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Abstract— The problem of unknown input observer design
for Lipschitz nonlinear systems is considered. A new dynamic
framework which is a generalization of previously used linear
unknown input observers is introduced. The additional degrees
of freedom offered by this framework are used to deal with the
Lipschitz nonlinearity. The necessary and sufficient condition
that ensures asymptotic convergence of the new observer is
presented, and the equivalence between this condition and
an H∞ optimal control problem which satisfies the standard
regularity assumptions in the H∞ optimization theory is
shown. Based on these results, a design procedure that is
solvable using commercially available software is presented.

I. INTRODUCTION

The observer design problem is a very important prob-
lem that has various applications such as output feedback
control, system monitoring, process identification and fault
detection. The classical solution of this problem for linear
time invariant (LTI) systems is the use of the well known
Luenberger observer structure [1] in which a constant
matrix is used to stabilize the observer error dynamics
to achieve asymptotic convergence. Modeling errors, plant
disturbances and sensor noise, however, corrupt the state
reconstruction given by the Luenberger observer and are
very difficult to incorporate in this setting. This encouraged
more work to be done in the so-called robust observer
design problem in recent years.

One of the most successful robust observer design tech-
niques is the use of the disturbance decoupling principle,
in which the estimation error is designed to be insensitive
to unknown disturbances. This problem is also referred
to as the unknown input observer (UIO) design and it
dates back to 1975 where Wang [2] proposed a minimal
order UIO structure for linear systems with both known
and unknown inputs. After this important work, several
approaches for designing reduced order and full order UIOs
have been proposed, including the geometric approach by
Bhattacharyya [3], the inversion algorithm by Kobayashi
and Nakamizo [4], the singular value decomposition tech-
nique by Fairman [5] and the algebraic approaches by
Hou and Müller in [6] and by Patton, Chen and Zhang
in [7]. Achieving less restrictive existence conditions and
more direct design procedures has always been a challenge
in this area. The UIO application in fault diagnosis has
also attracted many researchers. Watanabe and Himmelblau
introduced the concept of UIO for robust sensor fault

diagnosis in systems with modeling uncertainty [8]. Their
approach was later extended by Wünnenberg and Frank (see
[9]) and also by Patton and Chen (see [7], [10], [11]) to the
detection of both sensor and actuator faults.

However, most of the previous results are restricted to
linear systems and results on nonlinear UIO are scarce.
A direct extension of the linear results to the nonlinear
case was considered by Wünnenberg in [12]. His approach
was referred to as NUIO (Nonlinear UIO) and considered
systems with nonlinearities that are functions of inputs and
outputs. However, this class of nonlinear systems is rather
limited and many physical systems can not be modelled in
this way. Another limitation is the difficulty of transforming
a general nonlinear system into the required form. An
alternative approach referred to as the DDNO (Distur-
bance Decoupling Nonlinear Observer) was presented in
a series of papers by Seliger and Frank [13]-[15]. The
class of nonlinear systems considered by the DDNO is
more general and the basic idea is the use of nonlinear
state transformations to satisfy the decoupling condition.
However, the existence conditions for these transformations
are derived from the Frobenius theorem and are rather
restrictive. Another drawback of the DDNO is that the state
transformation leads to another nonlinear system for which
an observer design is not a tractable problem.

In this paper, we consider the UIO design problem for
the class of nonlinear Lipschitz systems. We extend the
result in [7] to this class of nonlinear systems and show
that, with the same necessary and sufficient conditions,
the Lipschitz UIO (LUIO) design problem is equivalent to
an H∞ optimal control problem that satisfies all of the
regularity assumptions. Our formulation employs a new
dynamic framework which is a generalization to the one
used in previous works. The LUIO synthesis is carried out
using H∞ optimization and can therefore be done using
commercially available software packages. The paper is
organized as follows: section II introduces some background
results and notations. In section III, we introduce our
dynamic generalization of the previously used UIO structure
and provide an extension of the results in [7] to the new
structure. In section IV, we present our main result, where
we formulate the Lipschitz unknown input observer (LUIO)
design problem as a regular H∞ problem proving that its
solution is necessary and sufficient for the observer stability.
Finally, some conclusions are drawn in section V.
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II. PRELIMINARIES AND NOTATION

