and even in economics [17] descriptor systems are
encountered.

This paper considers the analysis of descriptor systems
and controller synthesis for control problems given in de-
scriptor form in a differential inclusion setup [3]. Analysis,
in this context, means the detection of a certain property
(e.g. stability, or an H∞ norm bound) for a given descriptor
system. More specifically, we aim at quadratic stability [4]
and quadratic H∞ norm boundedness, i.e. properties that
are established by means of quadratic Lyapunov functions.
Synthesis, on the other hand, is concerned with changing
the system behavior by means of descriptor or output feed-
back (static and dynamical respectively) such that certain
properties are achieved for the closed loop. The properties
considered for synthesis are essentially the same as those
considered for descriptor system analysis. In analogy to
standard state-space theory “descriptor feedback” means
that the descriptor vector is fed back. Consequently “output
feedback” considers the situation (in case of linear de-
scriptor systems) where only a linear combination of the
descriptor variables is available for feedback.

The paper is structured as follows: for convenience a
short introduction into linear descriptor system theory is
given. Then the notion of quadratic stability and quadratical
H∞ performance is introduced for descriptor systems given
in a differential inclusion setting. In the next section the
approach is specialized to a pratical important subproblem,
i.e. descriptor systems with norm bounded uncertainties, and
the corresponding analysis problem is solved. This result
is used to develop a solution for the synthesis problem,
namely to find a controller for an uncertain open loop
descriptor system such that the closed loop is quadratically
H∞ performant for all possible realizations of the assumed
uncertainty description.

II. LINEAR DESCRIPTOR SYSTEMS

The material in this section summarizes the needed ma-
terial from [7]. We consider linear, time-invariant descriptor
systems

Eξ̇(t) = Aξ(t) + Bw(t), t ≥ 0, ξ(0−) = ξ−
0

z(t) = Cξ(t) + Dw(t). (2)

with constant system matrices E,A ∈ IRnξ×nξ , B ∈
IRnξ×nw , C ∈ IRnz×nξ , and D ∈ IRnz×nw and nξ ≥
rank(E) =: r. ξ(t) ∈ IRnξ denotes the descriptor variables,

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

FrB10.4

4303



w(t) ∈ IRnw the input variables, and z(t) ∈ IRnz the output
variables.

As a shorthand notation for system (2) we often write
(E,A, B, C, D) (or (E,A, B, C) if D = 0).

Definition 1: Two systems (E, A, B, C, D) and (Ẽ,
Ã, B̃, C̃, D̃) are said to be (system) equivalent, denoted
by (E,A, B, C, D) ∼ (Ẽ, Ã, B̃, C̃, D̃), if there exist non-
singular transformation matrices L,R ∈ IRnξ×nξ such that
the equations Ẽ = LER, Ã = LAR, B̃ = LB, C̃ = CR,
D̃ = D hold true (i.e. the two systems have the same input-
output behavior).
In contrast to non-descriptor linear systems, (2) may have
no solution, one solution or even multiple solutions for
the same initial condition and input [18]. The solutions
in general exhibit impulsive behaviour (i.e. are generalized
solutions [8]) even if the input w(·) is continuous [7].
For our purposes it will be necessary to characterize these
properties in some detail:

Definition 2: The system (E,A, B, C, D) and the asso-
ciated matrix pencil sE − A are said to be regular if the
characteristic polynomial p(s) := det(sE − A) does not
vanish identically in s. Otherwise it is called singular.
Obviously regularity is invariant under system equivalence.
Furthermore a regular system guarantees a unique solution
of (2). On the other hand a singular system (2) always
admits multiple solutions for the unforced (w(·) ≡ 0)
homogeneous initial value problem [18]. Finally for regular
systems (2) the transfer matrix

G(s) := C(sE − A)−1B + D (3)

s defined. The question of impulsive solutions of regular
systems is usually studied in terms of the Weierstrass
canonical form (WCF) of (E,A, B, C, D):

Theorem 1: [10] Let (E,A, B, C, D) be
regular. Then there exists an equivalent system
(Ẽ, Ã, B̃, C̃, D̃) ∼ (E,A, B, C, D) with

Ẽ =
[
Ir 0
0 N

]
Ã =

[
J 0
0 Inξ−r

]
(4)

where J ∈ IR(nξ−r)×(nξ−r), N ∈ IRr×r are matrices in
Jordan canonical form and N is nilpotent.

