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Abstract— In this paper we study the stability properties of
linear neutral delay systems. We consider systems described by
both neutral differential-difference and state-space equations,
and we seek to determine the delay margin of such systems,
that is, the largest range of delay values for which a neutral
delay system may preserve its stability. In both cases, we show
that the delay margin can be found by computing the eigenval-
ues and generalized eigenvalues of certain constant matrices,
which can be executed efficiently and with high precision. The
results extend previously known work on retarded systems,
and demonstrate that similar stability tests exist for neutral
systems; in particular, the tests require essentially the same
amount of computation required for retarded systems.

Index Terms— Time delay, neutral delay systems, stability,
delay margin, matrix pencil.

I. INTRODUCTION

In analyzing time-delay systems, it is useful to study how
a system’s stability may vary with its delay parameters. In
such studies, it is customary to assume that the system is
stable when free of delay, and where possible, to determine
the maximal range of delay so that the system remains
stable. This range is furnished by the notion of delay margin
[5], which is defined by the critical value of delay at which a
system becomes unstable. For linear retarded systems with
commensurate delays, it is known that the delay margin
can be computed efficiently by solving a matrix pencil
problem [3], [5], [11]. When the delay margin is infinity, the
system is stable independent of delay; otherwise, a delay-
dependent, necessary and sufficient stability condition can
be readily checked based on this computational solution.

In this paper we consider linear neutral delay systems
with commensurate delays. While less well-studied, neu-
tral systems find abundant applications as propagation and
diffusion models [12], and in approximations of infinite-
dimensional, distributed systems [4]; notable examples of
such applications are found in e.g., Halanay and Răsvan [7],
concerning, e.g., LC electrical lines, lossless steams, water
and gas pipes. The stability analysis of a neutral delay
system in general poses a harder problem, which is com-
plicated, and hence rendered more difficult by the neutral
part of the system. It appears that necessary and sufficient
stability conditions for neutral systems are scarce, and are
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less efficient than their counterparts for retarded systems.
The results available to date include the two-variable cri-
teria developed in [10], and the frequency-sweeping tests
obtained in [2]; other relevant conditions are found in,
e.g., [8]. Useful notwithstanding, these results generally
suffer in one way or another in computational efficiency.
For example, the two-variable criteria require symbolic
computation, while the frequency-sweeping methods may
be inadequate in numerical precision.

Our work in the present paper is aimed at developing
more efficient stability tests for neutral delay systems. For
this purpose, we extend the techniques of [3] and show
that similar algorithms can be found for computing the
delay margin of neutral systems. Our main results consist
of formulas that seek to compute the eigenvalues and
generalized eigenvalues of certain constant matrices, which,
unlike frequency-sweeping tests, can be executed in finite
steps. Hence, analogous to their counterparts for retarded
systems, the results obtained herein can also be easily
implemented, and they constitute a significant improvement
in both efficiency and precision.

Our contribution can be summarized as follows. In Sec-
tion 2, we introduce the stability notions and present a num-
ber of preliminary facts. Section 3 contains our main results,
where we first consider neutral delay systems described by
differential-difference equations in Section 3.1, and next
those modelled by state-space equations in Section 3.2;
while these descriptions are mutually exchangeable, from
a computational perspective, it will prove advantageous to
treat the two cases separately. For both types of systems,
we derive a computational procedure consisting of two
steps, each of which amounts to computing either the
eigenvalues or generalized eigenvalues of constant matrices.
These results are then followed by illustrative examples
given in Section 4. The paper concludes in Section 5.

