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Abstract— We consider optimal estimation problems char-
acterized by a state vector with i) dynamics described via a
differential equation with Lipschitz nonlinearities, ii) partial
information provided via a Lipschitz nonlinear mapping, and
iii) an Lp norm measure of the estimation error to be mini-
mized. An approximate solution of such optimal estimation
problem is searched for by restricting the optimization to
parameterized nonlinear approximators such as feedforward
neural networks. The parameters of a feedforward neural
network are the neural weights. This approach entails a con-
strained nonlinear programming problem, whose constraints
are given by the dynamic and measurement equations, and the
conditions guaranteeing the stability of the estimation error.
To optimize the parameters values of neural networks an
algorithm is developed that is based on appropriate sampling
of the state and error spaces. Choices of the sample points are
devised based on the notion of dispersion, which allow one
to obtain an approximate solution of the optimal estimation
problem by a small sample complexity.

I. INTRODUCTION

State estimation problems are usually solved by means
of filters and observers, which are treated separately in the
literature, depending on the presence or not, respectively,
of disturbances acting on the dynamic system.

A possible approach to the solution of the observer prob-
lem consists in applying a canonical state-space transfor-
mation [1], [2]. This representation of the system dynamics
enables one to easily find an observer with linear error dy-
namics in the transformed state-space. Following different
approaches, high-gain and variable-structure observers have
been proposed in the literature. The high-gain observers
have been considered, for example, in [3], where the con-
vergence of the estimation error is obtained for Lipschitz
nonlinear systems by performing a state transformation that
allows to dominate the nonlinearities. The design of sliding-
mode observers with nonlinear dynamics has been faced in
[4].

In filtering, the disturbances that affect the system and/or
the measurement equations are regarded either as unknown
deterministic inputs or as stochastic random variables within
a probabilistic framework. The most popular method to
estimate the state of a noisy nonlinear systems is the
extended Kalman filter; its convergence properties have
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been proven in [5]. However, more complex approaches can
be devised, related to the conditional probability density
function of the Markov process describing the system
and measurement equations. Such a density function is
conditioned by available on-line measures, and, as it is well
known, provides the most complete description of the sys-
tem state. In general the conditional density function can be
determined only approximately: analytical solutions in the
form of finite-dimensional filters are very difficult to obtain,
except in few cases, e.g., for linear systems with Gaussian
noises. For nonlinear systems, conditions for the design of
finite-dimensional filters as generators of sufficient statistics
can be found, among others, in [6], but a general design
methodology to solve such a design problem exactly is not
available. This motivates approximation-based approaches
as, for instance, the one presented in [7], where the prob-
lem of estimation is addressed for nonlinear discrete-time
systems by approximating the optimal innovation functions
with a filter having a Kalman-like structure. A method is
proposed in [8], [9] for particular kinds of discrete-time
systems, where the innovation contribution is taken into
account by means of polynomial expansions. In [10], a
receding-horizon state estimation technique is presented that
is based on the idea of minimizing a quadratic estimation
cost function defined on a sliding window.

In this paper the estimation problem is addressed for
continuous-time, nonlinear dynamic systems, in a frame-
work of Lp signals. We are interested in an optimization-
based approach, as the dynamics of the estimator is defined
in order to minimize the Lp norm of the estimation error.
After restricting the class of nonlinear systems by hypothe-
ses on the system and measurement equations, we define
a class of estimators with a certain structure, satisfying a
stability requirement and in which an unknown function be-
longing to a certain smoothness class has to be determined.
Then an optimal estimation problem is formulated, in which
the unknown function in the estimator has to be determined
in such a way to minimize the Lp norm of the estimation
error.

An optimal solution to the estimation problem is searched
for over families of functions taking on the structure of
linear combinations of simple computational units depen-
dent on some parameters [11], [12], [13], [14], [15]. In
such a way, a nonlinear (generally) programming problem
is obtained that consists in finding the parameters that
minimize the Lp norm of the estimation error. This can
accomplished under constraints that ensure the existence

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

FrB07.4

4204



of a Lyapunov function for the estimation error. If certain
smoothness properties of the Lyapunov function are satis-
fied, a suitable selection of the sampling points that cover
in a sufficiently uniform way the state and error space may
guarantee the fulfillment of such constraints in a convenient
way. More specifically, typical measures of uniformity such
as dispersion and discrepancy, commonly employed in the
fields of statistics and number theoretic methods, allow
to define favorable asymptotic conditions for the sampling
procedure to ensure the convergence of the estimation error.