Definition 3: The index of nilpotence ν of N , i.e. ν :=
min{q|Nq = 0, q ∈ IN} is said to be the index of the linear
descriptor system (E,A, B, C, D). Systems with ν ≥ 2 are
called high index descriptor systems.
If (2) is in WCF, i.e.[

ξ̇1(t)
N ξ̇2(t)

]
=

[
J 0
0 I

] [
ξ1(t)
ξ2(t)

]
+

[
B̃1

B̃2

]
w(t),

t ≥ 0, ξ1(0
−) = ξ−

10, ξ2(0
−) = ξ−

20 (5)

then the part ξ1 of the descriptor vector ξT = [ξT
1 , ξT

2 ] is
governed by an ordinary differential equation while

ξ2(t) = −
ν−1∑
i=0

δ(i)(t)N i+1ξ−
20 −

ν−1∑
i=0

N iB̃2w
(i)(t),

solves the “algebraic part” in (5) (with δ(t) the Dirac delta
and superscript (i) the ith distributional derivative). We
conclude that descriptor systems will have no impulsive
solutions (for all w(·) ∈ L2[0,∞) and all initial conditions)
iff their index is one.
Similar to non-descriptor systems the stability of regular
descriptor systems can be studied by means of the pencil
sE − A:

Theorem 2: [7] Let (E,A, B, C, D) be regular. The un-
forced (w(·) ≡ 0) system is asymptotically stable if and
only if σ(E,A) := {s|s ∈ CI,det(sE − A) = 0} ⊂ CI −.

III. QUADRATIC STABILITY AND QUADRATIC H∞
PERFORMANCE OF NONLINEAR DESCRIPTOR SYSTEMS

Consider the differential inclusion

Eẋ(t) = A(x(t), t)x(t), A(x(t), t) ∈ Ω (6)

with the vector of descriptor variables x(t) ∈ IRnx and a
constant matrix E which may be singular. Here A(x(t), t) ∈
IRnx×nx is a descriptor vector- and/or time-dependent ma-
trix confined to range in some subset Ω of IRnx×nx . Later
on, this dependency is further specified.

Additionally the extension of (6) to an input/output
system

Eẋ(t) = A(x(t), t)x(t) + B(x(t), t)w(t)
z(t) = C(x(t), t)x(t) + D(x(t), t)w(t) (7)

in descriptor form is taken into account. For the latter
system, additionally, external inputs/ outputs w(k) ∈ IRnw

and z(t) ∈ IRnz respectively are considered. These in-
puts/outputs are connected to the system via the matri-
ces B(x(t), t) ∈ IRnx×nw , C(x(t), t) ∈ IRnz×nx , and
D(x(t), t) ∈ IRnz×nw with[

A(x(t), t) B(x(t), t)
C(x(t), t) D(x(t), t)

]
∈ Ω ⊂ IR(nx+nz)×(nx+nw). (8)

The idea of considering the differential inclusion setup is
to guarantee a certain property (i.e. stability, H∞ norm
boundedness,...) not only for one system description, but
for all systems within a certain set. Knowing for a specific
system at hand that it lies within such a set of descriptions
is therefore, even without being able to specify all system
parameters, sufficient in order to establish certain system
properties. The degree of conservatism of such an approach
necessarily increases with an increasing set Ω in (6) or (7).
However, at this point no restrictions of the set Ω at all
are taken into account. This viewpoint together with the
idea of looking for properties which can be established
by means of quadratic Lyapunov functions turns out to be
a sound basis for defining meaningful properties for the
system descriptions (6), (7). These properties (defined in the
sequel) become numerically feasible if the set Ω is restricted
in a structured manor (Section IV).