The linear UIO design problem considers a class of
systems in which the system uncertainty can be expressed
as an additive unknown disturbance term d(t) as follows:

ẋ(t) = Ax(t) + Bu(t) + Ed(t) (1)

y(t) = Cx(t) (2)

where A ∈ �n×n, B ∈ �n×m, E ∈ �n×r and C ∈ �p×n.
The matrix E is referred to as the unknown input distri-
bution matrix and is assumed to be a known full column
rank matrix (with r ≤ p). The term Ed(t) can actually
be used to describe additive disturbances as well as many
kinds of modeling uncertainties such as noise, nonlinear
or time-varying terms, linearization and model reduction
errors, parameter variations, etc. It can also represent sys-
tem inputs which are inaccessible (or unmeasurable) [10].
It is important to note that much work has been done on
estimating the distribution matrix E when it is not fully
known (see for example [11], [16], [17]). In all the literature
available for this problem, the observer proposed fall in the
class of Luenberger-like observers, namely:

ż(t) = Fz(t) + Ly(t) + TBu(t) (3)

x̂(t) = z(t) + Hy(t) (4)

where F ∈ �n×n, L ∈ �n×p, T ∈ �n×n and H ∈ �n×p.
This observer can be represented by the structure in Fig. 1.

Fig. 1. The structure of UIO.

As mentioned in section I, several approaches for de-
signing a UIO (particularly, for designing F , L, T and
H to guarantee observer stability) have been developed.
In this section, we focus on the technique developed by
Chen, Patton and Zhang in [7]. In their work, the necessary
and sufficient existence conditions of UIO were presented.
Compared with other UIO design methods, these conditions
are easy to verify and the design procedure is relatively
simple.

Their results can be summarized as follows. By noting

that if the following matrix equations are satisfied:

HCE = E (5)

T = I − HC (6)

F = A − HCA − L1C; with F stable (7)

L2 = FH (8)

L = L1 + L2 (9)

then the observer in (3)-(4) has the stable undisturbed error
dynamics ė = Fe, they defined (3)-(4) as a UIO for the
system (1)-(2) if it satisfies (5)-(9). Based on that definition,
their main result was given by the following theorem:

Theorem 1: [7] Necessary and sufficient conditions for
(3)-(4) to be a UIO for the system (1)-(2) are:
(i) rank (CE) = rank(E). (ii) (A1, C) is a detectable pair,
where A1 = A − E

[
(CE)T CE

]−1 (CE)T CA.
They also presented a systematic design procedure to

compute the matrices F , L, T and H that satisfy (5)-(9).
In this paper, we study the nonlinear UIO design problem

for the class of nonlinear Lipschitz systems of the form:

ẋ(t) = Ax(t) + Γ(y, u, t) + Φ(x, u, t) + Ed(t) (10)

y(t) = Cx(t) (11)

and where the function Φ(x, u, t) satisfies a uniform
Lipschitz continuity globally in x, i.e,

‖ Φ(x1, u, t) − Φ(x2, u, t) ‖ ≤ α ‖ x1 − x2 ‖ (12)

