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Abstract— This paper addresses the problem of establishing
global stability properties of nonlinear interconnected systems.
The state-dependent scaling problem is presented as a unified
mathematical formulation whose solutions explicitly provide Lya-
punov functions proving stability properties of feedback and
cascade systems. The framework covers diverse nonlinearities
represented by general supply rates. In order to let the state-
dependent approach have real usefulness beyond formal applica-
bility, this paper derives explicit formulas for solutions to state-
dependent scaling problems for integral input-to-state stable(iISS)
systems and input-to-state stable(ISS) systems.

I. INTRODUCTION

The main purpose of the paper is to provide explicit solutions
to the state-dependent scaling problems for establishing iISS and
ISS properties of nonlinear interconnected systems. The aim of
pursuing the problems is to develop a general framework of assess-
ing stability and disturbance rejection properties of interconnected
systems which are not limited to the settings of popular classical
stability criteria and the ISS small-gain theorem. A stability
theorem which brought about the primary version of the state-
dependent scaling technique was originally formulated in [3], and
that was utilized and modified for solving several control design
problems[8], [4]. It was also extended to general stability criteria
in the framework of state-dependent scaling problems in [6]. The
framework offers several problems having minor differences each
other to allow tune-up for reducing conservativeness in individual
cases. The idea, however, boils down to a single main problem.

One of benefits from the state-dependent scaling framework is
that the ISS small-gain theorem in [10], [16] and the dissipative
approach[17], [1], [11] can be explained in a unified language.
The ISS small-gain theorem and popular stability criteria such as
the Lp small-gain theorem, the passivity theorems, the circle and
Popov criteria can be extracted as special cases[6], [5]. In the
framework, Lyapunov functions establishing stability properties
of interconnected systems can be obtained in a unified manner,
which is useful for controller design. The state-dependent scaling
formulation is uniformly applicable to systems whose nonlinearity
disagrees with input-to-state stability(ISS) and other classical non-
linearities. In fact, one of research directions has been to expand
classes of nonlinearities and systems for which useful answers
are obtainable. An achievement presented recently in [7] was the
development of small-gain-like theorems for interconnected sys-
tems involving integral input-to-state stable(iISS) systems. Until
the emergence of the breakthrough[7], in contrast to ISS, the
concept of iISS has not yet been fully exploited in analysis and
design of interconnected systems although the property of iISS by
itself has been investigated deeply[13].

H. Ito is with Department of Systems Innovation and Informatics,
Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502,
Japan. hiroshi@ces.kyutech.ac.jp

The state-dependent scaling problems are scalar inequalities
we solve for parameters called state-dependent scaling functions.
The functions directly lead us to Lyapunov functions of general
interconnected systems in a unified manner. It is suspected natu-
rally that the universality may render the applicability only formal
since it is typical of general ‘nonlinear’ problems to have no
guarantee of the existence of solutions. We often do not know
how to solve them even if solutions exist. Therefore, this paper
is devoted to demonstrating that solutions to the state-dependent
scaling problems exist actually and are obtainable practically
for broader classes of systems by focusing on iISS and ISS
properties. The question of the existence was first studied in
[5], [7], and primary results of existence criteria obtained there
led us to small-gain conditions applicable to iISS systems as
well as ISS systems. Those papers were concentrated on proving
the existence. The solutions were not derived explicitly so as
to be practically useful for obtaining Lyapunov functions. This
paper derives explicit formulas for solutions to the state-dependent
scaling problems. This paper also refine the results presented in
[5], [7] further to remove some restrictions. The explicit formulas
directly give us Lyapunov functions describing stability properties
of interconnected systems automatically.

All proofs are omitted due to the space limitation. We write
γ ∈ P for a function γ : R+ → R+ if it is a continuous function
satisfying γ(0) = 0 and γ(s) > 0 for all s ∈ R+ \{0}.

II. STATE-DEPENDENT SCALING PROBLEMS

This section presents mathematical problems to be solved
in this paper. They are referred to as state-dependent scaling
problems. This section also puts system theoretic interpretations
on them from the viewpoint of stability properties of nonlinear
interconnected systems and construction of Lyapunov functions.
The primary idea of the state-dependent scaling framework has
been proposed basically in [6].