II. PRELIMINARY RESULTS

We begin with a brief description of our notation. Let IR
be the set of real numbers, C the set of complex numbers,
and IR+ the set of nonnegative real numbers. Denote the
open right half plane by C+ := {s : �(s) > 0}, the closed
right half plane by C+, and the imaginary axis by ∂C+.
Similarly, denote the open unit disc by ID, the unit circle
by ∂ID, and the closed exterior of the unit disc by IDc.
For any z ∈ C, we denote its complex conjugate by z̄. For
a matrix A, denote its spectrum by σ(A), and its spectral
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radius by ρ(A). For a matrix pair (A, B), denote the set
of all its generalized eigenvalues by σ(A, B), i.e.,

σ(A, B) := {λ ∈ C : det(A − λB) = 0} .

Note that the number of finite generalized eigenvalues for
(A, B) is at most equal to the rank of B. Also, if the rank of
B is constant, then the finite generalized eigenvalues of the
pair (A, B) are continuous with respect to the elements of
A and B. Let A⊕B denote the Kronecker sum, and A⊗B
the Kronecker product, of the matrices A and B. Properties
of Kronecker sum and product relevant to our subsequent
development are summarized below (see, e.g., [6]):

• For matrices A, B, C, D with compatible dimensions,
(A ⊗ B)(C ⊗ D) = (AC ⊗ BD);

• Let A and B be invertible. Then, (A⊗B)−1 = (A−1⊗
B−1);

• For square matrices A and B, every eigenvalue of A⊕
B is the sum of the eigenvalues of A and B.

We consider neutral linear, time-invariant systems de-
scribed by the differential-difference equation

y(n)(t) +
q∑

k=1

bky(n)(t− kτ) +
n−1∑
i=0

q∑
k=0

akiy
(i)(t− kτ) = 0

(1)
where τ ≥ 0, the coefficients bk, k = 1, · · · , q and aki,
k = 0, 1, · · · , q, i = 0, 1, · · · , n − 1 are known.
Similarly, we also consider the state-space representation

ẋ(t)−
q∑

k=1

Bk ẋ(t−kτ) = A0 x(t)+
q∑

k=1

Ak x(t−kτ), (2)

where τ ≥ 0, Bk and Ak, k = 1, · · · , q are given matrices.
Note that to simplify our presentation, in both descriptions
we have assumed, with no loss of generality, that the neutral
and retarded parts have the same number of delays. This
assumption can be easily relaxed, say, by padding zero
coefficients or matrices appropriately. It is not difficult to
see that these two descriptions are mutually exchangeable.
However, transformation from one to another will result in
additional computation which is otherwise unnecessary, and
hence is less desirable; indeed, it will prove more beneficial
to study these descriptions individually.

The characteristic function of the system (1) is given by
the quasipolynomial [9], [5]

a
(
s, e−τs

)
=

q∑
k=0

ak(s)e−kτs, (3)

with

a0(s) = sn +
n−1∑
i=0

a0is
i,

ak(s) = bksn +
n−1∑
i=0

akis
i, k = 1, · · · , q.

It is well-known that the system is stable for a given τ ≥ 0
if and only if for some ε < 0,

a
(
s, e−τs

) �= 0, ∀s ∈ Cε+, (4)

where Cε+ := {s : �(s) > ε}. The system is said to be
stable independent of delay if the condition (4) holds for
all τ ≥ 0. Analogously, the characteristic quasipolynomial
of the system (2) is

p
(
s, e−τs

)
= det

(
s

(
I −

q∑
k=1

Bke−kτs

)
−

q∑
k=0

Ake−kτs

)
(5)

and the system is stable for a given τ ≥ 0 if and only if
for some ε < 0,

p
(
s, e−τs

) �= 0, ∀s ∈ Cε+, (6)

and stable independent of delay if (6) holds for all τ ≥ 0.

It is known that for a neutral delay system to be stable,
it is necessary that its neutral part must be stable. For the
systems (1) and (2), this requirement concerns the stability
of the difference equations

y(t) +
q∑

k=1

bky(t − kτ) = 0, (7)

and

x(t) −
q∑

k=1

Bk x(t − kτ) = 0. (8)

An important fact (see, e.g., [9], [5]) states that the stability
of these difference equations construes a global property
with respect to the delay parameter τ ≥ 0; that is, whenever
the equations admit stable solutions for some τ ≥ 0,
they will be stable for all τ ≥ 0, or equivalently, stable
independent of delay. The following facts provide necessary
and sufficient conditions for the stability of (7) and (8),
respectively.