The paper is organized as follows. Section II reports pre-
liminary stability results on the dynamics of the estimation
error for the class of state estimators we have considered.
The statement of an optimal state estimation problem is
given in Section III. A method to find approximate solutions
of this problem is presented in Section IV. The issues
regarding the practical construction of the estimator are
addressed in Section V. The proof of the various results
are omitted for the sake of brevity.

Before concluding this section, let us briefly introduce
the following notations. For p ∈ [1,∞) and a positive n,
the space Ln

p consists of all Lebesgue-measurable functions
s : [0,∞) → R

n such that
∫ ∞
0

‖s(t)‖p
dt < ∞. For every

p ∈ [1,∞), Ln
p is a Banach space with the norm

‖s‖p

�
=

(∫ ∞

0

‖s(t)‖p
dt

)1/p

.

The space Ln
∞ is the set of all Lebesgue-measurable

functions that are essentially bounded, i.e., such that
ess. supt≥0 ‖s(t)‖ < ∞, where “ ess. sup” denotes the es-
sential supremum (i.e., supremum except on sets of measure
zero). Ln

∞ is a Banach space with the norm

‖s‖∞
�
= ess. sup

t≥0
‖s(t)‖ .

To deal with possibly unbounded signals, the
extension of Ln

p spaces is defined as follows. For
p ∈ [1,∞], the extended space Ln

p e is defined as

Ln
p e

�
=

{
s|sτ ∈ Ln

p ,∀ τ ≥ 0
}

, where

sτ (t)
�
=

{
s(t) , if t ≤ τ ,
0 , if t > τ .

For every s ∈ Ln
p e and p ∈ [1,∞], let ‖s‖p, τ

�
= ‖sτ‖p.

II. ASSUMPTIONS AND PRELIMINARY RESULTS

Let us begin with defining the class of estimation prob-
lems we consider. The dynamics of the vector to be es-
timated and the process of acquisition of information are
modelled as: { .

x= f (x, w)
y = h (x, v) , t ≥ 0 (1)

where x(t) ∈ X ⊆ R
n is the vector to be estimated, y(t) ∈

Y ⊆ R
m is the vector of available information, and w(t) ∈

W ⊆ R
r and v(t) ∈ V ⊆ R

s are disturbances. In the
following ‖ ·‖ denotes the Euclidean norm of its argument.

Assumption 2.1: Let Bx
�
= {x ∈ X | ‖x‖ < x̄ ,

x̄ > 0}, Bw
�
= {w ∈ W | ‖w‖ < w̄ , w̄ > 0}, and Bv

�
=

{v ∈ V | ‖v‖ < v̄ , v̄ > 0}. Then

(i) f : X × W → R
n is locally Lipschitz in x ∈

Bx uniformly in w ∈ Bw. Moreover, there exist
Lx

f , Lw
f ∈ R

+ such that ‖f(x1, w) − f(x2, 0)‖ ≤
Lx

f ‖x1−x2‖+Lw
f ‖w‖, for all x1, x2 ∈ Bx , w ∈

Bw.
(ii) h : X × V → R

m is locally
Lipschitz in x ∈ Bx, uniformly in v ∈ Bv .
Moreover, there exist Lx

h, Lv
h ∈ R

+ such that
‖h(x1, v) − h(x2, 0)‖ ≤ Lx

h ‖x1 − x2‖ + Lv
h ‖v‖,

for all x1, x2 ∈ Bx, v ∈ Bv .

Assumption 2.1 (i) guarantees the existence and uniqueness
of a local solution of the differential equation in (1),
describing the dynamics of the vector x (see, for example,
[16]).