Problem 1: Given continuously differentiable functions Vi :
(t,xi)∈R+×R

ni → R+ and continuous functions ρi : (xi,x j,ri)∈
R

ni×R
n j×R

mi →R for i = 1,2 and j = {1,2}\{i}, find continuous
functions λi : s ∈ R+ → R+ satisfying

λi(s) > 0 ∀s ∈ (0,∞), lim
s→0+

λi(s) < ∞ (1)∫ ∞

1
λi(s)ds = ∞ (2)

for i = 1,2 such that

λ1(V1(t,x1))ρ1(x1,x2,r1)+λ2(V2(t,x2))ρ2(x2,x1,r2)

≤ ρe(x1,x2,r1,r2),

∀x1∈R
n1 ,x2∈R

n2 ,r1∈R
m1 ,r2∈R

m2 , t∈R+(3)

hold for some continuous function ρe : (x1,x2,r1,r2)∈R
n1 ×R

n2 ×
R

m1 ×R
m2 → R satisfying

ρe(x1,x2,0,0) < 0 ,∀(x1,x2) ∈ R
n1 ×R

n2 \{(0,0)} (4)
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Problem 2: Given continuously differentiable functions V2 :
(t,x2) ∈ R+ × R

n2 → R+ and continuous functions ρ1 :
(z1,x2,r1) ∈ R

p1 ×R
n2 ×R

m1 → R and ρ2 : (x2,z1,r2) ∈ R
n2 ×

R
p1 ×R

m2 → R, find continuous functions λ1 : (t,z1,x2,r1,r2) ∈
R+ ×R

p1 ×R
n2 ×R

m1 ×R
m2 → R+, λ2 : s ∈ R+ → R+, an in-

creasing continuous function ξ1 : s∈ [0,N]→R+ and a continuous
function ϕ1 : (z1,x2,r1) ∈ R

p1 ×R
n2 ×R

m1 → R+ satisfying

λ2(s) > 0 ∀s ∈ (0,∞), lim
s→0+

λ2(s) < ∞ (5)∫ ∞

1
λ2(s)ds = ∞ (6)

ξ1(s) ≥ 0 ∀s ∈ [0,N] (7)

ϕ1(z1,x2,r1) ≥ 0, ∀z1∈R
p1 ,x2∈R

n2 ,r1∈R
m1 (8)

such that

λ1(t,z1,x2,r1,r2)
[
−ξ1(ϕ1(z1,x2,r1))+

ξ1(ϕ1(z1,x2,r1)+ρ1(z1,x2,r1))
]
+

λ2(V2(t,x2))ρ2(x2,z1,r2) ≤ ρe(x2,r1,r2),

∀z1∈R
p1 ,x2∈R

n2 ,r1∈R
m1 ,r2∈R

m2 , t∈R+ (9)

hold for some continuous function ρe : (x2,r1,r2) ∈ R
n2 ×R

m1 ×
R

m2 → R satisfying

ρe(x2,0,0) < 0 ,∀x ∈ R
n2 \{0} (10)

where N ∈ [0,∞] is defined by

N = sup
(z1,x2,r1)∈Rp1×Rn2×Rm1

[ϕ1(z1,x2,r1)+ρ1(z1,x2,r1))] (11)

In this paper, the functions λi and ξi are referred to as
state-dependent scaling functions. The inequalities (3) and (9)
are key formulas which will be explained later on. Note that
lims→0+ λi(s) < ∞ is redundant mathematically since each λi is
supposed to be continuous on R+ = [0,∞). This paper calls a
pair of λ1 and λ2 a solution to Problem 1 if the pair fulfills all
requirements stated in Problem 1. In a similar manner, a quartet
of λ1, λ2, ξ1 and ϕ1 fulfilling Problem 2 is called a solution to
Problem 2. If we take ξ1(s) = s, the inequality (9) becomes

λ1(t,z1,x2,r1,r2)ρ1(z1,x2,r1)+λ2(V2(t,x2))ρ2(x2,z1,r2)

≤ ρe(x2,r1,r2),

∀z1∈R
p1 ,x2∈R

n2 ,r1∈R
m1 ,r2∈R

m2 , t∈R+ (12)

Whenever the function ξ1(s) is affine in s, the function ϕ1

disappears from (9). Therefore, in the case of affine ξ1(s), a triplet
of λ1, λ2 and ξ1 is called a solution to Problem 2.

Problem 2 is milder than Problem 1. In other words, Problem
1 has a solution only if so does Problem 2 in the following sense.

Lemma 1: Suppose that a continuous function ρe :
(x1,x2,r1,r2) ∈ R

n1×R
n2×R

m1×R
m2 → R satisfies (4) and

sup
x1∈Rn1

ρe(x1,x2,r1,r2) < +∞,

∀(x2,r1,r2) ∈ R
n2 ×R

m1 ×R
m2 (13)

sup
x1∈Rn1

ρe(x1,x2,0,0) < 0, ∀x2 ∈ R
n2 \{0} (14)

Then, there exists a continuous function ρ̃e : (x2,r1,r2) ∈ R
n2 ×

R
m1 ×R

m2 → R such that

ρ̃e(x2,0,0) < 0 ,∀x2 ∈ R
n2 \{0} (15)

ρe(x1,x2,r1,r2) ≤ ρ̃e(x2,r1,r2),

∀(x1,x2,r1,r2) ∈ R
n1 ×R

n2 ×R
m1 ×R

m2 (16)