For non-descriptor systems quadratic stabilization [4],
i.e. stabilization such that stability can be proven by means
of a quadratic Lyapunov function, was introduced in order
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to deal with uncertain linear time-varying (LTV) systems.
Later on, this idea was extended to also deal with H∞
constraints (quadratic H∞ performance) for LTV systems
[1] and also for a class of nonlinear systems [22].

In the same fashion in this section quadratic admissibility
and quadratic H∞-performance are introduced for the
nonlinear descriptor system (6), (7) respectively.

Definition 4: The descriptor system (6) is said to be
quadratically admissible if there exists a constant matrix
X ∈ IRnx×nx and a real number ε, ε > 0, such that the
matrix inequalities

ETX = XTE ≥ 0, AT(x, t)X + XTA(x, t) + εI < 0
(9)

hold true for all x and for all times t ≥ 0.
Definition 5: For a given real number γ with γ > 0, a

descriptor system (7) with ‖D(x, t)‖ < γ for all x and for
all t is said to have a quadratical H∞ performance less
than γ if there exists a constant matrix X ∈ IRnx×nx and
a real number ε, ε > 0, such that the matrix inequalities

ETX = XTE ≥ 0⎡
⎣AT(x, t)X+XTA(x, t) XTB(x, t) CT(x, t)

BT(x, t)X −γI DT(x, t)
C(x, t) D(x, t) −γI

⎤
⎦+εI < 0

(10)

hold true for all x and all times t ≥ 0.
These definitions require pointwise (i.e. for every x, t)
the conditions which are necessary and sufficient for linear
time invariant (LTI) descriptor systems [21]. Formally the
only difference is the term εI . Such a perturbation of strict
LMIs for LTI systems is always possible [23]. However,
in the nonlinear case considered here, such a perturbation
argument is no more valid. Therefore the perturbation
(needed for asymptotical stability) is explicitly enforced.

Nevertheless, it is necessary to check if these definitions
make sense for the systems (6) or (7), since it is well
known [6] that such a “frozen-time” approach in general
does not automatically transfer the properties of the frozen-
time linear systems to the overall nonlinear system.

The properties in question are the index one property, sta-
bility, and H∞ norm-boundedness. The index one property
here is understood in the sense that the algebraic equations
in (6) respectively (7) can be inverted pointwise (for other
meaningful index definitions for nonlinear descriptor sys-
tems see [5]). In fact for (9) respectively (10) being valid,
the arguments in the proofs for admissibility (stability plus
index one) and H∞ norm-boundedness [21], just can be
repeated pointwise since they directly reveal the system to
be index one without the detour of regularity.

With the Lyapunov type function V(·), V(x) =T

xTEXx it is immediate that the total time derivative
of V(·) is uniformly bounded away from zero by means
of the K∞ function α, α(x) := εTxx. Thus, one has
global uniform asymptotic stability [14] and H∞ norm
boundedness respectively by standard Lyapunov arguments.

In this context note that the definition of quadratic H∞
norm-boundedness due to the (1,1) entry in the matrix in-
equality (10) already includes the requirement of quadratic
admissibility.

The Definitions 4 and 5 arise from the idea to transfer the
linear analysis approach to the rather general nonlinear sys-
tem (6) and (7) respectively. The drawback of this approach
is that actually testing the definitions is impossible since
they impose an infinite number of LMI conditions on (6)
respectively on (7). Therefore in the following two sections
additional system specifications, i.e. a nonlinear uncertainty
description, are considered. With these additional structural
restrictions it then becomes possible to derive feasible test
procedures from the Definitions 4 and 5.