We consider full-order state estimators with the structure
.

x̂= f(x̂, 0) + g (y − h (x̂, 0)) , t ≥ 0 , (2)

where x̂(t) ∈ X̂ ⊆ R
n is the estimate of x and Z

�
={

z ∈ R
m : z = y − h (x̂, 0) , y ∈ Y , x̂ ∈ X̂

}
⊆ R

m.
The estimator dynamics is the summation of a prediction

term, given by the dynamics, and an innovation term,
represented by the function g : Z → R

n , Z ⊆ R
m; in the

following, y−h(x̂, 0) and g(·) will be called innovation and
innovation function, respectively. The innovation function is
required to verify the following smoothness assumption.

Assumption 2.2: Let z
�
= y − h (x̂, 0), and Bz

�
=

{z ∈ Z | ‖z‖ < z̄ , z̄ > 0}. Then g : Z → R
n is such that

g(0) = 0 and is locally Lipschitz in Bz . More specifically,
there exists Lz

g ∈ R
+ such that ‖g(z1)−g(z2)‖ ≤ Lz

g ‖z1−
z2‖ for all z1, z2 ∈ Bz .

Assumption 2.2 is a sufficient requirement for having a
unique local solution of the differential equation (2) describ-
ing the estimator (see, e.g., [16]). The innovation function
has been assumed to be of the above-written form for sake
of simplicity, although it can be of a more general type [17],
e.g., g̃ (x̂, h(x, 0), h(x̂, 0)), where g̃ (x̂, h(x, 0), h(x̂, 0)) =
0 if h(x, 0) = h(x̂, 0).

Let e(t)
�
= x(t) − x̂(t) denote the estimation error; the

error dynamics for the estimator is given by

.
e= f(x, w) − f(x̂, 0) − g (y − h (x̂, 0)) , t ≥ 0 . (3)

Note that the condition g(0) = 0 guarantees that e = 0 is
an equilibrium point for (3) in the absence of disturbances.

The existence of a suitable Lyapunov function for the
error dynamics, together with Assumptions 2.1 and 2.2,
guarantee that (2) is an asymptotic or an exponential es-
timator for (1) with no disturbances. These properties are
sometimes referred to as weak detectability (see, e.g., [18]).

4205



Let us now move to the Lp stability issue by assuming
that the disturbances belong to an Lp e space of signals.

Theorem 2.3: Suppose that Assumptions 2.1 and 2.2 are
verified and that there exist a Lyapunov function V : E →
[0,∞) with E ⊇ Be and positive constants c1, c2, c3, and
c4 such that

(i) c1 ‖e‖2 ≤ V (e) ≤ c2 ‖e‖2;

(ii)
.

V (x, e) =
∂V

∂e

[
f(x, 0) − f(x̂, 0)

−g (h (x, 0) − h (x̂, 0))
]
≤ −c3 ‖e‖2;

(iii)

∥∥∥∥∂V

∂e

∥∥∥∥ ≤ c4 ‖e‖.

Then, for every e(0) such that ‖e(0)‖ < ē
√

c1
c2

and for every w ∈ Lr
p e and v ∈ Ls

p e such that

sup
0≤σ≤τ

‖w(σ)‖ < min

(
w̄,

c1c3ē

2c2c4Lx
f

)
and sup

0≤σ≤τ
‖v(σ)‖ <

min
(

v̄,
c1c3ē

2c2c4Lv
hLz

g

)
, there exist nonnegative constants η,

λ, and β such that

‖e‖p,τ ≤ η ‖w‖p,τ + λ ‖v‖p,τ + β (4)

for all τ ∈ [0,∞) with η =
c2 c4L

x
f

c1 c3
, λ =

c2 c4 Lv
h Lz

g

c1 c3

and β =
√

c1

c2
‖e(0)‖ ρ, where

ρ =

⎧⎨
⎩

1 , if p = ∞(
2 c2

c3 p

)1/p

, if p ∈ [1,∞) .

According to Theorem 2.3, if suitable Lipschitz condi-
tions are verified by the functions f , h, and g, and if the
disturbances belong to Lp e, then for every τ ≥ 0, in a
small-signal context the Lp norm of the estimation error
eτ is bounded by a linear combination of the Lp norms of
the disturbances wτ and vτ , and one term due to the initial
uncertainty in the value of the vector to be estimated.