Consider the nonlinear interconnected system Σ shown in Fig.1.
Suppose that subsystems Σ1 and Σ2 are described by

Σ1 : ẋ1 = f1(t,x1,u1,r1) (17)

Σ2 : ẋ2 = f2(t,x2,u2,r2) (18)

These two dynamic systems are connected each other through u1 =
x2 and u2 = x1. If Σ1 is static, we suppose that

Σ1 : z1 = h1(t,u1,r1) (19)

Then, u2 = x1 is replaced by u2 = z1. Assume that f1(t,0,0,0) =
0, f2(t,0,0,0) = 0 and h1(t,0,0,0) = 0 hold for all t ∈ [t0,∞),
t0 ≥ 0. The functions f1, f2 and h1 are supposed to be piecewise
continuous in t, and locally Lipschitz in the other arguments. The
exogenous inputs r1 ∈ R

m1 and r2 ∈ R
m2 are packed into a single

vector r = [rT
1 ,rT

2 ]T ∈ R
m. The state vector of the interconnected

system Σ is x = [xT
1 ,xT

2 ]T ∈ R
n where xi ∈ R

ni is the state of Σi.
This paper does not assume that fi and hi describing Σi in (17),
(18) and (19) are known. Instead, we assume the following.

Assumption 1: For a dynamic system Σi, there exists a C1

function Vi : (t,xi) ∈ R+ ×R
ni → R+ such that

α i(|xi|) ≤Vi(t,xi) ≤ ᾱi(|xi|), ∀xi ∈ R
ni , t ∈ R+ (20)

holds with α i, ᾱi ∈ K∞, and

dVi

dt
≤ ρi(xi,ui,ri), ∀xi ∈ R

ni ,ui ∈ R
pi ,ri ∈ R

mi , t ∈ R+ (21)

holds along the trajectories of the system Σ with a continuous func-
tion ρi : (xi,ui,ri)∈R

ni ×R
pi ×R

mi →R satisfying ρi(0,0,0) = 0.
Assumption 2: For a static Σ1,

ρ1(z1,u1,r1) ≥ 0, ∀u1∈R
p2 ,r1∈R

m1 , t∈R+ (22)

is satisfied with a continuous function ρ1 : (z1,u1,r1) ∈ R
p2 ×

R
n1 ×R

m1 → R satisfying ρ1(0,0,0)=0.
A dynamic system Σi satisfying Assumption 1 is said to be

dissipative[17], [1], [11]. The function ρi is referred to as a supply
rate. When Σ1 is static, we replace the pair of (20) and (21) by
(22). In this paper, for convenience, we call ρ1 for the static system
a supply rate although energy is never stored by any static system.

Proposition 1: Suppose that Σ1 and Σ2 are dynamic systems.
If there is a solution {λ1,λ2} to Problem 1, the equilibrium
x = [xT

1 ,xT
2 ]T = 0 of the interconnected system Σ is globally

uniformly asymptotically stable for r ≡ 0. Furthermore, there exist
a C1 function Vcl : (t,x)∈R+×R

n →R+ and class K∞ functions
αcl , ᾱcl such that

αcl(|x|) ≤Vcl(t,x) ≤ ᾱcl(|x|), ∀x ∈ R
n, t ∈ R+ (23)

is satisfied and
dVcl

dt
≤ ρe(x,r), ∀x∈R

n,r∈R
m, t∈R+ (24)

holds along the trajectories of the system Σ.
A Lyapunov function yielding the above proposition is

Vcl(t,x) =
∫ V1(t,x1)

0
λ1(s)ds+

∫ V2(t,x2)

0
λ2(s)ds (25)

The condition (2) requires certain growth order of the function
λi(s) with respect to s toward ∞. If a system Σi in Fig.1 is static,
the growth order constraint (2) is unnecessary. In addition, we can
employ other flexibilities of functions ξi and ϕi. Thereby, Problem
1 can be replaced by a weaker Problem 2.
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Σ1 : ẋ1 = f1(t,x1,u1,r1)

Σ2 : ẋ2 = f2(t,x2,u2,r2)

�

�

�

�
x2

x1
r1

r2

u1

u2

Fig. 1. Feedback interconnected system Σ

Σ1 : ẋ1 = f1(t,x1,u1,r1)

Σ2 : ẋ2 = f2(t,x2,u2,r2)

�

�

�

� � x2

x1
r1

r2

u1 ≡ 0

u2

Fig. 2. Cascade connected system Σc

Proposition 2: Suppose that Σ1 is a static system, and Σ2 is a
dynamic system. If there is a solution {λ1,λ2,ξ1,ϕ1} to Problem
2, the equilibrium x = x2 = 0 of the interconnected system Σ is
globally uniformly asymptotically stable for r ≡ 0. Furthermore,
there exist a C1 function Vcl : (t,x) ∈ R+ ×R

n2 → R+ and class
K∞ functions αcl , ᾱcl such that (23) is satisfied and (24) holds
along the trajectories of the system Σ.