for all u ∈ �m and t ∈ � and for all x1 and x2 ∈ �n.
Here α ∈ � is referred to as the Lipschitz constant and is
independent of x, u and t. Lipschitz systems constitute a
very important class. Notice that any system of the form
ẋ = f(x, u) can be expressed in the form of (10) as long
as f(x, u) is continuously differentiable with respect to x.
Many nonlinearities satisfy (12) at least locally. Examples
include trigonometric nonlinearities occurring in robotic
applications, the nonlinearities which are square or cubic
in nature, etc. Therefore, much research has been done on
the observer design problem for Lipschitz systems without
additive disturbances (see for example [18], [19]). However,
in this paper we consider the case of nonzero additive distur-
bances, i.e, the Lipschitz unknown input observer (LUIO)
design problem. Our approach is based on the extension
of the UIO structure in (3)-(4) to a more general dynamic
framework. We further tackle the LUIO design problem by
showing that, using the new dynamic observer, this problem
is equivalent to a standard H∞ control problem. The extra
design freedom offered by the dynamic formulation is used
to deal with the nonlinearities. The following definitions
and notations will be used throughout the paper:

Definition 1: (L2 Space) The space L2 consists of all
Lebesque measurable functions u : �+ → �q having a

finite L2 norm ‖u‖L2 , where ‖u‖L2

∆=
√∫ ∞

0
‖ u(t) ‖2 dt,

with ‖u(t)‖ as the Euclidean norm of the vector u(t).
For a system H : L2 → L2, γ(H) will represent its L2 gain
defined as: γ(H) = supu

‖Hu‖L2
‖u‖L2

. It is well known that,
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for a linear system H : L2 → L2 with a transfer matrix
Ĥ(s), γ(H) is equivalent to the H∞ norm of Ĥ(s) defined
as: γ(H) ∆= ‖ Ĥ(s) ‖∞= supω∈� σmax(Ĥ(jω)), where
σmax represents the maximum singular value of Ĥ(jω). The
matrices In, 0n and 0nm are used to represent the identity
matrix of order n, the zero square matrix of order n and
the zero n by m matrix respectively. The symbol T̂yu is
used to represent the transfer matrix from input u to output

y. The partitioned matrix K =
[

A B
C D

]
(when used as

an operator from y to u, i.e, u = Ky) represents the state
space representation (ξ̇ = A ξ + B y, u = C ξ + D y).

III. A NEW UIO DYNAMIC DESIGN

In this section, we first present a dynamic generalization
of the UIO structure in (3)-(4) developing conditions that
guarantee the observer stability in this case. We then extend
the results in [7] to this new framework by proving that the
same conditions of Theorem 1 are necessary and sufficient
for the new UIO dynamic design.

A. Dynamic generalization of the classical UIO structure

Throughout this paper, we will make use of dynamical
observers with the following structure:

ż(t) = w1(t) + w2(t) + TB u(t) (13)

x̂(t) = z(t) + H y(t) (14)

where w1(t) and w2(t) are obtained by applying dynamical
compensators on the vectors z and y respectively. In other
words, w1 and w2 are given from:

ξ̇1 = AF ξ1 + BF z, w1 = CF ξ1 + DF z (15)

ξ̇2 = AL ξ2 + BL y, w2 = CL ξ2 + DL y (16)

This can be represented by the structure in Fig. 2.

Fig. 2. Dynamic structure of UIO.

Compared with the one in Fig. 1, this new structure
offers more dynamics which will be used in section
IV to tackle the LUIO design problem. Towards that
goal, we consider first its use as a UIO for the system
(1)-(2). The following lemma develops conditions for ob-
server stability in this case (see proof in Appendix I).

Lemma 1: The error dynamics of (13)-(16) as an ob-
server for (1)-(2) is asymptotically stable and decoupled
from the disturbance term d(t) if the following conditions
are satisfied:

HCE = E (17)

T = In − HC (18)

[
AF BF

CF DF

]
stable; with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

AF = AL

BF = BL1C

CF = −CL

DF = A − HCA − DL1C

(19)

DL2 = DF H (20)

BL2 = − BF H (21)

BL = BL1 + BL2 (22)

DL = DL1 + DL2 (23)
In the next subsection, we show that same conditions of
theorem 1 (which were necessary and sufficient to satisfy
(5)-(9)) are still necessary and sufficient for (17)-(23).