III. STATEMENT AND PROPERTIES OF THE OPTIMAL

ESTIMATION PROBLEM (OEP)

We exploit the results of Section II to define a cost func-
tional measuring the estimation error and to cast an optimal
estimation problem in which such a functional has to be
minimized over a certain class of admissible innovation
functions. Recall that Bz

�
= {z ∈ Z | ‖z‖ < z̄ , z̄ > 0}. We

define the following set of functions.

G �
= { g : Z → R

n such that
(i) bounded in aggregate, i.e., ∃L ∈ R

+ : ∀g ∈
G supz∈Z ‖g(z)‖ ≤ L ;
(ii) Lipschitz in Bz , i.e., ∃Lg ∈ R

+ : ‖g(z) −
g(z′)‖ ≤ Lg ‖z − z′‖ for all z, z′ ∈ Bz}.

When endowed with the supremum norm, G is a subset
of the normed space C(Z, Rn) of continuous, n-valued

functions on compact subsets of R
n ×R

m, equipped with
the supremum norm. Conditions (i) and (ii) in the definition
of the class G are related to the compactness of the set G in
C(Z, Rn), which plays a basic role in the following. Thus,
from now on the state estimate dynamics is given by

.

x̂= f(x̂, 0) + g (y − h (x̂, 0)) , t ≥ 0 , (5)

where the innovation function g belongs to G and is such
that g(0) = 0.

The unknown innovation function g in an estimator
having the structure specified in Assumption 2.2 can be
determined by minimizing a performance index. A cost
functional well-suited to optimization in an Lp framework
is

Jp,T = ‖e‖p,T , (6)

where p ∈ [1,∞] and T > 0. Thus, we focus on a cost
function of the form (6) and we consider the following
Optimal Estimation Problem (OEP, for short):

Problem OEP. Given p ∈ [1,∞] and T > 0, solve

inf
g∈G

Jp,T (g) , (7)

where Jp,T (g) = ‖x − x̂‖p,T , x, x̂ ∈ Ln
p e, w ∈ Lr

p e,
v ∈ Ls

p e, and⎧⎨
⎩

.
x= f (x, w)
y = h (x, v)
.

x̂= f(x̂, 0) + g (y − h (x̂, 0)) .

(8)

The finiteness of the cost functional Jp,T and the exis-
tence of a solution to OEP can be proven under suitable
conditions. Now, basing on the results of Theorem 2.3, we
need the following assumption.

Assumption 3.1: The system and measurement distur-
bances are such that w ∈ Lr

p e , v ∈ Ls
p e. Moreover, given

τ > 0 and the constants defined in Assumptions 2.1 and 2.2,

sup
0≤σ≤τ

‖w(σ)‖ < min

(
w̄,

c1c3ē

2c2c4Lx
f

)
, sup

0≤σ≤τ
‖v(σ)‖ <

min
(

v̄,
c1c3ē

2c2c4Lv
hLz

g

)
, and ‖e(0)‖ < ē

√
c1
c2

.

Generally speaking, for a given g ∈ G, the existence
of a unique local solution of the differential equation (8)
describing the estimator is guaranteed by the regularity hy-
potheses on f, g, and h. Assumption 3.1 is quite technical
and not particularly restrictive, as it gives conditions on
the existence of the solution of the differential equation for
small signals (see, for example, [16]).

Due to the very general hypotheses made on the functions
f , g, and h, and on the disturbances, finding an analytical
solution of Problem OEP is a very difficult task. For this
reason, in Section IV we shall propose a methodology of
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approximate solution that reduces the functional optimiza-
tion Problem OEP to a sequence of nonlinear (in general)
programming problems.