A Lyapunov function proving the above proposition is

Vcl(t,x2) =
∫ V2(t,x2)

0
λ2(s)ds (26)

According to Proposition 1 and 2, the inequalities of the sum
of scaled supply rates (3) and (9) lead directly to Lyapunov
functions establishing the stability of interconnected systems. The
central inequalities (3) and (9) are not in the form of linear
combinations of supply rates. Functional coefficients λ1, λ2 and ξ1

are introduced into the combinations. The use of the functionals λ1

λ2 and ξ1 is contrasted with the early works on Lyapunov stability
criteria for interconnected dissipative systems such as [17], [1],
[11] where linear combinations of supply rates were employed,
i.e., constants λ1, λ2 and an identity function ξ1(s) = s.

Solutions to the state-dependent scaling problems also establish
stability of cascade systems on the assumption of Assumption 1
and Assumption 2. Indeed, if one of feedback paths u1 = x2 and
u2 = x1 is disconnected in Fig.1, the interconnection becomes a
cascade. When the path of ui is disconnected, the supply rate
ρi(xi,ui,ri) becomes ρi(xi,ri). By the cascade system Σc, the paper
means that the path of u1 = x2 is cut, which is depicted in Fig.2.

A solutions to a state-dependent scaling problem exists only
if the interconnected system actually possesses a stable property
required. This section has not mentioned how easy or difficult
it is to find solutions, which is the main issue addressed in this
paper. Problem 1 and Problem 2 are jointly affine in λ1 and λ2.
This property should be helpful in calculating solutions. The next
section investigates it deeply.

III. EXPLICIT SOLUTIONS FOR iISS AND ISS SUPPLY RATES

This paper focuses on ISS and iISS supply rates. For classically
popular classes of nonlinear systems, the readers may refer to [6].
This section presents the main results of this paper. Solutions
to the state-dependent scaling problems are derived explicitly,
and they are related to ISS and iISS properties of the feedback
system shown in Fig.1 as well as the cascade system shown in
Fig.2. Small-gain rules are obtained as conditions guaranteeing the
existence of the solutions for the interconnection of iISS systems

as well as ISS systems. This section together with (25) and (26)
explicitly provides us with Lyapunov functions establishing the
stability of the interconnected systems.

Consider the interconnected system Σ illustrated by Fig.1. For
each Σi, i = 1,2, suppose that a supply rate function

ρi(xi,ui,ri) = −αi(|xi|)+σi(|ui|)+σri(|ri|) (27)

satisfying Assumption 1 is given. It is assumed that αi, σi ,σri ∈P
and α i, ᾱi ∈ K∞ are known, but information of the differential
equations (17) and (18) is not required. The system Σi is said to
be iISS with respect to input (ui,ri) and state xi if (21) is satisfied
for a positive definite function αi, class K functions σi and σri. In
the single input case, the second input ri is null, and the function
σri vanishes. The function Vi(t,xi) is called a C1 iISS Lyapunov
function[13]. If αi is additionally a class K∞ function, the system
Σi is said to be ISS with respect to input (ui,ri) and state xi, and
the function Vi(t,xi) is called a C1 ISS Lyapunov function[15].
By definition, ISS implies iISS. The converse is not true.

A. Interconnection of systems associated with iISS supply rates

We first consider the interconnected system composed of two
systems described by supply rates ρi of the iISS type.

Theorem 1: Assume that functions ρi(xi,ui,ri), i = 1,2 are in
the form of (27) consisting of

α1 ∈ P, σ1 ∈ K , σr1 ∈ K (28)

α2 ∈ P, σ2 ∈ K , σr2 ∈ K (29)

Suppose that there exist ci > 0, i = 1,2 and q ≥ 1 such that

[σ2(α−1
1 (s))]q ≤ c1α1(ᾱ−1

1 (s)), ∀s ∈ R+ (30)

c2σ1(α−1
2 (s)) ≤ [α2(ᾱ−1

2 (s))]q, ∀s ∈ R+ (31)

c1 < c2 (32)

are satisfied. Then, the following hold.

(i) Problem 1 is solvable with respect to a continuous function
ρe(x,r) of the form

ρe(x,r) = −αcl(|x|)+σcl(|r|), αcl ∈K , σcl ∈K (33)

(ii) In the case of α2 ∈K , a solution to Problem 1 with respect
to (33) is given by

λ1 =
νc1

δ 2 , λ2(s) = νq[δα2 ◦ ᾱ−1
2 (s)]q−1 (34)

where ν is any positive constant, and

δ =
(

c1

c2

) 1
q+2

(35)

(iii) In the case of α2 �∈ K , there exists α̂2 ∈ K such that

α̂2(s) ≤ α2(s), cσ1(α−1
2 (s)) ≤ [α̂2(ᾱ−1

2 (s))]q, ∀s∈R+ (36)

hold, and a solution to Problem 1 with respect to (33) is the
same as (ii) except that α2 is replaced by α̂2.

