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Abstract—The problem of adaptive stabilization of the
force-reflecting telerobotic system in presence of time delay
in the communication channel is addressed. We propose two
adaptive control schemes that make the overall telerobotic
system input-to-state stable (ISS) with respect to external
forces for any constant communication delay. In particular,
in case where the joint velocity measurements are replaced
by the estimates obtained using “dirty derivative” filters, we
show the input-to-state stability in the semiglobal practical
sense. These results are based on a new version of the IOS
(input-to-output stability) small gain theorem for functional
differential equations.

I. INTRODUCTION

According to [1], teleoperation can be defined as
the extension of a person’s sensing and manipulation
capability to a remote location. In a teleoperator
system, two manipulators called master and slave are
connected to each other via a communication channel.
The master is moved by a human operator, and the
information about the master’s motion is sent through
the communication channel to the remotely located
slave. The slave manipulator is designed to follow the
motion of the master. In this paper, we consider the so-
called force-reflecting or bilateral teleoperator systems,
where the contact force due to the environment is
transmitted back through the communication channel
to the master manipulator without alteration. This
makes the human operator feel the interaction of the
slave with the environment. In 1966, Ferrell [2] showed
experimentally, that existence of even a small delay
in the communication channel may cause instability
of a force-reflecting teleoperator system. A control
scheme that guarantees, under certain assumptions,
stability of a bilaterally controlled teleoperator for any
communication delay was first presented in [3], [4].
The problem of stabilization of bilaterally controlled
teleoperators in presence of communication delay was
also addressed in [5], [6], [7], [8], [9], among other papers.
In [10], an idea of using the ISS small gain theorem [11]
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to design a force-reflecting telerobotic system stable for
an arbitrary (constant) communication delay was pre-
sented. However, the scheme proposed in [10] has several
shortcomings in practical implementations. First, it is
assumed in [10], that the exact models of both the
master and the slave manipulators are available for the
designer. In practical situations, however, only nonlinear
structure of the dynamical equations of a manipulator
expressed in terms of the so called regressor function
is usually available, while the mass-inertia parameters
are unknown or (and) subject to changes. On the other
hand, the algorithm proposed requires the joint veloci-
ties to be available for direct measurement, which is not
usually the case in practice. In this work, we address
the above mentioned issues and present two extensions
of the stabilization algorithm proposed in [10]. First,
we address a situation where the mass-inertia para-
meters of both the master and the slave manipulators
are unknown, and provide an adaptive version of the
stabilization algorithm. Further, we assume that only
the joint positions of both the master and the slave
manipulators are available for measurement subject to
small measurement disturbances. In the latter case,
we consider a version of the adaptive stabilization
algorithm where the velocity measurements are replaced
by the estimates obtained using the so-called “dirty
derivative” filters. In both these cases we show that
the overall telerobotic system, being considered as a
system of functional differential equations, is input-to-
state stable (ISS) (in the global practical or semiglobal
practical sense) with respect to external forces, for any
communication delay. Our main tool is Theorem 1,
which is a new version of the IOS (ISS) small gain
theorem for functional differential equations.

The paper is organized as follows. In section II, the
mathematical model of the force reflecting telerobotic
system is given. In Section III, we present a new
version of the IOS (ISS) small gain theorem that is
used essentially in our proofs of stability of the telero-
botic system. In section IV, the adaptive stabilization
problem for bilaterally controlled teleoperators with
communication delay is addressed under the assumption
that joint velocities are available for measurement.
The adaptive stabilization problem without velocity
measurement is considered in section V. An example
of simulation results is presented in section VI. Finally,
some concluding remarks are given in section VII. Due
to space reasons, all the proofs are omitted.
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II. MATHEMATICAL MODEL OF THE
TELEOPERATOR SYSTEM

In this paper, we consider a bilaterally controlled
teleoperator system where both the master and the
slave are n-dimensional fully actuated manipulators
with revolute (rotational) joints that described by the
Euler-Lagrange equations as follows

Hm (qm) q̈m + Cm (qm, q̇m) q̇m + Gm (qm)
= Fh + F̂e + um,

(1)

Hs (qs) q̈s + Cs (qs, q̇s) q̇s + Gs (qs) = Fe + us. (2)