Fact 1 The difference equation (7) is stable for all τ ≥ 0
if and only if

ρ(Nd) < 1, (9)

where

Nd :=

⎡
⎢⎢⎢⎣

−b1 · · · −bq−1 −bq

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

⎤
⎥⎥⎥⎦ .

Equivalently, define the polynomial

b(z) = zq + b1z
q−1 + · · · + bq. (10)

Then (7) is stable for all τ ≥ 0 if and only if b(z) is Schur-
stable; that is, b(z) has all its zeros in ID.

Fact 2 The difference equation (8) is stable for all τ ≥ 0
if and only if

ρ(Ns) < 1, (11)
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where

Ns :=

⎡
⎢⎢⎢⎣

B1 · · · Bq−1 Bq

I · · · 0 0
...

. . .
...

...
0 · · · I 0

⎤
⎥⎥⎥⎦ .

Throughout this paper, we shall assume that the condi-
tions (9) and (11) hold. It is important to point out that
under these assumptions, the conditions (4) and (6) need
to hold only for C+; in other words, Cε+ can be replaced
by C+. We shall also assume that both the system (1) and
(2) are stable at τ = 0; that is, in the delay-free case, both
systems are stable. Our task is to find the delay margin for
these systems, defined as

τd := inf
{
τ : a

(
s, e−τs

)
= 0 for some s ∈ C+

}
and

τs := inf
{
τ : p

(
s, e−τs

)
= 0 for some s ∈ C+

}
,

respectively. In other words, we want to determine the
smallest deviation of the delay value so that the system
becomes unstable.

III. MAIN RESULTS

We now present our main results. We shall first consider
the system (1) in Section 3.1, and next the system (2) in
Section 3.2. In both cases, we derive readily computable
expressions for the delay margin, which require only the
computation of eigenvalues and generalized eigenvalues.

A. Delay Margin for Differential-Difference Equations

Our development seeks to generalize that of [3]. Consider
the quasipolynomial (3). Under the assumption that (9)
holds, it is known that the zeros of a (s, e−τs) vary
continuously with τ ≥ 0. As such, the delay margin τd

reduces to

τd = inf
{
τ : a

(
jω, e−jτω

)
= 0 for some ω ∈ IR+

}
,

(12)
where it suffices to consider ω ∈ IR+ since the complex
zeros of a (s, e−τs) are conjugate symmetric. We call such
ω ∈ IR+ that a (jω, e−τω) = 0 the crossing frequencies
of a(s, e−τs). The expression (12) suggests that τd can be
determined once the crossing frequencies are determined,
or alternatively, when all the zeros (s, z) of the bivariate
polynomial a(s, z) are located, such that s ∈ ∂C+ and z ∈
∂ID. Our following result sets out precisely to accomplish
this goal.

Theorem 1 Suppose that the system (1) is stable at τ = 0,

and that the condition (9) holds. Define

Tn :=

⎡
⎢⎢⎢⎣

1 0 · · · 0
b1 1 · · · 0
...

. . .
. . .

...
bq−1 bq−2 · · · 1

⎤
⎥⎥⎥⎦ ,

Ti :=

⎡
⎢⎢⎢⎣

a0i 0 · · · 0
a1i a0i · · · 0

...
. . .

. . .
...

aq−1,i aq−2,i · · · a0i

⎤
⎥⎥⎥⎦ , i = 0, · · · , n − 1,

Hn :=

⎡
⎢⎢⎢⎣

bq bq−1 · · · b1

0 bq · · · b2

...
. . .

. . .
...