The following is a natural consequence of Proposition 1.
Corollary 1: Assume that Σ1 and Σ2 accept supply rates ρ1 and

ρ2 in the form of (27), (28) and (29).

(i) If there exist ci > 0, i = 1,2 and q > 0 such that (30), (31)
and (32) are satisfied, the interconnected system Σ is iISS
with respect to input r and state x.
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(ii) If there exist c1 > 0 and q > 0 such that (30) is satisfied, the
cascade Σc is iISS with respect to input r and state x.

In the case of q ≥ 1, the claim follows directly from Theorem 1.
To obtain the case of 0 < q < 1, we switch Σ1 and Σ2, and apply
Theorem 1 to the systems whose subscripts 1 and 2 are exchanged
each other. The cascade case is obtained by letting σ1 = 0.

Remark 1: When (30)-(32) are imposed simultaneously, at least
one system Σi of Σ1 and Σ2 is ISS with respect to input ui and
state xi under ri(t)≡ 0. In order to prevent misunderstanding, two
points should be emphasized. First, that system Σi does not have
to be ISS in the presence of the external input ri. Secondly, the
choice of αi and σi we use in (30) and (31) does not necessarily
form a supply rate of the ISS type. In other words, α1 ∈ P \K∞
and α2 ∈P \K∞ are allowed in (30) and (31) simultaneously. To
verify the statement in the beginning, consider (27) with αi ∈ P
and σ1 ∈ K , and assume αi ∈ K without loss of generality. The
conditions (30) and (31) also yield[

σ2(α−1
1 (s))

α2(ᾱ−1
2 (s))

]q

≤ c1α1(ᾱ−1
1 (s))

c2σ1(α−1
2 (s))

, ∀s ∈ R+ \{0}

From this inequality and (32), we obtain

lim
s→∞

[
σ2(α−1

1 (s))

α2(ᾱ−1
2 (s))

]q

≤ lim
s→∞

α1(ᾱ−1
1 (s))

σ1(α−1
2 (s))

(37)

Suppose that α1 ∈K \K∞ and α2 ∈K \K∞ hold. Then, limiting
values of σ1 and σ2 toward ∞ are guaranteed to be finite by (37)
and q > 0 since σ1 and σ2 are class K functions. From (37) and
q > 0 it also follows that

α j(∞) < σ j(∞) ⇒ αi(∞) > σi(∞), i �= j (38)

It can be verified that the inequality αi(∞) > σi(∞) implies the
existence of another C1 ISS Lyapunov function of Σi for another
pair of αi ∈ K∞ and σ1 ∈ K [15]. Therefore, the property (38)
implies that the set of (30)-(32) requires at least one of Σ1 and Σ2

to be ISS with respect to input ui and state xi under ri(t)≡ 0. The
requirement (38) is intuitively natural in view of ‘small gain’, and
the necessity can be explained. It is, however, beyond the space
limit and the scope of this paper.

B. Interconnection of iISS and ISS systems

In this subsection, we suppose that Σ1 is ISS, and Σ2 is iISS.
Theorem 2: Assume that functions ρi(xi,ui,ri), i = 1,2 are in

the form of (27) consisting of

α1 ∈ K∞, σ1 ∈ K , σr1 ∈ K (39)

α2 ∈ P, σ2 ∈ K , σr2 ∈ K (40)

Suppose that there exist ci > 1, i = 1,2 and k > 0 such that

max
w∈[0,s]

[c2σ2 ◦α−1
1 ◦ ᾱ1 ◦α−1

1 ◦ c1σ1(w)]k

c1σ1(w)

≤ [α2 ◦ ᾱ−1
2 ◦α2(s)]

k

c1σ1(s)
, ∀s∈R+ (41)

is satisfied. Then, the following hold.

(i) Problem 1 is solvable with respect to a continuous function
ρe(x,r) of the form

ρe(x,r) = −αcl(|x|)+σcl(|r|), αcl ∈K , σcl ∈K (42)

(ii) In the case of α2 ∈K , a solution to Problem 1 with respect
to (42) is given by

λ1(s) = max
w∈[0,s]

νc1cq
2δ

q
q+1

[σ2 ◦α−1
1 (w)]q

α1 ◦ ᾱ−1
1 (w)

(43)

λ2(s) = νq[δ
1

q+1 α2 ◦ ᾱ−1
2 (s)]q−1 (44)

where ν , δ and q are any constants satisfying

ν > 0, 1 > δ > 0 (45)

cq
2 > [δ (c1 −1)]−1, q ≥ k, q > 1 (46)