IV. ANALYSIS OF DESCRIPTOR SYSTEMS WITH NORM

BOUNDED UNCERTAINTIES

The aim of this section is to provide a feasible characteri-
zation of quadratic H∞ performance of a class of uncertain
nonlinear descriptor systems. Here only the quadratic H∞
performance problem is considered since the problem to
characterize quadratic admissibility is included as a sub-
problem. The system matrices A(x, t), B(x, t), C(x, t),
D(x, t) in the setup from Eq. (7) are assumed to be
uncertain, nonlinear, and possibly fast time-varying in an
unknown fashion. However, it is assumed that they are
Lebesgue measurable and bounded by a compact set. To
be more specific

A(x, t) = AN + ∆A(x, t), B(x, t) = BN + ∆B(x, t),
C(x, t) = CN + ∆C(x, t), D(x, t) = DN + ∆D(x, t)

(11)
are considered where the constant matrices AN , BN , CN ,
DN denote nominal values of A(·, ·), B(·, ·), C(·, ·), D(·, ·)
and ∆A(·, ·), ∆B(·, ·), ∆C(·, ·), ∆D(·, ·) with

[
∆A(x, t) ∆B(x, t)
∆C(x, t) ∆D(x, t)

]
=

[
H1

H2

]
F (x, t)

[
K1 K2

]
,

(12)

‖F (x, t)‖ ≤ 1, F (x, t) ∈ IRnH×nK

contain the uncertainties (treated as being possibly nonlin-
ear). Here H1 ∈ IRnx×nH , H2 ∈ IRnz×nH , K1 ∈ IRnK×nx ,
K2IR

nK×nw are given constant matrices accounting for the
compact set where the uncertain system matrices may range.
Due to (12) the nonlinear uncertainties are all lumped into
perturbation terms. Since the system description is linear
in the perturbations, actually a linear parameter-varying
descriptor analysis problem is solved in the sequel. As a
consequence one has to expect conservative results in those
cases where an explicit description (11), (12) of the descrip-
tor system subject to analysis is known. With the additional
restriction from the uncertainty description (11) and (12),
it is now possible to derive a feasible characterization of
quadratic H∞ performance for the system description (7).

4305



Theorem 3: The system (7) with an uncertainty descrip-
tion (11), (12) and matrices D, K2, H2 such that

∃λ̃ > 0 :

⎡
⎢⎢⎣
−γI 0 DN λ̃H2

0 −λ̃I K2 0
DT

N KT
2 −γI 0

λ̃HT
2 0 0 −λ̃I

⎤
⎥⎥⎦ < 0 (13)

has a quadratic H∞ performance less than γ > 0 if and only
if there exists a matrix X ∈ IRnx×nx and a real number
λ > 0 such that the matrix inequalities

ETX = XTE ≥ 0, (14)⎡
⎢⎢⎢⎢⎢⎢⎣

AT
NX+XTAN XTBN

√
γλ XTH1 CT

N

√
γ
λKT

1

BT
NX −γI 0 DT

N

√
γ
λKT

2√
γλ HT

1 X 0 −γI
√

γλ HT
2 0

CN DN

√
γλ H2 −γI 0√

γ
λK1

√
γ
λK2 0 0 −γI

⎤
⎥⎥⎥⎥⎥⎥⎦

<0

(15)

hold true.
Proof: Define

Yb :=

⎡
⎣AT

NX + XTAN XTBN CT
N

BT
NX −γI DT

N

CN DN −γI

⎤
⎦ , ξ :=

⎡
⎣ξ1

ξ2

ξ3

⎤
⎦

with ξ being an arbitrary real vector corresponding to the
block partition of Yb. Evaluating Definition 5 of quadratic
H∞ norm-boundedness for the system (7) together with the
uncertainty description (11), (12) leads to ∃ε > 0 :

ξTYbξ + 2
(
ξ1

TXTH1 + ξ3
TH2

)
F (t) (K1ξ1 + K2ξ2)

+ εξTξ < 0,∀F (t) : σmax (F (t)) ≤ 1, ∀ξ = 0 (16)

(pre- and post-multiplication of (10) with ξT, ξ respectively,
for ξ = 0).
Define f :

{
F |F ∈ IRnH×nK , σmax(F ) ≤ 1

} → IR by

f : F �→
(
ξ1

TXTH1 + ξ3
TH2

)
F (K1ξ1 + K2ξ2) .