B. Dynamic UIO: definition and existence conditions

We start by introducing the following definition:
Definition 2: (Dynamic UIO) An observer of the form

(13)-(16) is referred to as a dynamic UIO for the system
(1)-(2) if it satisfies conditions (17)-(23).
This definition accommodates the observer defined in [7] as
a special case and we here prove that the same conditions of
theorem 1 hold for this more general definition as follows:

Theorem 2: There exists a dynamic UIO for the system
(1)-(2) (according to Definition 2) if and only if :

(i) rank (CE) = rank (E) (24)

(ii) (A1, C) is a detectable pair, where

A1 = A − E
[
(CE)T CE

]−1
(CE)T CA.

(25)

Proof : The proof is constructive (shows the steps needed to
design a dynamic UIO). It is a direct result of the proof of
theorem 1 and of the interpretation of conditions (19)-(23)
as follows. It was proved in [10] that (17) is solvable iff
(24) is satisfied and that the general solution is:

H = E(CE)+ + H0

[
Ip − CE(CE)+

]
(26)

where H0 is an arbitrary n by p matrix and (CE)+ is the
left inverse of (CE) which is:

(CE)+ =
[
(CE)T CE

]−1
(CE)T

The rest of the proof follows by noting that satisfying
(19) is equivalent to finding AL, CL, BL1 and DL1

such that

[
AL BL1C
−CL A − HCA − DL1C

]
is stable. This

is equivalent to the stabilization problem in Fig. 3 which is
solvable iff (A − HCA,C) is detectable.

Finally, notice that for any H that satisfies (26),
(A − HCA,C) is detectable iff (A1, C) is detectable (as
proven in [10]) where A1 is given by (25). Therefore,
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Plant “G”

A − HCA −In

C 0pn

Controller “K”

AL BL1

CL DL1
�

�

Fig. 3. Stabilization problem.

conditions (i) and (ii) are necessary and sufficient to satisfy
(17)-(23) and the proof is complete. �
As a conclusion, with the same existence conditions of the
UIO in [7], the dynamic UIO design is reduced to the
stabilization problem in Fig. 3 which has a set of controllers
[20] as its solution. We will make use of this extra design
freedom in section IV when dealing with the Lipschitz case.

IV. DESIGN OF LIPSCHITZ UNKNOWN INPUT

OBSERVERS

For the Lipschitz unknown input observer (LUIO) design
problem, we first prove that solving an H∞ problem is
necessary and sufficient for observer stability. We then show
that this problem is equivalent to a standard H∞ problem.
Finally, we present a systematic design procedure for the
LUIO within the H∞ framework.

A. An H∞ formulation of the LUIO design problem

For a Lipschitz system of the form (10)-(11) and where
Φ(x, u, t) satisfies (12) with a Lipschitz constant α, we
consider the use of the following observer:

ż(t) = w1(t) + w2(t) + TΓ(y, u, t) + TΦ(x̂, u, t) (27)

x̂(t) = z(t) + Hy(t) (28)

where w1(t) and w2(t) are obtained from (15) and (16)
respectively and where the parameters of the observer
satisfy the conditions (17)-(23). Similar to the linear case
(see proof of lemma 1 in Appendix I), it can be seen that
the error dynamics of this observer is given from:

ξ̇ = AF ξ + BF e (29)

ė = CF ξ + DF e + T (Φ(x, u, t) − Φ(x̂, u, t)) (30)

which (by using (19)) can also be represented by the transfer
function T̂ζω in the following so-called standard form:

ψ̇ =
[
A − HCA

]
ψ +

[
T −In

] [
ω
ν

]
(31)

[
ζ
ϕ

]
=

[
In

C

]
ψ +

[
0n 0n

0pn 0pn

] [
ω
ν

]
(32)

where
ω = φ̃ = Φ(x, u, t) − Φ(x̂, u, t)
ν = K (y − ŷ) (33)

ζ = e = x − x̂

ϕ = y − ŷ

and where K is the dynamic controller

K =
[

AL BL1

CL DL1

]
(34)

This can also be represented by Fig. 4 where the plant G
has the state space representation in (35) with the matrices
in (31)-(32) and where the controller K is given from (34).