(iii) In the case of α2 �∈ K , there exists α̂2 ∈ K such that

α̂2(s) ≤ α2(s) (47)

max
w∈[0,s]

[c2σ2 ◦α−1
1 ◦ ᾱ1 ◦α−1

1 ◦ c1σ1(w)]k

c1σ1(w)

≤ [α̂2 ◦ ᾱ−1
2 ◦α2(s)]

k

c1σ1(s)
, ∀s∈R+(48)

c2σ2 ◦α−1
1 ◦ ᾱ1 ◦α−1

1 ◦ c1σ1(s) ≤ α̂2 ◦ ᾱ−1
2 ◦α2(s), (49)
∀s ∈ R+

hold, and a solution to Problem 1 with respect to (42) is the
same as (ii) except that α2 is replaced by α̂2.

Furthermore, the statements (i), (ii) and (iii) are true even in the
case of α1 ∈ K fulfilling

lim
s→∞

α1(s) = η̄ lim
s→∞

{σ1(s)+σr1(s)} (50)

for some η̄ > 1 if the constants c1, δ and q satisfy

(1−δ
1

q+1 )η̄(ν̄ +1)

(1−δ
1

q+1 )η̄(ν̄ +1)− ν̄
< c1 (51)

ν̄
ν̄ +1

< (1−δ
1

q+1 )η̄ (52)

where ν̄ ≥ 0 is given by

ν̄ lim
s→∞

σ1(s) = lim
s→∞

σr1(s) (53)

Note that there always exist ν , δ and q fulfilling (45) and
(46). The function λ1(s) given in (43) fulfills lims→0+ λ1(s) < ∞,
which is guaranteed by (41). In fact, the left hand side of (41)
is a non-decreasing continuous function due to the maximiza-
tion. The right hand side of (41) takes finite positive value at
all s ∈ (0,∞). In this situation, the inequality of (41) implies
lims→0+ [σ2 ◦α−1

1 (s)]k/[α1 ◦ ᾱ−1
1 (s)] < ∞. Hence, the function

λ1(s) given in (43) is a non-decreasing continuous function and
lims→0+ λ1(s) < ∞ is satisfied.

Remark 2: The existence of η̄ > 1 satisfying (50) implies that
the system Σ1 is ISS with respect to input (u1,r1) and state x1

even in the case of α1 ∈ K [15]. It is verified that there is
another function Ṽ1(t,x1) qualified as a C1 ISS Lyapunov function
with α̃1 ∈ K∞. Furthermore, it is worth mentioning that if the
exogenous signal r1 is absent, the two cases of α1 ∈ K and
α1 ∈ K∞ can be treated exactly in the same way. Indeed, the
inequalities (51)-(52) are automatically satisfied when ν̄ = 0 holds.

Remark 3: It is verified that each of simpler conditions

∃k > 0 s.t.
[σ2 ◦α−1

1 (s)]k

α1 ◦ ᾱ−1
1 (s)

is non-decreasing (54)

∃k > 0 s.t.
[α2 ◦ ᾱ−1

2 (s)]k

σ1 ◦α−1
2 (s)

is non-decreasing (55)
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implies (41) if there exist ci > 1, i = 1,2 such that

c2σ2 ◦α−1
1 ◦ ᾱ1 ◦α−1

1 ◦ c1σ1(s) ≤ α2 ◦ ᾱ−1
2 ◦α2(s), ∀s∈R+ (56)

holds.
Corollary 2: Assume that Σ1 and Σ2 accept supply rates ρ1 and

ρ2 in the form of (27), (39) and (40).

(i) If there exist ci > 0, i = 1,2 and k > 0 such that (41) is
satisfied, the interconnected system Σ is iISS with respect
to input r and state x.

(ii) If there exists k > 0 such that

lim
s→0+

[σ2 ◦α−1
1 (s)]k/[α1 ◦ ᾱ−1

1 (s)] < ∞ (57)

holds, the cascade system Σc is iISS with respect to input r
and state x.

The condition (ii) is met if each of σ2(s), α−1
1 (s) and 1/α1(s)

satisfies a Lipschitz condition of some order at s = 0.

C. Interconnection of ISS systems

This subsection deals with ISS systems.
Theorem 3: Assume that functions ρi(xi,ui,ri), i = 1,2 are in

the form of (27) consisting of

α1 ∈ K∞, σ1 ∈ K , σr1 ∈ K (58)

α2 ∈ K∞, σ2 ∈ K , σr2 ∈ K (59)

Suppose that there exist ci > 1, i = 1,2 such that

α−1
1 ◦ ᾱ1 ◦α−1

1 ◦ c1σ1 ◦α−1
2 ◦ ᾱ2 ◦α−1

2 ◦ c2σ2(s) ≤ s, ∀s ∈ R+(60)

is satisfied. Then, the following hold.