IV. SUBOPTIMAL SOLUTIONS TO OEP VIA NONLINEAR

PROGRAMMING PROBLEM

A. Parameterized estimators

OEP, due to its general formulation, cannot be solved
analytically. So we search for suboptimal solutions in the
following way. We consider the class of parameterized
estimators defined as:

.

x̂= f(x̂, 0) + g̃ (w, y − h (x̂, 0)) , t ≥ 0 , (9)

where w ∈ W ⊆ R
q is a parameter vector and g̃ : W×Z →

R
n is a parameterized innovation function that is required

to verify Assumption 2.2 for every w ∈ W . (9) defines a
class of estimators, dependent on the choice of a type of
innovation function, which, in turn, depends on a vector of
“free” parameters, i.e., parameters that

can be chosen according to some optimality criterion.
For any positive integer ν, we define the following family

of parameterized functions.
Definition 4.1:

Aν
�
= { γν : K × R

l → R
n , K compact , such that

(i) γν j(ξ, ωνj
) =

ν∑
i=1

cij ϕi(ξ, κi), ϕi : K × R
l → R, |cij | ≤

C, C ∈ R
+, κi ∈ R

l, i = 1, . . . , ν, j =
1, . . . , n, ων j

�
= col(cij , κi : i = 1, . . . , ν);

(ii) the functions
ϕi(·, κi) are bounded in aggregate, i.e., ∃M ∈
R

+ such that ∀i = 1, . . . , ν, ∀κi ∈
R

l, sup
ξ∈K

|ϕi(ξ, κi)| ≤ M ;

(iii) the functions
ϕi(·, κi) are equicontinuous, i.e.,∀ ε >
0 ∃ δε > 0 such that ∀ i = 1, . . . , ν, ∀κi, κ

′
i ∈

R
l , if ‖ξ−ξ′‖ < δε then |ϕi(ξ, κi)−ϕi(ξ′, κ′

i)| ≤
ε;
(iv) the functions ϕi(·, κi) are Lipschitz, i.e.,
∀ i = 1, . . . , ν ∃Li ∈ R

+ such that ∀κi ∈
R

l, |ϕi(ξ, κi) − ϕi(ξ′, κi)| ≤ Li|ξ − ξ′|;
(v)

∞⋃
ν=1

Aν is dense in G with respect to the

supremum }.

Due to requirements (ii), (iii), and (iv) in the above defi-
nition, for every positive integer ν the set Aν is compact in
C(K, Rn) (see the proof of Theorem 4.3). The compactness
property of Aν plays a basic role in the following.

Functions in Aν are linear combinations with coefficients
of ν basis functions, and they are bounded in aggregate and
Lipschitz; thus, the following proposition holds.

Proposition 4.2: For every integer ν, the elements of Aν

are admissible innovation functions.

Feedforward neural networks of the perceptron type, with at
most ν hidden units and bounded parameters, and Radial-
basis-functions with at most ν hidden units and bounded
parameters are examples of widely used sets Aν .

B. A nonlinear programming problem approximating OEP

To avoid burdening the notation, in the following we omit
the dependence of J on p and T and we write merely J
instead of Jp,T . Let ν be a positive integer. We introduce
the following problem.

Problem OEPν . Given p ∈ [1,∞] and T > 0, solve

inf
γν∈Aν

J(γν), (10)

where J(γν) = ‖x − x̂‖p,T , x, x̂ ∈ Ln
p e, w ∈ Lr

p e, v ∈
Ls

p e, and⎧⎨
⎩

.
x= f (x, w)
y = h (x, v)
.

x̂ν= f(x̂ν , 0) + γν (ων , y − h (x̂ν , 0)) .

(11)

Theorem 4.3: If Assumption 3.1 is satisfied, and the
hypotheses of Theorem 2.3 hold, then for every p ∈ [1,∞],
T > 0, and every positive integer ν there exists γ◦

ν ∈ Aν

such that
J(γ◦

ν)
�
= J◦

ν = min
γν∈Aν

J(γν).

As each Aν is a set of parameterized functions with
a fixed structure, the minimization has to be performed
with respect to the finite-dimensional vector of parameters
ων ∈ R

N (ν), whereas OEP entails an infinite-dimensional
minimization.
This turns out to be evident by substituting γν into the
differential equation of the estimator and then into J . The
cost functional is a function of the parameter vector ων .
With a little notational abuse, we denote such a function by
Jν(ων). Thus, for each positive integer ν the minimization
(7) with respect to the infinite-dimensional set G is replaced
by the minimization with respect to the finite-dimensional
vector ων ∈ R

N (ν). Hence we can define the following.