This function attains its maximum for

F =

(
HT

1 Xξ1 + HT
2 ξ3

)
(K1ξ1 + K2ξ2)T

‖HT
1 Xξ1 + HT

2 ξ3‖ ‖K1ξ1 + K2ξ2‖ .

Then (16) holds true, if and only if it is valid for this
maximizing F , i.e. if and only if

ξT(Yb + εI)ξ +2‖HT
1 Xξ1 +HT

2 ξ3‖ ‖K1ξ1 +K2ξ2‖ < 0.
(17)

With Xa, Zc defined as

Xa :=

⎡
⎣XTH1H

T
1 X 0 XTH1H

T
2

0 0 0
H2H

T
1 X 0 H2H

T
2

⎤
⎦ ,

Zc :=

⎡
⎣KT

1 K1 KT
1 K2 0

KT
2 K1 KT

2 K2 0
0 0 0

⎤
⎦ .

Eq. (17) can be rewritten as
(
ξT(Yb + εI)ξ

)2

−
4 ξTXaξ ξTZcξ > 0with Yb < 0, Xa, Zc ≥ 0. This is
equivalent [20] to

∃λ > 0 : λXa + (Yb + εI) +
1
λ

Zc < 0. (18)

Since (18) is a strict matrix inequality, one also has λXa +
Yb + 1

λZc < 0 with the usual perturbation argument, or
explicitly

⎡
⎣AT

NX + XTAN XTBN CT
N

BT
NX −γI DT

N

CN DN −γI

⎤
⎦ +

⎡
⎣

1√
λ
KT

1
√

λXTH1
1√
λ
KT

2 0
0 √

λH2

⎤
⎦

[ 1√
λ
K1

1√
λ
K2 0

√
λHT

1 X 0 √
λHT

2

]
< 0.

Application of Schur’s Lemma yields⎡
⎢⎢⎢⎢⎢⎣

AT
NX + XTAN XTBN CT

N
1√
λ
KT

1
√

λXTH1

BT
NX −γI DT

N
1√
λ
KT

2 0
CN DN −γI 0 √

λH2
1√
λ
K1

1√
λ
K2 0 −I 0

√
λHT

1 X 0 √
λHT

2 0 −I

⎤
⎥⎥⎥⎥⎥⎦

< 0.

Scaling of the last two rows and columns by
√

γ and
rearrangement of the rows and columns finally leads to (15).

Remark 1: The premise (13) in Theorem 3 corresponds
to the condition ‖D‖ < γ in the LTI case and can be derived
analogously to the preceding proof. If the condition does not
hold, it can be enforced by scaling of the external input w.

The characterization of H∞ norm-boundedness for the
descriptor system (7) with uncertainty description (11), (12)
requires the solution of the bilinear matrix inequalities (14),
(15) in the variables λ, X . Such a bilinear matrix inequality
in general can be solved with the methods from [12].
However, since λ > 0, a simple line search coupled with
the solution of LMIs (for a fixed λ the matrix inequalities
(14), (15) become LMIs) is more appropriate. Recently, also
new numerical tools especially tailored for such problems
have been developed [2].

The parameter λ can be interpreted as the condensed
influence of the considered uncertainty description (11),
(12). However, since the “size” of uncertainty is normalized
in (12), it is not possible to directly link λ with the idea
of an uncertainty measure. Therefore it is also not possible
to derive some a priori guess on the value of λ in order to
further facilitate the BMI problem (14), (15).
A straightforward consequence of Theorem 3 is stated in
the following corollary. This result relates the H∞ norm-
boundedness of the nonlinear descriptor system (7) with
the uncertainty description (11), (12) to an LTI descriptor
system and will be the starting point for the corresponding
controller synthesis problem in the next section.