ĝ(s) =

⎡
⎣ A B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎦ (35)

G

K �

�

� �ω ζ

ν ϕ

Fig. 4. Standard setup.

The following theorem is the main result of this section:
Theorem 3: Given the Lipschitz system of equations

(10)-(11), the state x̂ of the observer (27)-(28) (satisfying
conditions (17)-(23)) globally asymptotically converges to
the system state x for all Φ satisfying (12) with Lipschitz
constant α if and only if K in (34) satisfies

supω∈� σmax

[
T̂ζω(jω)

]
<

1
α

(36)

Proof : (Sufficiency) Using the variable definitions in (33)
and the matrices in (31), (32) and (34), T̂ζω can be repre-
sented as follows:

T̂ζω = T̂eφ̃ =

⎡
⎣ A − HCA − DL1C −CL

BL1C AL

T
0n

In 0n 0n

⎤
⎦

(37)
and is such that γ(T̂eφ̃) =‖ T̂eφ̃ ‖∞< 1

α according to (36).
The proof of sufficiency follows by noting that the esti-
mation error e is given from the feedback interconnection
of T̂eφ̃ and ∆ as shown in Fig. 5 where ∆ is the static
nonlinear time-varying operator defined as follows:

∆(t) : e → φ̃ = Φ(x, u, t) − Φ(x̂, u, t)
= Φ(e + x̂(t), u(t), t) − Φ(x̂(t), u(t), t)

�
φ̃

T̂eφ̃

e

�∆

Fig. 5. Feedback interconnection.

In this loop, γ(T̂eφ̃) < 1
α as mentioned earlier and,

although an exact expression for ∆ is not available, we
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have γ(∆) ≤ α because from (12) it follows that

γ(∆) ≤
√∫ ∞

0
α2 ‖ x − x̂ ‖2 dt√∫ ∞

0
‖ x − x̂ ‖2 dt

≤ α

Using the bounds on the L2 gains of the T̂eφ̃ and ∆,
we will make use of a dissipativity argument by noting
that the following properties are satisfied for the feedback
interconnection of Fig. 5:
(i) ∆ is a static nonlinearity (no internal states) and T̂eφ̃

is given from (37). (ii) The mappings T̂eφ̃ : φ̃ → e

and ∆ : e → φ̃ have finite L2 gains γ(T̂eφ̃) and γ(∆),
and moreover they satisfy γ(T̂eφ̃).γ(∆) < 1. (iii) T̂eφ̃

and ∆ are dissipative with respect to the supply rates
ω1 = −eT e + γ(T̂eφ̃)2φ̃T φ̃ and ω2 = −φ̃T φ̃ + α2eT e
respectively. We will denote by S1 and S2 the storage
functions associated with these supply rates.

It is an straightforward application of Corollary 1 in
reference [21] that S1 + aS2, a > 0, is a Lyapunov
function for the feedback system of Fig. 5, and that, since
γ(T̂eφ̃)γ(∆) < 1, the composite system is asymptotically
stable. This implies that e → 0 as t → ∞.
(Necessity) This is a direct result of the small gain theorem
for LTI systems (see the proof of Theorem 4 in [19] for
more details) which implies that if γ(T̂eφ̃) ≥ 1

α in Fig. 5,
then there exists Φ(x, u, t) = M(t)x with ‖ M̂(s) ‖∞≤ α
such that the closed loop system in Fig. 5 is unstable. �
B. Problem regularization

Despite the result in theorem 3, observer synthesis can
not be carried out directly using the standard H∞ solution
since the standard form in (31)-(32) does not satisfy all
of the regularity assumptions in the H∞ framework [20].
However, by considering a “weighted” disturbance term in
the output, i.e using (38) instead of (11):

y(t) = Cx(t) + ε η(t), ε > 0 (38)

then the standard form in (31)-(32) has now the form:

ψ̇ =
[
A − HCA

]
ψ +

[[
T 0np

] −In

]
⎡
⎣

[
ω

η(t)

]

ν

⎤
⎦

(39)
⎡
⎣ζ

ϕ

⎤
⎦ =

⎡
⎣In

C

⎤
⎦ ψ +

⎡
⎣

[
0n 0np

]
0n

[
0pn εIp

]
0pn

⎤
⎦

⎡
⎢⎢⎣

[
ω

η(t)

]

ν

⎤
⎥⎥⎦ (40)

This can also be represented by the setup in Fig. 4, except
for redefining the matrices of ĝ(s) in (35) and replacing
ω by ω̄ which is defined as: ω̄

∆=
[
ω η(t)

]T
. This stan-

dard form, however, still does not satisfy the regularity
assumptions in the H∞ problem since DT

12D12 is singular.
Fortunately, regularization can be done by simply extending
the external output ζ to include the “weighted” vector βν,
β > 0. This adds another change in Fig. 4 consisting of

replacing ζ by ζ̄ defined as: ζ̄
∆=

[
ζ βν

]T
.

The entries of ĝ(s) in (35) are then given by the following
state space realization (where Ā = A − HCA)

ψ̇ =
[
Ā

]
ψ +

[[
T 0np

] −In

]
⎡
⎣

[
ω

η(t)

]

ν

⎤
⎦ (41)

⎡
⎢⎢⎣

[
ζ
βν

]

ϕ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

[
In

0n

]

C

⎤
⎥⎥⎦ψ +

⎡
⎢⎢⎣

[
0n 0np

0n 0np

] [
0n

βIn

]

[
0pn εIp

]
0pn

⎤
⎥⎥⎦

⎡
⎢⎢⎣

[
ω

η(t)

]

ν

⎤
⎥⎥⎦

(42)

It is now straightforward to see that all of the regularity
assumptions summarized below [20] are now satisfied:

1) (A,B2) stabilizable: satisfied for any matrix Ā.
(C2,A) detectable: satisfied iff (Ā,C) is detectable.

2) D21D
T
21 = ε2Ip×p which is nonsingular.

DT
12D12 = β2In×n which is nonsingular.

3) rank

[
A − jωI B2

C1 D12

]
= 2n = full column rank.

rank

[
A − jωI B1

C2 D21

]
= n + p = full row rank.

4) D22 = 0.

It follows that all the regularity assumptions are satisfied iff
(A−HCA, C) is detectable (with no new design restrictions
over the design conditions of theorem 2). We also prove
that this regular H∞ problem is actually equivalent to the
original one introduced by theorem 3 in the following sense:
Let T1 be the setup in Fig. 4 associated with (31)-(32), T2

the one associated with (39)-(40) and T3 the one associated
with (41)-(42). And let T̂1, T̂2 and T̂3 be their corresponding
transfer matrices. The following two lemmas demonstrate
a certain equivalence between these setups (the proof is
omitted and is included in [22]).

Lemma 2: Consider a stabilizing controller K for T1 and
T2, then ‖ T̂1 ‖∞< γ iff ∃ ε > 0 such that ‖ T̂2 ‖∞< γ.

Lemma 3: Given ε > 0 and a stabilizing controller K for
T2 and T3, then ‖ T̂2 ‖∞< γ iff ∃ β > 0 s.t ‖ T̂3 ‖∞< γ.
The previous results can be used to extend the results in
theorem 3 showing that the observer gain K needed to
stabilize the estimation error must solve a regular H∞
optimal control problem. To this end, we define the regular
continuous H∞ control problem “Problem 1” as follows:
Problem 1 Given ε > 0 and β > 0, find S, the set of
admissible controllers K satisfying ‖ T̂ζ̄ω̄ ‖∞< γ for the
standard setup in Fig. 4 with G having the state space
representation (35) along with the matrices in (41)-(42).