Problem OEP′
ν . Given T > 0, find

inf
ων∈R

N(ν)
Jν(ων) . (12)

where Jν(ων) = ‖x − x̂‖p,T , x, x̂ ∈ Ln
p e, w ∈ Lr

p e, v ∈
Ls

p e, and⎧⎨
⎩

.
x= f (x, w)
y = h (x, v)
.

x̂ν= f(x̂ν , 0) + γν (ων , y − h (x̂ν , 0)) .

(13)

It is worth noting that the solution of this last problem
may not be unique, even if there exists a unique minimum
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of OEPν , as it might happen that there is no one-to-one
correspondence between a vector ων ∈ R

N (ν) and an
element γν ∈ Aν .

As OEP′
ν is a nonlinear programming problem, it can

be solved determining the optimal parameters vector wo
ν

by a suitable descent algorithm. Typically used algorithms
are those based on gradient descent with stochastic pertur-
bations [19, pp. 38-40, 103-104], genetic algorithms [20],
simulated annealing [21], global stochastic optimization
based on Monte Carlo [22] or quasi-Monte Carlo [23,
Chapter 4] methods, etc. When the basis functions in Aν

are functions computable by neural-network computational
units, various standard learning algorithms can be applied
(see, e.g., [24], [25], [26], [27] and the references therein).

C. On the convergence of suboptimal solutions

As concerns the convergence of J◦
ν to J◦, the following

proposition holds.
Proposition 4.4: The sequence {γ◦

ν}∞ν=1 of optimal so-
lutions to the sequence of nonlinear programmming prob-
lems {OEPν}∞ν=1 is a minimizing sequence for OEP, i.e.,
lim

ν→∞
J◦

ν = J◦.

As regards the convergence of a sequence {γ◦
ν}∞ν=1 of

optimal solutions of Problem OEPν to an optimal solution
γ◦ of OEP, that depends heavily on the properties of the
functional to be minimized, and is an open problem in most
applications of this kind of methods (see, for example, [28]
and [29]).

V. SOLUTION OF THE APPROXIMATING PROBLEMS

A. Stability issues

When optimizing the parameters vector ων ∈ R
N (ν), we

must take into account that the corresponding estimator has
to be stable.

The dynamics of the estimation error of estimator (9) for
the system (1) without disturbances (i.e., with w = 0 and
v = 0) is given by

.
e= f(x, 0) − f(x̂, 0) − g̃ (ω, y − h (t, x̂, 0)) , t ≥ 0 .

(14)
In the following, we shall assume that X is a compact
set, and consider a compact set Ē that belongs to E; if
E = R

n, then Ē can be an arbitrarily large compact set.
Given the compact set S = X× Ē, let us denote by SM

a set of M sample points si = col(xi, ei)
�
= (xT

i , eTi )T , i =
1, 2, . . . , M , that belong to S. Let us define the dispersion
of SM (see [30]) as

θ(SM )
�
= sup

s∈S
min

1≤i≤M
‖s − si‖ .

Consider a Lyapunov function V : Ē → [0,∞), which
is assumed to be continuously differentiable with respect
to time. For estimator (9), if we consider the equality x̂ =
x−e, the time derivative of the Lyapunov function depends
on both s (i.e., x and e) and the parameters vector ω.

We have the following stability result (see [31]).
Theorem 5.1: Suppose that Assumptions 2.1 and 2.2
are verified and that there exists a Lyapunov function

V : Ē → [0,∞) with time derivative that is Lipschitz with
respect to s = col(x, e) ∈ S uniformly in ω ∈ R

N (ν) such
that Assumption 3.1 is verified and

(i) c1 ‖e‖2 ≤ V (e) ≤ c2 ‖e‖2, for every e ∈ Ē,

(ii)

∥∥∥∥∂V

∂e

∥∥∥∥ ≤ c3 ‖e‖ for every e ∈ Ē,

where c1, c2, c3 > 0. Let ω̄ ∈ R
N (ν) be a parameter vector

and SM ⊆ S be a set of M sample points such that

(iii)
.