Corollary 1: Consider the descriptor system (7) together
with an uncertainty description (11), (12), and let λ′ > 0 be
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a real number such that (13) holds true with λ̃ = λ′. Then
this descriptor system is quadratical H∞ norm-bounded if
and only if there exists a λ > 0 with λ̃ := λ satisfying (13)
and such that the linear time-invariant descriptor system

Eẋ(t) = ANx(t) +
[
BN

√
γλH1

] [
w(t)
ŵ(t)

]

ẑ(t) =
[

CN√
γ
λK1

]
x(t) +

[
DN

√
γλH2√

γ
λK2 0

][
w(t)
ŵ(t)

]

(19)
is an admissible system with H∞ norm less than γ, γ > 0.

Proof: Congruence transformation of (13) (for λ̃ := λ)
with diag(I,

√
γ
λ , I,

√
γ
λ ) leads to⎡

⎢⎢⎣
−γI 0 DN

√
γλH2

0 −γI
√

γ
λK2 0

DT
N

√
γ
λKT

2 −γI 0√
γλHT

2 0 0 −γI

⎤
⎥⎥⎦ < 0.

Therefore the existence of λ > 0 is necessary and sufficient

for D :=
[

DN

√
γλH2√

γ
λK2 0

]
to be norm-bounded by γ > 0.

Application of the generalized bounded real lemma for LTI
descriptor systems [21] to (19) then renders the inequalities
(14), (15). The claim finally follows from Theorem 3.

Remark 2: Note that the LTI system (19) has different
inputs and outputs than the system (7). In fact (19) can be
interpreted as the nominal descriptor system (7), (11), (12)
with F (·) ≡ 0 augmented by a disturbance model which
accounts for the uncertainty.
As before the feed-through matrix of the considered descrip-
tor system has to be restricted by ‖D‖ < γ in order to get a
necessary and sufficient result. This leads to the somewhat
twisted formulation of the premise in Corollary 1.

V. SYNTHESIS OF DESCRIPTOR SYSTEMS WITH NORM

BOUNDED UNCERTAINTIES

The idea of this section is to reformulate the control
problem for a descriptor system with norm bounded un-
certainties such that the synthesis problem is reduced to a
synthesis problem for an LTI descriptor system. Then the
results from the preceding section can be used to actually
compute a controller.

As in the analysis setting the approach taken here aims
at quadratic H∞ performance for the closed loop system.
However, other performance criteria which can be expressed
by means of quadratic Lyapunov functions can be treated
in the same fashion.

In the differential inclusion framework introduced in Sec-
tion III the synthesis problem is described by a generalized
plant

Eẋ(t) = A(x(t), t)x(t) + B1(x(t), t)w(t) + B2u(t)
z(t) = C1(x(t), t)x(t)
y(t) = C2(x(t), t)x(t) .

(20)
Here u(t) ∈ IRnu denotes the control inputs and y(t) ∈
IRny the measured outputs. For the other quantities the same
notation as in Section IV applies.

Possible input dependencies on u(t) and w(t) in the
equations for z(t), y(t) in (20) can be eliminated by
augmenting the descriptor vector. This is assumed to be
done here, since for this case the elaborated handling of
the constraint ‖Dcl‖ < γ (with Dcl describing the feed-
through from w to z in the closed loop), which has to be
ensured for H∞ characterization, is not necessary.

For the descriptor system (20) system parameter varia-
tions of the form

[
A(x(t), t) B1(x(t), t) C1(x(t), t)T C2(x(t), t)T

]
∈ Ω ⊂ IR(nx×(nx+nw+nz+ny) (21)

are considered. Here the variations in the system matrices
in the generalized plant (20) are interpreted as uncertainties
which can be captured by

A(x, t) = A + ∆A(x, t), C1(x, t) = C1 + ∆C1(x, t),
C2(x, t) = C2 + ∆C2(x, t) (22)

with constant matrices A, C1, C2 denoting the nominal part
of A(x, t), C1(x, t), C2(x, t) and⎡

⎣ ∆A(x, t)
∆C1(x, t)
∆C2(x, t)

⎤
⎦ =

⎡
⎣H1

H2

H3

⎤
⎦F (x, t)K1, (23)

with ‖F (x, t)‖ ≤ 1, F (x, t) ∈ IRnH×nK describing
the uncertainty structure such that the nonlinearities are
captured by it. Here H1 ∈ IRnx×nH , H2 ∈ IRnz×nH ,
H3 ∈ IRny×nH K1 ∈ IRnK×nx are given constant matrices
accounting for the compact set where the uncertain system
matrices may range. For B1(x, t) no uncertainty is taken
into account, i.e. B1(x, t) = B1. This assumption actually
is not necessary here but it simplifies the exposition.