Now we extend the result of theorem 3 as follows:
Theorem 4: Given the Lipschitz system of equations

(10)-(11), the state x̂ of the observer (27)-(28) (satisfying
the conditions (17)-(23)) globally asymptotically converges
to the system state x for all Φ satisfying (12) with a
Lipschitz constant α if and only if ∃ ε, β > 0 such that K
(the controller in (34)) ∈ S∗ (the set of controllers solving
“Problem 1” defined above with γ = 1

α ).
Proof : A direct result of Theorem 3, Lemmas 2 and 3. �
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C. A LUIO design procedure

The following iterative “binary search” procedure is then
proposed to design the LUIO (27)-(28) for the system
(10)-(11) satisfying the conditions (12), (24) and (25).
Design procedure
Step 1 Calculate H = E(CE)+ + H0 [Ip − CE(CE)+];
where H0 is an arbitrary n by p matrix and where
(CE)+ is the left inverse of CE which is given from
(CE)+ =

[
(CE)T CE

]−1 (CE)T .
Step 2 Set T = In−HC. Step 3 Set ε, β > 0 and γ ← 1

α .
Step 4 Test solvability of “Problem 1” (the H∞
problem defined in sec IV-B). If test fails, go
to Step 6; otherwise solve the problem (using available
software packages) and any K ∈ S is candidate for (34).
Step 5 Calculate all the remaining gains of the LUIO
using (19)-(23) and go to Step 7 . Step 6 Set ε = ε

2 and
β = β

2 . If ε or β < a threshold, then go to step 7 (a LUIO
does not exist); otherwise go to Step 4. Step 7 Stop.
Comments:

• When the H∞ problem is not solvable, one can in-
crease γ by decreasing the Lipschitz constant α. The
statement in italic in step 6 can then be replaced by:
decrease α and go to Step 3. With this change, the
algorithm is guaranteed to work as α → 0.

• Same design can be used when the output is disturbed
as in (38). The small gain theorem guarantees that the
estimation error e(t) ∈ L2 if η(t) ∈ L2.

V. CONCLUSION

In this paper we considered the design of unknown input
observers (UIO) for nonlinear Lipschitz systems. A new
H∞ approach is proposed and is shown to be feasible with
the same existence conditions of the linear UIO design. Our
approach makes use of dynamical observers, an approach
that shows promise given the additional degrees of freedom
available to the designer. The introduced design procedure
addresses the nonlinearity and the disturbance decoupling
problems in the same framework and can be carried out
using commercially available software, such as MATLAB.

APPENDIX I
Proof of Lemma 1

Using (13)-(16) as an observer for the system (1)-(2) and
defining the error ez = Tx − z and the state ξ = ξ2 − ξ1

we have (with the help of (17)-(19)):

ėz = T (Ax + Bu + Ed) − w1 − w2 − TBu

= − CF ξ1 − CLξ2 − [DF (Tx − ez) − TAx + DLCx]
= CF ξ + DF ez − (DF T − TA + DLC) x

But from (18)-(20) and (23): TA − DF T = DLC. Then,
ėz = CF ξ + DF ez . Also, for the state ξ, we have:

ξ̇ = ALξ2 + BLy − AF ξ1 − BF z

= ALξ2 + BLCx − AF ξ1 − BF (Tx − ez)
= AF ξ + BF ez − (BF T − BLC)x

But from (18), (19), (21) and (22): BF T = BLC. Then,
ξ̇ = AF ξ+BF ez . Therefore, the observer error dynamics is
(ξ̇ = AF ξ+BF ez, ėz = CF ξ+DF ez). From the stability
of the matrix in (19), it follows that the error dynamics
is asymptotically stable and decoupled from d(t), and the
proof is completed by noting that e = x − x̂ = x − (z +
Hy) = (I − HC)x − z = ez . �
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