0 0 · · · bq

⎤
⎥⎥⎥⎦ ,

Hi :=

⎡
⎢⎢⎢⎣

aqi aq−1,i · · · a1i

0 aqi · · · a2i

...
. . .

. . .
...

0 0 · · · aqi

⎤
⎥⎥⎥⎦ , i = 0, 1, · · · , n − 1,

Pi :=
[

(j)iTi (j)iHi

(−j)iHT
i (−j)iTT

i

]
, i = 0, 1, · · · , n.

Then Pn is invertible. Define further

P :=

⎡
⎢⎢⎢⎣

0 I · · · 0
...

...
. . .

...
0 0 · · · I

−P−1
n P0 −P−1

n P1 · · · −P−1
n Pn−1

⎤
⎥⎥⎥⎦ .

Then, τd = ∞ if σ(P ) ∩ IR+ = ∅, or σ(P ) ∩ IR+ = {0}.
Otherwise, let σ(P ) ∩ IR+ = {ωk : ωk �= 0, k =
1, · · · , l, l ≤ 2nq}, and define

F (s) :=

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−a0(s) −a1(s) · · · −aq−1(s)

⎤
⎥⎥⎥⎦ ,

G(s) := diag (1 · · · 1 aq(s)) .

If σ(F (jωk), G(jωk))∩ ∂ID = ∅ for all k = 1, · · · , l, then
τd = ∞; otherwise,

τd = min
k

min
i

α
(i)
k

ωk
,

with σ(F (jωk), G(jωk)) ∩ ∂ID = {e−jα
(i)
k : α

(i)
k ∈

[0, 2π], i = 1, · · · , m, m ≤ q}.

Consider for a fixed s ∈ C the bivariate polynomial
a(s, z). Before establishing Theorem 1, we first construct
the Schur-Cohn matrix [1] associated with the complex
polynomial a(s, z), defined as

∆(s) :=
[

∆1(s) ∆2(s)
∆H

2 (s) ∆H
1 (s)

]
,
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where

∆1(s) :=

⎡
⎢⎢⎢⎣

a0(s) 0 · · · 0
a1(s) a0(s) · · · 0

...
...

. . .
...

aq−1(s) aq−2(s) · · · a0(s)

⎤
⎥⎥⎥⎦ ,

∆2(s) :=

⎡
⎢⎢⎢⎣

aq(s) aq−1(s) · · · a1(s)
0 aq(s) · · · a2(s)
...

...
. . .

...
0 0 · · · aq(s)

⎤
⎥⎥⎥⎦ .

It follows from the Orlando formula [1] that

det(∆(s)) = (−1)q|aq(s)|2q

q∏
i,j=1

(1 − ziz̄j), (13)

where for a given s, zi, i = 1, · · · , q, are the zeros of the
polynomial a(s, z). From this formula, it is clear that for
any s ∈ C, det(∆(s)) = 0 whenever a(s, z) have zeros in
IDc. Consequently, by finding the solutions to

det(∆(jω)) = 0, (14)

we can determine all ω ∈ IR+ such that a(jω, z) = 0 for
some z ∈ ∂ID. This underlines our proof for Theorem 1.

Like its counterpart for retarded systems [3], Theorem
1 shows that the delay margin for the neutral differential-
difference equation (1) (or equivalently, the quasipoly-
nomial (7)) can be determined by first computing the
eigenvalues of a constant matrix, and next the generalized
the eigenvalues of a constant matrix pair, both of which
can be executed efficiently and reliably. It is especially
reassuring that the computation herein is the same as that
required for computing the delay margin of a retarded
differential-difference equation (cf. [3]). In other words, the
complication incurred by the neutral dynamics in fact does
not lead to any additional computational load.

B. Delay Margin for State-Space Models

We now consider neutral systems described by the state-
space form (2). In a similar manner, we attempt to determine
the critical frequencies ω ∈ IR+ at which the characteristic
quasipolynomial p(jω, e−jτω) = 0, that is, ω are crossing
frequencies of p(s, e−τs). Denote

A(z) :=

(
I −

q∑
k=1

Bkzk

)−1 q∑
k=0

Akzk.