Here qm ∈ T
n, q̇m ∈ R

n are position and velocity of the
master, qs ∈ T

n, q̇s ∈ R
n are position and velocity of

the slave, Fh ∈ R
n is a force (torque) applied by the

human operator, Fe ∈ R
n is the contact force (torque)

due to environment applied to the slave, F̂e ∈ R
n

represents the measurement of Fe transmitted back to
the motors of the master, and um, us ∈ R

n are the
control inputs of the master and the slave respectively.
Let τ1 ≥ 0 be a communication delay of the forward
communication channel (from the master to the slave).
Then the following signals

q̂m(t) = qm(t − τ1), (3)
ˆ̇qm(t) = q̇m(t − τ1), (4)

are available on the slave side. On the other hand, the
transmission equation for Fe is as follows

F̂e(t) = Fe(t − τ2), (5)

where τ2 ≥ 0 is a communication delay in the backward
direction (from the slave to the master). Throughout the
paper we will make use of the following assumption.

Assumption 1. The contact force Fe can be repre-
sented as follows

Fe(t) = F s
e (t) + F ∗

e (t), (6)

where F s
e satisfies the following ”finite-gain” condition

with respect to the slave variables

|F s
e (t)| ≤ γe (|q̇s(t)| + |qs(t)|) (7)

for some γe > 0 and for almost all t ≥ 0, and F ∗
e (t) is

an arbitrary measurable essentially bounded function.
The term F ∗

e contains the disturbances and the globally
bounded part of the environmental forces.

III. IOS (ISS) SMALL GAIN THEOREM FOR
FUNCTIONAL DIFFERENTIAL EQUATIONS

Following the notations of [12], for a given function
x : [−td,∞) → R

n, td ≥ 0, and given t ≥ 0, let us define
a function xd(t)(·) : [0, td] → R

n as xd(t)(s) := x(t−s).
Consider a system described by functional-differential
equations (FDE) of the following form

ẋ(t) = F (xd(t), ud(t), wd(t)) ,
y(t) = H (xd(t), ud(t), wd(t)) ,

(8)

where xd(·) is the state, u ∈ R
l, w ∈ R

m are the
inputs, and y ∈ R

p is the output. We assume that the
operator F (·) satisfies assumptions that guarantee, for
each initial data xd(t0) and each admissible input wd(·),
the existence of a unique maximal solution defined
on [t0, t0 + tmax) for some tmax > 0. Additionally,
we assume that the operator H(·) is continuous and
satisfies H(0d, 0d) = 0, where 0d is a function equal
to 0 for all [0, td]. The following notation |xd(t)| =

sup
t−td≤s≤t

|x(s)| will be used throughout the section, and

|ud(t)|, |wd(t)| are defined analogously.
In the definition below, we reformulate the input-

to-output stability notion [13] to the case of systems
described by functional-differential equations of the
form (8 (see also [12]).

Definition 1. System (8) is said to be input-to-output
stable (IOS) with IOS gains γu, γw ∈ K, restriction
(∆x, ∆u, ∆w), where ∆x > 0, ∆u > 0, ∆w > 0, and
offset δ > 0, if |xd(0)| ≤ ∆x, sup

s≥0
|ud(s)| ≤ ∆u, and

sup
s≥0

|wd(s)| ≤ ∆w imply that the solutions of (8) are

defined for all t ∈ [−td, +∞), and the following two
properties hold:

i) boundedness: there exists a function β ∈ K∞ such
that

sup
t≥0

|y(t)| ≤ max

⎧⎪⎪⎨
⎪⎪⎩

β (|xd(0)|) , γu

(
sup
t≥0

|ud(t)|
)

,

γw

(
sup
t≥0

|wd(t)|
)

, δ

⎫⎪⎪⎬
⎪⎪⎭

;

ii) convergence:

lim sup
t→∞

|y(t)| ≤ max

⎧⎪⎪⎨
⎪⎪⎩

γu

(
lim sup

t→∞
|ud(t)|

)
,

γw

(
lim sup

t→∞
|wd(t)|

)
, δ

⎫⎪⎪⎬
⎪⎪⎭

.