Problem 1: Quadratic descriptor H∞ control problem
with norm-bounded uncertainties: Find a controller

K :
Eξ̇(t) = AKξ(t) + BKy(t)
u(t) = CKξ(t) + DKy(t)

(24)

in descriptor form in descriptor form such that the closed
loop system (24), (20), (22), (23), i.e.[

E 0
0 E

][
ẋ(t)
ξ̇(t)

]
= Acl

[
x(t)
ξ(t)

]
+

[
B1

0

]
w(t)

z(t) =
[
C1 + ∆C1(x, t) 0

] [
x(t)
ξ(t)

]
(25)

with

Acl =
[
A+∆A(x, t) + B2DK (C2 + ∆C2(x, t)) B2CK

BKC2 + BK∆C2(x, t) AK

]

has quadratic H∞ performance γ for some given real
number γ > 0.
A solution in the sense that the problem is related to an
already solved control problem is given in the following
theorem.

Theorem 4: Consider the descriptor system (20) together
with an uncertainty description (22), (23) capturing the
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system nonlinearities. There exists a controller (24) with
EK = E such that the closed loop descriptor system (25)
has quadratic H∞ performance γ if and only if there exists
a real number λ > 0 such that the same controller applied
to the LTI descriptor system

Eẋ(t)= Ax(t)+
[
B1

√
γλH1

] [
w(t)
ŵ(t)

]
+B2u(t)

ẑ(t)=
[

C1√
γ
λK1

]
x(t)+

[
0

√
γλH2

0 0

] [
w(t)
ŵ(t)

]

y(t)= C2x(t)+
[
0

√
γλH3

] [
w(t)
ŵ(t)

]

(26)
leads to an admissible closed loop system with H∞ norm
less than γ.

Proof: Consider the closed loop description (25). The
uncertain matrices in this representation may be expressed
as in (12), i.e.

[
∆Acl(x, t) ∆Bcl(x, t)
∆Ccl(x, t) ∆Dcl(x, t)

]
:= (27)

⎡
⎣ ∆A(x, t) + B2DK∆C2(x, t) 0 0

BK∆C2(x, t) 0 0
∆C1(x, t) 0 0

⎤
⎦ =

⎡
⎣ H1 + B2DKH3

BKH3

H2

⎤
⎦F (x, t)

[
K1 0 0

]
,

‖F (x, t)‖ ≤ 1, F (x, t) ∈ IRnH×nK ,

where the later equality is due to (23). The claim follows
now by application of Corollary 1 to the closed loop (25)
with uncertainty description (27) and comparison with the
closed loop formed by (24), (26).
The preceding theorem shows that the synthesis prob-
lem for a descriptor control problem with norm-bounded
uncertainties can be reduced to an LTI descriptor H∞
control problem. However, this problem cannot be solved
by standard LMI methods directly since it is parameterized
with a scalar parameter λ > 0. As mentioned already in
the analysis section, one method to overcome this problem
is given by recent LMI based algorithms especially tailored
for parameterized LMIs.

VI. CONCLUSION

The focus of this paper is a differential inclusion setting
for nonlinear discriptor systems. The notion of quadratic
admissibility and quadratic H∞ performance is introduced
for this class of systems. In general the setup is far to
general to render constructive results. However, for practical
relevant further restrictions of the system structure, a con-
structive procedure for analysis and controller synthesis can
be derived. This is examplified for analysis and synthesis
of descriptor systems with norm bounded uncertainties.
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