Then our task amounts to finding all such zk ∈ ∂ID that

σ(A(zk)) ∩ ∂C+ �= ∅.
Whenever this is the case, there will exist jωk ∈ ∂C+ and
zk ∈ ∂ID such that jωk ∈ σ(A(zk)), or more explicitly,

det(jωkI −A(zk)) = 0. (15)

By finding all such ωk ∈ IR+ and zk ∈ ∂ID, we may
compute the delay margin τs analogously as in Theorem
1.

Noting the property of the Kronecker sum alluded to at
the end of Section 2, it is useful to observe that the condition
(15) is equivalent to

det
[A(zk) ⊕AH(zk)

]
= 0. (16)

Let

A(z) =
q∑

k=0

Akzk, B(z) = I −
q∑

k=1

Bkzk.

Invoking the properties of the Kronecker product, it follows
that for any z ∈ ∂ID,

det
[A(z) ⊕AH(z)

]
= det

[(
B−1(z)A(z)

) ⊗ I + I ⊗ (
AH(z)B−H(z)

)]
= det

[ (
B−1(z) ⊗ I

)
(A(z) ⊗ I) +

(
I ⊗ AH(z)

)
(
I ⊗ B−H(z)

) ]
= det

[
(B(z) ⊗ I)−1 (A(z) ⊗ I) +

(
I ⊗ AH(z)

)
(
I ⊗ BH(z)

)−1
]

= det
[
(B(z) ⊗ I)−1

]
det

[
A(z) ⊗ BH(z)

+B(z) ⊗ AH(z)
]
det

[(
I ⊗ BH(z)

)−1
]
.

We are thus led to the following theorem.

Theorem 2 Suppose that the system (2) is stable at τ = 0,
and that the condition (11) holds. Let

Hk =
min{k,q}∑

i=max{0,k−q}

[
Ak−i ⊗ BT

q−i + Bk−i ⊗ AT
q−i

]
,

k = 0, 1, · · · , 2q,

Qk =

{ I ⊗ AT
q−k − Hk k = 0, 1, · · · , q − 1,

A0 ⊕ AT
0 − Hq k = q

Ak−q ⊗ I − Hk k = q + 1, · · · , 2q
,

with B0 = 0. Define further

U :=

⎡
⎢⎢⎢⎣

I
. . .

I
Q2q

⎤
⎥⎥⎥⎦ ,

V :=

⎡
⎢⎢⎢⎣

0 I · · · 0
...

...
. . .

...
0 0 · · · I

−Q0 −Q1 · · · −Q2q−1

⎤
⎥⎥⎥⎦ .

Then, τs = ∞ if σ(V, U)∩∂ID = ∅. If, however, σ(V, U)∩
∂ID �= ∅ and σ(A(zk)) = {0} for all zk ∈ σ(V,U) ∩ ∂ID,
then τs = ∞ as well. Otherwise, let σ(V, U) ∩ ∂ID =
{ejαk : αk ∈ [0, 2π], k = 1, · · · ,m, m ≤ 2n2q}. If
σ(A(e−jαk)) ∩ ∂C+ = ∅ for all k = 1, · · · ,m, then τs =
∞; otherwise

τs = min
k

min
i

αk

ω
(i)
k

,

4262



with ω
(i)
k ∈ IR+, ω

(i)
k �= 0 and jω

(i)
k ∈ σ(A(e−jαk))∩∂C+

for i = 1, · · · , l, l ≤ m.