The system is called input-to-state stable if it is IOS
with respect to the output y = x. •

To investigate stability properties of the telerobotic
system in the subsequent sections, we need to formulate
and prove a version of the IOS (ISS) small gain theorem
for FDEs (8). Consider two systems of FDE of the
following form

Σ1 : ẋ1(t) = F1 (x1d(t), u1d(t), w1d(t)) ,
y1(t) = H1 (x1d(t), u1d(t), w1d(t)) ,

(9)

where td = τ1 ≥ 0, and

Σ2 : ẋ2(t) = F2 (x2d(t), u2d(t), w2d(t)) ,
y2(t) = H2 (x2d(t), u2d(t), w2d(t)) ,

(10)

where td = τ2 ≥ 0. We will investigate the behavior of
the overall system (9), (10) subject to constraints on
inputs u1, u2 described as follows: u1(t) ≡ u2(t) ≡ 0 for
t < 0, and

|u2(t)| ≤ χ1 (|y1(t)|) (11)

for t ≥ 0,where χ1 (·) , χ2 (·) ∈ K.
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Note that the system (9), (10) subject to constraints
(11) is not a feedback system in the classical sense, since
u1 and u2 are not completely determined by outputs
y2, y1 respectively. However, for such a system it is still
possible to state a small gain result which provides an
upper bound for output (state) trajectories in terms of
bounds on inputs w1, w2 uniformly with respect to any
admissible u1(·), u2(·) that satisfy the constraints (11).
To be precise, let us give the following definition where
a version of the IOS notion is presented appropriately
for the system of the form (9), (10), (11). Let us denote
x :=

(
xT

1 , xT
2

)T , y :=
(
yT
1 , yT

2

)T , and let us use a norm
of x defined as follows |x (·)| := max {|x1 (·)| , |x2 (·)|},
and |y (·)| defined analogously.

Definition 2. System (9), (10) subject to constraints
(11) is said to be input-to-output stable (IOS) with
IOS gains γw1, γw2 ∈ K, restriction (∆x, ∆w1 , ∆w2),
∆x, ∆w1 , ∆w2 > 0, and offset δ > 0, if |xd(0)| ≤ ∆x,
sup
t≥0

|w1d(t)| ≤ ∆w1 , sup
t≥0

|w2d(t)| ≤ ∆w2 imply that for

any admissible u1 (·), u2 (·) satisfying the constraints
(11), the solutions of (9), (10) are defined for all
t ∈ [−td, +∞), and the following two properties hold:

i) boundedness: there exists a function β ∈ K∞ such
that

sup
t≥0

|y(t)| ≤ max

⎧⎪⎪⎨
⎪⎪⎩

β (|xd(0)|) , γw1

(
sup
t≥0

|w1d(t)|
)

,

γw2

(
sup
t≥0

|w2d(t)|
)

, δ

⎫⎪⎪⎬
⎪⎪⎭

;

ii) convergence:

lim sup
t→∞

|y(t)| ≤ max

⎧⎪⎪⎨
⎪⎪⎩

γw1

(
lim sup

t→∞
|w1d(t)|

)
,

γw2

(
lim sup

t→∞
|w2d(t)|

)
, δ

⎫⎪⎪⎬
⎪⎪⎭

.

The notion of input-to-state stability for the system
(9), (10), (11) is defined analogously.

The following theorem will be our main tool in the
subsequent sections.

Theorem 1. (IOS small gain theorem for FDE).
Consider a system (9), (10) subject to constraints (11).
Suppose each subsystem Σi, i = 1, 2, is input-to-output
stable with IOS gains γiu, γiw ∈ K and restrictions
(∆ix, ∆iu, ∆iw). Suppose also that the gains γiu, χi form
a strict contraction, i.e.,

χ1 ◦ γ1u ◦ χ2 ◦ γ2u (s) < s for all s > 0. (12)

Then, given ∆x ≤ min {∆1x, ∆2x}, if

∆1u > ∆∗
1u := χ2

⎛
⎝max

⎧⎨
⎩

β2 (∆x) , γ2w (∆2w) ,
γ2u ◦ χ1 ◦ β1 (∆x) ,

γ2u ◦ χ1 ◦ γ1w (∆1w) ,

⎫⎬
⎭

⎞
⎠ ,

∆2u > ∆∗
2u := χ1

⎛
⎝max

⎧⎨
⎩

β1 (∆x) , γ1w (∆1w) ,
γ1u ◦ χ2 ◦ β2 (∆x) ,

γ1u ◦ χ2 ◦ γ2w (∆2w) ,

⎫⎬
⎭

⎞
⎠ ,

then the system (9), (10), (11) with td = max {τ1, τ2} is
input-to-output stable with restriction (∆x, ∆1w, ∆2w)
and IOS gains γ̃1w(·) := max {γ1w(·), γ2u ◦ χ1 ◦ γ1w(·)},
γ̃2w(·) := max {γ2w(·), γ1u ◦ χ2 ◦ γ2w(·)}, corresponding
to inputs w1, w2 respectively. •