(i) Problem 1 is solvable with respect to a continuous function
ρe(x,r) of the form

ρe(x,r) = −αcl(|x|)+σcl(|r|), αcl ∈K∞, σcl ∈K (61)

(ii) In the case of σ1 ∈K∞, a solution to Problem 1 with respect
to (61) is given by

λ1(s) =
[

ν1 ◦ 1
τ1

α1 ◦ ᾱ−1
1 (s)

]
×[

α2 ◦σ−1
1 ◦ 1

τ1
α1 ◦ ᾱ−1

1 (s)
][

1
τ1

α1 ◦ ᾱ−1
1 (s)

]m

(62)

λ2(s) =
c2

δ (c2−1)

[
ν1 ◦σ1◦α−1

2 (s)
][

σ1◦α−1
2 (s)

]m+1
(63)

where ν1 : s ∈ R+ → R+ is any non-decreasing continuous
function satisfying

ν1(s) > 0, ∀s ∈ (0,∞) (64)

and δ , τ1 and m are any real numbers satisfying

0 ≤ m, 0 < δ < 1, 1 < τ1 ≤ c1 (65)
τ1[

δ 2(τ1−1)(c2−1)
] 1

m+1

≤ c1 (66)

(iii) In the case of σ1 �∈ K∞, there exists σ̂1 ∈ K∞ such that

σ1(s) ≤ σ̂1(s), ∀s ∈ R+ (67)

α−1
1 ◦ ᾱ1 ◦α−1

1 ◦ c1σ̂1 ◦α−1
2 ◦ ᾱ2 ◦α−1

2 ◦ c2σ̂2(s)≤s, (68)
∀s ∈ R+

hold, and a solution to Problem 1 with respect to (61) is the
same as (ii) except that σ1 is replaced by σ̂1.

There always exist m, δ , τ1 such that (65) and (66) hold.
Corollary 3: Assume that Σ1 and Σ2 accept supply rates ρ1 and

ρ2 in the form of (27), (58) and (59).
(i) If there exist ci > 1, i = 1,2 such that (60) is satisfied, the

interconnected system Σ is ISS with respect to input r and
state x.

(ii) The cascade Σc is ISS with respect to input r and state x.
The inequality (60) guaranteeing the existence of a solution to

Problem 1 for ISS supply rates agrees with the ISS small-gain
condition derived in [10], [16]. The statement of Corollary 3(i) by
itself is the same as the ISS small-gain theorem presented in [10],
[16]. This paper, however, takes a completely different approach
of Theorem 3 in order to provide useful information about how to
construct a Lyapunov function establishing the ISS property of the
feedback. It contrasts with the original form of the ISS small-gain
theorem[10], [16], [2] stated and proved in terms of trajectories
of systems. The study [9] focuses on the equivalence between
the trajectory-based criterion and the existence of a Lyapunov
function. On the other hand, this paper aims at the development
of explicit formulas of Lyapunov functions for systems which are
more general than ISS systems, and obtains the ISS small-gain
theorem as a special case.

It is known that the cascade of ISS systems is ISS, and another
Lyapunov-type proof can be found in [14], [2]. In ISS analysis
of open-loop and cascade systems, Lyapunov functions have been
used successfully by [12], [15], [14], [2]. This paper has demon-
strated how to extend their techniques to a framework covering
feedback systems and other types of supply rates. Regardless of
the difference between feedback and cascade and the difference
between ISS supply rate and iISS supply rate, the construction of
the Lyapunov function falls within the same single framework of
state-dependent scaling which can be solved explicitly.

Remark 4: Theorem 3 answers an important problem that re-
mained unsolved in previous papers [5]. The previous papers
require a technical assumption (c1 − 1)(c2 − 1) > 1 in addi-
tion to (60). This additional condition has rendered the state-
dependent scaling formulation in [5] slightly more conservative
than trajectory-based ISS small-gain theorem in [10], [16]. This
paper not only has succeeded in removing the additional condition
risen technically in those previous papers, but also has provided a
new formula of scaling functions λi.

D. Relation between solutions

Conditions in Theorem 1, 2 and 3 are related as follows:
Theorem 4: Suppose that σ1 and σ2 are class K functions.
(i) Assume that α1 ∈K∞ and α2 ∈P hold. If there exist a pair

of c1 > 0, c2 > 0 and q ≥ 1 such that (30)-(32) are satisfied,
there exist another pair of c1 > 1, c2 > 1 and k > 0 such that
(41) holds.

(ii) Assume that α1 ∈ K∞ and α2 ∈ K∞ hold. If there exist a
pair of c1 > 1, c2 > 1 and k > 0 such that (41) holds, the
inequality (60) is satisfied.