To see Theorem 2 in a more transparent light, it is
instructive to consider the special case q = 1, that is, the
neutral system given by

ẋ(t)−B1 ẋ(t−τ) = A0 x(t)+A1 x(t−τ), τ ≥ 0. (17)

In this case, U, V are 2n2 × 2n2 real constant matrices,
and

A(z) = (I − B1z)−1 (A0 + A1z)

is an n × n complex matrix. In general, Theorem 2 states
that to determine the delay margin, it suffices to compute
first the generalized eigenvalues of the 2n2q× 2n2q matrix
pair (V, U), and subsequently the eigenvalues of the n×n
matrix A(zk), where zk ∈ ∂ID is a generalized eigenvalue
of the pair (V, U). Moreover, it is evident that when Bk = 0
for k = 1, · · · , q, we have Hk = 0 for k = 0, 1, · · · , 2q,
and so Theorem 2 reduces to its counterpart for retarded
systems, given in [3].

IV. ILLUSTRATIVE EXAMPLES

In this section we use a number of examples to illustrate
the preceding results. The first example below serves to
demonstrate the numerical effectiveness of our method,
especially for high order systems with multiple delays.

Example 1 Consider the neutral system described by the
quasipolynomial

a(s, e−τs) = (s4 + 2s3 + 5s2 + 3s + 2) + (0.6s4 + s2

+2)e−τs + (0.11s4 + s2 + s + 2)e−2τs

+(0.006s4 + 2s3 + 5s)e−3τs. (18)

which is a 4th-order quasipolynomial with three commensu-
rate delays. The polynomial b(z) resulting from the neutral
part is given by

b(z) = z3 + 0.6z2 + 0.11z + 0.006.

A direct computation shows that ρ(Nd) = 0.3000. As such,
the polynomial b(z) is stable; in fact, its zeros are located
at z = −0.3000, − 0.2000, − 0.1000. It is also easy to
verify that the quasipolynomial (18) is stable at τ = 0. The
resultant polynomial at τ = 0 is

a(s) = 1.716s4 + 4s3 + 7s2 + 9s + 6,

which has zeros at s = −0.0594 ± 1.5117i, − 1.1061 ±
0.5515i. We proceed to compute the delay margin τd based
on Theorem 1. Toward this end, we first find the imaginary
eigenvalues jωk of the 24 × 24 matrix P , such that ωk >
0. The corresponding unitary generalized eigenvalues of
the 3 × 3 matrix pencil (F (jωk), G(jωk)), along with
their phase angles, are then computed. Table I gives the
computation results. From these computations, we found
immediately τd = 0.1356.

TABLE I

CROSSING FREQUENCIES, GENERALIZED EIGENVALUES AND PHASE

ANGLES IN EXAMPLE 1

Crossing Frequency Generalized Eigenvalue Phase Angle
ωk zk αk

3.0171 0.0554 + 0.9985i 4.7678
1.8723 0.6123 + 0.7906i 5.3714
1.4432 0.9809 - 0.1945i 0.1957
0.8692 -0.9717 - 0.2362i 2.9032
0.2740 -0.8990 + 0.4380i 3.5950

Alternatively, we may also compute the delay margin
based on the formula in Theorem 2. For this purpose, we
represent the system in the state-space form (2), with

A0 =

⎡
⎣ 0 1 0 0

0 0 1 0
0 0 0 1
−2 −3 −5 −2

⎤
⎦ , A1 =

⎡
⎣ 0 0 0 0

0 0 0 0
0 0 0 0
−2 0 −1 0

⎤
⎦ ,

A2 =

⎡
⎣ 0 0 0 0

0 0 0 0
0 0 0 0
−2 −1 −1 0

⎤
⎦ , A3 =

⎡
⎣ 0 0 0 0

0 0 0 0
0 0 0 0
0 −5 0 −2

⎤
⎦ ,

B1 =

⎡
⎣ 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 −0.6

⎤
⎦ , B2 =

⎡
⎣ 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 −0.11

⎤
⎦ ,

B3 =

⎡
⎣ 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 −0.006

⎤
⎦ .