V (si, ω̄) ≤ −c4 ‖ei‖2 for si ∈ SM , i =
1, 2, . . . , M ,

where c4 > 0, and let LF be the Lipschitz constant of the

function F (s, ω̄)
�
=

.

V (s, w̄) + c1 ‖e‖l with respect to s.
Then there exists εM > 0 such that, if

(iv) θ(SM ) <
εM

LF
,

for every e(0) ∈ Ē, the estimator (9) provides an asymp-
totically stable estimation error for the system (1).

B. Choice of the discretization points

Condition (iv) of Theorem 5.1 requires that the M points
of the discretization of S are “close enough” to each other,
and spread in the most uniform way, without leaving regions
of the space “undersampled.”

Various methods have been developed for the generation
of well uniformly scattered deterministic sequences, such
as the Good Lattice Points sequences, the Niederreiter
sequence, the Halton sequence, the Hammersley sequence
and the Sobol’ sequence [30], [32]. Their construction varies
from mehod to method. In [32] a common framework for
the construction of (t, n)-sequences, which generalize many
of the aforementioned techniques, sometimes called low-
discrepancy sequences, is presented, together with the most
relevant theoretical properties.

In particular, it can be shown that it is possible to
construct (t, n)-sequences that satisfy deterministically

θ(SM ) ≤ O(
√

2nM−1/2n),

and thus ensure the convergence of the estimation error
according to Theorem 5.1.

The use of low-discrepancy sequences for function learn-
ing by neural networks is described in [33].

C. A nonlinear programming algorithm for the design of
the the optimal estimator

On the basis of Theorem 5.1, the design of the optimal
estimator can be designed via the following algorithm.
1) Choose a time horizon T , an Lp measure for the
estimation error, and compact sets X, Ē ⊂ R

n.
2) Choose a composite model Aν with ν basis functions ϕ;
the admissible innovation functions have to belong to Aν .
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3) Choose a set SM ⊂ X × Ē of M sample points si
�
=

col(xi, ei) , i = 1, . . . , M belonging to a low-discrepancy
sequence.
4) Given a Lyapunov function V : Ē → [0,∞), find ω̄ν ∈
R

N (ν) such that
4.1) Jν(ω̄ν)

�
= Jν(γ̄ν) = min

ων∈R
N(ν)

‖e(ων)‖p,T ;

4.2) c1 ‖e‖2 ≤ V (e) ≤ c2 ‖e‖2 for every e ∈ Ē;

4.3)

∥∥∥∥∂V

∂e

∥∥∥∥ ≤ c3 ‖e‖ for every e ∈ Ē, where

c1, c2, c3 > 0;
4.4)

.

V (si, ω̄) ≤ −c4 ‖ei‖2 for si ∈ SM , i =
1, 2, . . . , M , where c4 > 0;
4.5) θ(SM ) <

εM

LF
, where LF be the Lipschitz

constant of F (s, ω̄)
�
=

.

V (s, ω̄) + c1 ‖e‖l with
respect to s.

When the composite model Aν corresponds to commonly
used neural networks, Step 4), in which the parameters of
the innovation function γν have to be optimized, can be
viewed as a particular kind of neural-network training, in
order to satisfy the constraints (i)–(iv) of Theorem 5.1.
This is a supervised learning that differs from standard
techniques used to optimize the parameters of approxi-
mating networks corresponding to commonly used neural
networks; such algorithms minimize the distance from given
target values. In contrast to them, to minimize Jν and
satisfy the constraints such as those corresponding to (i)–
(iv) in Theorem 5.1 one has to employ ad-hoc techniques,
sometimes referred to as distal training [34], which often
are modified versions of standard minimization algorithms.
For example, in [34] the satisfaction of constraints to design
a neural controller is obtained by minimizing a suitable
quadratic penalty function using a specialized version of
the Levenberg-Marquardt algorithm. A possible approach
for the solution of the problem at step 4) is proposed in
[31] and will be the subject of future researches.
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