IV. ADAPTIVE STABILIZATION OF THE
BILATERALLY CONTROLLED TELEOPERATORS

In this section, we address the problem of adaptive
stabilization of the bilaterally controlled telerobotic
system with communication delay under the assumption
that the velocities of both the master and the slave are
available for direct measurement. A standard statement
of the adaptive stabilization problem for robotic ma-
nipulators utilizes the so called linear parameterization
property of the manipulator’s dynamics. Using this
property, let us denote

−Hm (qm) σmq̇m − Cm (qm, q̇m) σmqm

+Gm (qm) = Ycm (qm, q̇m) θm,
(13)

where Ycm (qm, q̇m) ∈ R
n×r is the regressor of the

master manipulator, and θm ∈ R
r is the vector of

parameters of the master manipulator. For the slave
manipulator, let us write

Hs (qs) σs

(
ˆ̇qm − q̇s

)
+ Cs (qs, q̇s) σs (q̂m − qs)

+Gs (qs) = Ycs

(
qs, q̇s, q̂m, ˆ̇qm

)
θs,

(14)

where Ycs

(
qs, q̇s, q̂m, ˆ̇qm

)
∈ R

n×r is the corresponding
regressor function of the slave, and θs ∈ R

r is the vector
of the slave’s parameters. In the following, it is assumed
that both θm, θs are unknown but constant. An adaptive
version of the stabilization algorithm presented in [10]
can be defined by setting um(t) ≡ 0, us(t) ≡ 0 for t < 0,
and

um = Ycm (qm, q̇m) θ̂m − Km (q̇m + σmqm) , (15)

us = Ycs

(
qs, q̇s, q̂m, ˆ̇qm

)
θ̂s

−Ks (q̇s + σs (qs − q̂m)) ,
(16)

for t ≥ 0, where θ̂m, θ̂s ∈ R
r are estimates for θm and

θs respectively, that satisfy θ̂m(t) ≡ θ̂s(t) ≡ 0 for t < 0,
while for t ≥ 0 are obtained by the following standard
adaptation algorithms with forgetting factors

˙̂
θm = −ΓmY T

cm (qm, q̇m) (q̇m + σmqm)

−εm

(
θ̂m − θ∗m

)
, (17)

˙̂
θs = −ΓsY

T
cs

(
qs, q̇s, q̂m, ˆ̇qm

)
(q̇s + σs (qs − q̂m))

−εs

(
θ̂s − θ∗s

)
, (18)

where Γm, Γs are symmetric positive definite matrices,
θ∗m, θ∗s ∈ R

r are vectors that represents nominal values
of parameters θm, θs respectively, and εm, εs > 0 are
arbitrary constants.
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To formulate our results, let us denote θ̃m := θ̂m−θm,
θ̃s := θ̂s−θs, and q̃s = qs−q̂m. A state of the closed-loop
telerobotic system is defined as follows

xd :=
(
qT
m, q̇T

m, θ̃T
m, q̃T

s , q̇T
s , θ̃T

s

)T

d
, (19)

where td = max {τ1, τ2}. Further, for our purposes it is
convenient to define the following output

y :=
(
qT
m, q̇T

m, q̃T
s , q̇T

s

)T
, (20)

Now, one can state the following result:
Theorem 2. Given δ > 0, there exist κm > 0,

κs > 0, gm > 0, gs > 0, such that if λmin (Km) ≥ κm,
λmin (Ks) ≥ κs, λmin (Γm) ≥ gm, and λmin (Γs) ≥ gs,
then the closed-loop telerobotic system (1)-(6), (15) -
(18) with state (19), input (Fh, F ∗

e ), and output (20)
is

i) input-to-state stable with some offset D ≥ 0,
ii) input-to-output stable with offset less than or

equal to δ.

V. ADAPTIVE STABILIZATION WITHOUT
VELOCITY MEASUREMENTS

Now, let us address the adaptive stabilization problem
for bilaterally controlled teleoperators in the situation
where the joint velocities are not available for measure-
ment. Moreover, we assume that the joint positions of
both master and slave manipulators are available for
measurement subject to (small) measurement distur-
bances. More precisely, let

q̄m(t) = qm(t) + Ωm(t) (21)

be a vector of measured joint angles of the master
manipulator, where qm is the actual position, and Ωm

are measurement disturbances. In the following, we
assume that ωm(t) := dΩm(t)/dt exists for almost all t,
and