It follows readily by computation that ρ(Ns) = ρ(Nd) =
0.3000. We then compute the generalized eigenvalues of the
96 × 96 matrix pencil (V, U), and the eigenvalues of the
4× 4 matrices A(zk), where zk are the unitary generalized
eigenvalues of (V, U). The computation generates the same
set of crossing frequencies and unitary complex numbers
as those given in Table 1, which consequently lead to τs =
τd = 0.1356.

It is of interest to compare the above system to its
retarded counterpart

a(s, e−τs) = (s4 + 2s3 + 5s2 + 3s + 2) + (s2 + 2)e−τs

+ (s2 + s + 2)e−2τs + (2s3 + 5s)e−3τs.

This corresponds to replacing the coefficients bk, k =
1, 2, 3 by zeros. It is known from [3], [5] that in this
case the delay margin is 0.3786. Example 1 thus shows
that the presence of neutral dynamics renders the delay
margin smaller. This is plausible; indeed, in the extreme,
it is possible that the neutral part may even destabilize an
otherwise stable retarded system at τ = 0, lest that any
delay margin may exist. Nevertheless, it is also possible that
the delay margin may increase due to the neutral effect, as
shown by the following example.

Example 2 We examine the first-order neutral system

ẋ(t) + βẋ(t − τ) = −ax(t) − bx(t − τ),
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where we assume that b > 0, a < 0, and |β| < 1. It is clear
that under these assumptions, the neutral part is stable, and
that the system is stable at τ = 0 if and only if a + b > 0.
These conditions together imply that b > |a|. In the case
β = 0, i.e, when the system is only retarded, its delay
margin is given by (pp. 40, [5])

τr =
cos−1( |a|b )√

b2 − a2
.

More generally, for any β such that |β| < 1, we may
calculate the delay margin using Theorem 1. We begin with
the matrix

P = − j

1 − β2

[ −(a + βb) −(b + βa)
b + βa a + βb

]
,

which has a single positive eigenvalue

ω∗ =

√
b2 − a2

1 − β2
.

The matrix pair (F (s), G(s)) is given as

F (s) = −(s + a), G(s) = βs + b,

whose generalized eigenvalue for s = jω∗ is found to be

λ∗ = − jω∗ + a

jβω∗ + b
.

It is trivial to verify that λ∗ ∈ ∂ID. Let λ∗ = e−jα∗
. It is

evident that

α∗ = π − �
(

jω∗ + a

jβω∗ + b

)
.

In view of Theorem 1, the delay margin can then be
determined as τd = α∗/ω∗. Set in particular a = −(

√
2/2),

b = 1, and plot τd vs β. Fig. 1 shows how τd may vary
with the value of β.
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Fig. 1. The delay margin τd vs parameter β in Example 2.

Note that in this figure, the dotted line indicates the
delay margin (τd = 1.1107, β = 0) for the system’s re-
tarded part. The example exhibits that even in rather simple
instances, the neutral dynamics may either increase or
reduce the delay margin.

V. CONCLUSION

In this paper we have studied the stability of linear neu-
tral delay systems, modelled both as differential-difference
equations or in state-space form. Our purpose is to compute
the exact delay margin of such systems, which defines
a critical value of the time delay at which the system
loses its stability. We extended and further developed ear-
lier matrix pencil techniques to tackle this problem. Our
main results consist of readily implementable, computation-
oriented formulas, requiring only the solutions of eigenvalue
and generalized eigenvalue problems associated with certain
constant matrices. As a consequence, our results insure that
the delay margin can be computed efficiently and with high
numerical precision.

Future extension of this work can be pursued in a more
general setting, e.g., for singular, neutral delay systems.
Our techniques can also be extended to 2-D systems,
and to analyze stability properties in the entire range of
delay values. The latter analysis seeks to characterize the
stability and instability of a time-delay system over all
possible delay values partitioned into successive intervals.
These extensions are currently ongoing and will be reported
elsewhere.
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