The broader the class of systems covered by a theorem is, the
more restrictive the condition for existence is. Naturally, solutions
to state-dependent scaling problems are not unique. For example,
the pair {λ1, λ2} given in Theorem 1 is a solution to the problem
for systems considered in Theorem 2 and Theorem 3. In the same
manner, the pair {λ1, λ2} given in Theorem 2 is also a solution
to Theorem 3.
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E. Interconnection of iISS and static systems

This subsection considers interconnection of dynamic and static
systems. Suppose that the system Σ1 is static in the interconnected
system Σ shown by Fig.1 and satisfies Assumption 2. Let Σ2 be
a dynamic system satisfying Assumption 1. Assume that supply
rate functions are given as

ρ1(z1,u1,r1) = −αi(|z1|)+σi(|u1|)+σr1(|r1|) (69)

ρ2(x2,u2,r2) = −αi(|x2|)+σi(|u2|)+σr2(|r2|) (70)

Suppose that αi, σi, σri ∈P are known, but exact information of
(19) and (18) is not required. For the static system Σ1, we assume

limsup
s→∞

{σ1(s)+σr1(s)} ≤ liminf
s→∞

α1(s) (71)

without loss of generality since h1(t,u1,r1) is locally Lipschitz
with respect to u1 on R

nu1 and r1 on R
m1 .

Theorem 5: Assume that functions ρ1 and ρ2 are in the form
of (69) and (70), respectively, and consist of

α1 ∈ K∞, σ1 ∈ K , σr1 ∈ K (72)

α2 ∈ P, σ2 ∈ K , σr2 ∈ K (73)

Suppose that there exist ci > 1, i = 1,2 such that

c2σ2 ◦α−1
1 ◦ c1σ1(s) ≤ α2(s), ∀s ∈ R+ (74)

is satisfied. Then, the following hold.

(i) Problem 2 is solvable with respect to a continuous function
ρe(x,r) of the form

ρe(x2,r) = −αcl(|x2|)+σcl(|r|)), αcl ∈P, σcl ∈K (75)

(ii) A solution to Problem 2 with respect to (75) is given by

λ1 = λ2 = ν , ξ1(s) = σ2 ◦α−1
1 (s), ϕ1(s) = α1(s) (76)

where ν is any positive constant.

Furthermore, the statements (i) and (ii) are true even in the case
of α1 ∈ K if the constant c1 satisfies

η̄(ν̄ +1)
η̄(ν̄ +1)− ν̄

≤ c1 (77)

where η̄ ≥ 1 and ν̄ ≥ 0 denote constants which fulfill

lim
s→∞

α1(s) = η̄ lim
s→∞

{σ1(s)+σr1(s)} (78)

ν̄ lim
s→∞

σ1(s) = lim
s→∞

σr1(s) (79)

Corollary 4: Assume that Σ1 is a static system accepting a
supply rate ρ1 in the form of (69) (72), and Σ2 is a dynamic
system accepting a supply rate ρ2 in the form of (70) and (73).

(i) If there exist ci > 1, i = 1,2 such that (74) is satisfied, the
interconnected system Σ is iISS with respect to input r and
state x2.

(ii) The cascade Σc is iISS with respect to input r and state x2.

Furthermore, the cascade Σc is ISS if α2 ∈K∞ holds additionally.
We can reach similar consequences by using Theorem 2 instead

of Theorem 5 due to the inclusive relation between Problem 1
and Problem 2. In other words, we can prove the iISS property
of the closed loop by using λ1 and λ2 given by (43), (44) and
ξ1(s)= s. Note that we set α1(|z1|) = V1(z1) = ᾱ1(|z1|) for the
static system Σ1 in Problem 1. Compared with (74), the condition
(41) is conservative. In the case of α2 ∈ K∞, i.e., Σ2 is ISS, we
can also invoke Theorem 3 to obtain the ISS property in Corollary

4. An important point of Corollary 4 derived from Theorem 5 is
that Σ2 is not required to be ISS. The small-gain condition (74)
by itself is sufficient for establishing the stability even when the
dynamic system Σ2 is only iISS. It contrasts with the case where
the interconnected system contains only dynamic systems.

Remark 5: When Σ1 does not have r1, the constant c1 in
Theorem 5 and Corollary 4(i) is required to satisfy only c1 ≥ 1 in
both the cases of α2 ∈ K∞ and α2 ∈ K . It is verified with ν̄ = 0
in (77) and (79).

IV. CONCLUSION

This paper has derived explicit solutions to the state-dependent
problems for interconnected iISS and ISS systems, and it has
provided formulas for Lyapunov functions establishing stability
properties of the interconnected systems. The explicit formulas are
considered as new evidences that the state-dependent problems are
tractable and have practical solutions for sufficiently large classes
of systems compared with the existing stability criteria. These
points are new although the facts presented in corollaries, aside
from the explicit solutions, have been obtained basically in previ-
ous papers. This paper has also removed technical assumptions and
restrictions on the existence conditions, the supply rate functions
and the scaling functions used in previous studies.
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