∫ b

a ωm = Ωm(b) − Ωm(a). This can be guaranteed,
for example, by assumption that Ωm(·) is absolutely
continuous [14]. Analogously, let the vector

q̄s(t) = qs(t) + Ωs(t) (22)

be available for the measurement on the slave side,
where qs is the actual position of the slave, and Ωs are
measurement disturbances on the slave side. To obtain
estimates for velocities q̇m, q̇s, one may use the so-called
“dirty derivatives” of q̄m (q̄s) which are provided by the
following first order filters

Tm(s) :=
ρms

s + ρm
, Ts(s) :=

ρss

s + ρs
, (23)

where ρm > 0, ρs > 0 are constants to be determined.
Thus, estimates νm, νs for the master’s and slave’s
velocities can be defined in the Laplace domain as
follows

νm(s) := Tm(s)q̄m(s), (24)

νs(s) := Ts(s)q̄s(s). (25)

The initial conditions of the filters (24), (25) in the
time domain are set νm (−td) = νs (−td) = 0, where
td ≥ 0 is defined below. Since the velocities are no
longer available for measurement, the velocity estimate
νm must be sent through the communication channel
instead of q̇m. Thus, the following signals

q̂m(t) ≡ 0, ν̂m(t) ≡ 0 for t < 0, (26)

q̂m(t) = q̄m(t − τ1), ν̂m(t) = νm(t − τ1) for t ≥ 0, (27)

are assumed to be available on the slave side. Substitut-
ing the estimates νm, νs for the velocities in the control
law of the previous section, we get the following control
algorithm um ≡ 0, us ≡ 0 for t < 0, and

um = Ycm (q̄m, νm) θ̂m − Km (νm + σmq̄m) , (28)

us = Ycs (q̄s, νs, q̂m, ν̂m) θ̂s − Ks (νs + σs (q̄s − q̂m))
(29)

for t ≥ 0, where Ycm (·), Ycs (·) are regressor matrices
defined by (13) and (14) respectively, θ̂m, θ̂s ∈ Rr are
estimates for θm and θs respectively, and um(t) ≡ 0,
us(t) ≡ 0 for t < 0.

The estimates θ̂m, θ̂s are assumed to satisfy θ̂m(t) ≡
θ̂s(t) ≡ 0 for t ≤ 0, and for t ≥ 0 are obtained by the
following adaptation algorithms

˙̂
θm = −ΓmY T

cm (q̄m, νm) (νm + σmq̄m)

−εm

(
θ̂m − θ∗m

)
, (30)

˙̂
θs = −ΓsY

T
cs (q̄s, νs, q̂m, ν̂m) (νs + σs (q̄s − q̂m))

−εs

(
θ̂s − θ∗s

)
, (31)

where Γm, Γs are symmetric positive definite matrices
of the corresponding dimensions, and θ∗m, θ∗s ∈ R

r are
nominal (expected) values of the parameters θm, θs

respectively.
Now, let us define a state of the controlled telerobotic

system (1), (2), (5), (21)-(31) as follows

xd :=
(
qm

T , q̇T
m, θ̃T

m, q̃T
s , q̇T

s , θ̃T
s , wT

m, wT
s

)T

d
, (32)

where wm := νm− q̇m, ws := νs− q̇s, and the rest of the
notation is introduced in section IV, namely θ̃m := θ̂m−
θm, θ̃s := θ̂s − θs, q̃s = qs − q̂m, and td = max {τ1, τ2}.
Moreover, let us define the following output

y :=
(
qT
m, q̇T

m, q̃T
s , q̇T

s , wT
m, wT

s

)T
(33)

The main result of this section is as follows.
Theorem 3. Given ∆x ≥ 0, ∆F ≥ 0, δ > 0, there exist

constants κm > 0, κs > 0, gm > 0, gs > 0, such that the
following holds. Suppose λmin (Km) ≥ κm, λmin (Ks) ≥
κs, λmin (Γm) ≥ gm, and λmin (Γs) ≥ gs. Then there
exists ρ∗m > 0, ρ∗s > 0 dependent on Km, Ks, and Ω∗

m >
0, Ω∗

s > 0 dependent on Km, Ks, Γm, Γs such that if
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ρm ≥ ρ∗m, ρs ≥ ρ∗s , and the measurement disturbances
satisfy

sup
t≥−max{τ1,τ2}

|Ωm(t)| ≤ Ω∗
m, sup

t≥−max{τ1,τ2}
|Ωs(t)| ≤ Ω∗

s ,

then the overall telerobotic system (1), (2), (5), (21)-
(31) with state (32) is input-to-state stable in the sense
of definition 2, with restriction (∆x, ∆F ), where ∆x

corresponds to state, and ∆F is a restriction for Fh,
F ∗

e , and some offset D > 0. Moreover, the offset for
output (33) is less than or equal to δ.

VI. SIMULATION RESULTS
In this section, an example of computer simulations of

the adaptive stabilization scheme is presented. Consider
a force reflecting telerobotic system described by (1)–(5)
with Hm(q) = Hs(q) ∈ R

2×2, where

h11 = (2l1 cos q2 + l2)l2m2 + l21(m1 + m2),
h12 = h21 = l22m2 + l1l2m2 cos q2,
h22 = l22m2,

Cm (q, q̇) = Cs (q, q̇) ∈ R
2×2, where

c11 = −l1l2m2 sin(q2)q̇2,
c12 = −l1l2m2 sin(q2) (q̇1 + q̇2) ,
c21 = l1l2m2 sin(q2),
c22 = 0,

and Gm(q) = Gs(q) ∈ R
2, where

g1 = g (m2l2 sin(q1 + q2) + (m1 + m2)l1 sin(q1)) ,
g2 = gm2l2 sin(q1 + q2),

m1 = 10, m2 = 5, l1 = 0.7, l2 = 0.5, g = 9.81. The
initial conditions are all zeros, i.e. qm1(0) = q̇m1(0) =
qm2(0) = q̇m2(0) = qs1(0) = q̇s1(0) = qs2(0) = q̇s2(0) =
0. The mass/inertia parameters for both the master
and the slave manipulators are chosen as follows θ1 =
l1l2m2, θ2 = l21(m1 + m2), θ3 = l22m2, θ4 = gm2l2,
θ5 = g(m1+m2)l1. In the simulations below, we assume
that the force (torque) applied by the human operator to
both first and second joints of the master manipulators
is as shown in figure 1.

When the slave follows the resulting trajectory of the
master, it contacts a rigid obstacle which is located at
x = 0.2 m. The obstacle is modeled by the following
equations

Fe = 0, if x < 0.2 m,

and

Fe = −Bẋ − K (x − 0.2) , if x ≥ 0.2 m,

where B > 0, and K > 0 are damping and stiffness of
the environment, respectively. In the simulations below,
we put B = 1, and K = 10000, i.e., a contact with a
very stiff environment is investigated. The parameters
of control law (15)–(18) are taken as follows: Km =
60 · I2×2, σm = I2×2, Γm = 10 · I5×5, εm = 1, Ks =
10 · I2×2, σs = diag {4, 3}, Γs = diag {20, 20, 20, 40, 40},
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Fig. 1. Forces applied by the human operator, Fh1(t) ≡ Fh2(t)

and εs = 0.5. Here, by In×n the identity n × n-matrix
is denoted. All the initial conditions are set to be zero.

In the set of simulations presented, the communica-
tion delays are set τ1 = τ2 = 1 sec. Also, we assume
that the nominal values of mass/inertia parameters θ∗m,
θ∗s , which are used in the adaptation algorithms (17),
(18), are different than the nominal ones. Namely, the
actual mass of the second link of the slave manipulator
is increased to m2 = 7kg, while the nominal values
of the slave parameters θ∗s are still calculated for
m2 = 5kg. The corresponding simulations results are
shown in figures 2, 3. Namely, in figure 2, a) the X-
coordinates of the delayed master and slave trajectories
are shown. We see that the slave experiences a contact
with the obstacle at x = 0.2 m. The X-component of
the corresponding contact force is shown in figure 2,
b). In figures 3, the corresponding trajectories of the
parameter estimates θ̂m, θ̂s are plotted.

The simulations presented show that the adaptive
control scheme proposed in this paper provides a sta-
ble contact with the obstacle for different values of
communication delays as well as in the presence of
parametric uncertainty. However, one can note that the
tracking properties of the proposed scheme needs some
improvements. This will be a topic for future research.

VII. CONCLUSIONS

In this paper, we have presented adaptive schemes for
stabilization of force-reflecting telerobotic systems with
communication delay. We have demonstrated that the
proposed algorithms make the telerobotic system input-
to-state stable with respect to external forces regardless
of the delay in the communication channel. It seems
worth trying to extend these results to the practically
important case of time-varying communication delay,
which commonly occurs, for example, in the teleopera-
tion through Internet. This is a topic for future research.
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