
Abstract— The classical Lur’e problem consists in finding 
conditions for absolute stability of a linear system with a 
nonlinear feedback contained within a prescribed sector. Most 
of the results obtained on this problem are based on the 
frequency domain or Lyapunov functions methods which are 
applied to systems with a time-invariant or periodic linear 
block. This paper develops a new approach providing a 
sufficient stability criterion for systems with a non-autonomous 
linear block and an arbitrary time-varying delay in the 
feedback. The result is expressed in the transfer function of the 
linear block and the sector margins of the nonlinear block. It is 
shown that stability of a system with a sign-constant transfer 
function is guaranteed by stability of the system with a limit 
linear feedback (so that, for such systems, the famous Aizerman 
conjecture is true).  

1.INTRODUCTION 

The classical Lur’e problem is to find conditions for 
absolute stability of a control system consisting of a 
linear block and a nonlinear feedback contained within a 
prescribed sector [1]. Over the last few decades there has 
appeared an extensive literature devoted to the problem 
and its generalization. Most of the known results are 
obtained by the frequency domain or Lyapunov functions 
methods and relate to systems with a time-invariant or 
periodic linear block (e.g., [2]-[10]). The Lyapunov 
method enables, in principle, to tackle arbitrary time-
varying systems; however, finding the Lyapunov 
function for such systems is, generally, a difficult 
problem.  

In paper [11] sufficient stability conditions for the 
Lur’e problem which are equally applied to time-
invariant and time-varying systems were found. The 
results are based on a direct analysis of the corresponding 
integral Volterra equation about the input of the 
nonlinear block )(t . In this paper we extend this 
approach to systems with delay in the feedback. Namely, 
we assume that the corresponding output is of the form 

)),((( ttt  where the function )(t  is piecewise 
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continuous, nonnegative and bounded for ),0[t . The 
corresponding integral equation becomes  

    

t

ssssstwtft
0

d))),(((),()()(     

(1)
where ),( stw  is the transfer function of the linear block. 
Note that no other information on the linear block is 
employed, so the last may be described by time-varying 
ordinary or partial differential equations with or without 
delay, integral equations, etc.  

The piecewise continuous scalar valued function )(tf
describes oscillation of the corresponding linear system 
in the absence of the feedback caused by nonzero initial 
conditions and, perhaps, external perturbation 
disappearing at infinity. We assume that the linear block 
is asymptotically stable, so  

                         0)(tf  as t .                        (2) 

The function ),( t  belongs to the class ),( 21 KK ,
i.e. satisfies the inequality  

         2
2

2
1 ),( KtK , ),(       (3)                        

We assume that with a given initial function 
0for)( tt , the solution )(t  of equation (1) is 

continuable on ),0[ .
Definition 1. System (1) is called absolutely stable in 

the class ),( 21 KK  if for any functions )(tf , ),( t ,
satisfying conditions (2), (3),  and any piecewise 
continuous nonnegative bounded for ),0[t  function 

)(t , the corresponding solution )(t  of (1.1) satisfies 
the condition  

              0)(t   as  t .                       (4)                       

If condition (4) is not fulfilled for some ),( t , )(t
and )(tf  from the indicated classes, the system is 
referred to as unstable.  

Putting KKtt 11 ),(),( ,
2/)( 12 KKK and returning to the previous notation, 

we reduce (3) to the form

      22 ),( KtK , ),(               (5)                        

A New Approach to the Lur’e  Problem for 
Non-autonomous Systems with Arbitrary Delay 

                                      Alexandr A. Zevin and Mark A. Pinsky 

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

FrB05.2

4125



Thus, we replace the class ),( 21 KK  by ),( KK ;
therewith we assume that the transfer function ),( stw
in (1) is changed correspondingly.  

In Section 2 a value *K  is found such that for *KK ,
the system is absolutely stable independent on the delay 
function )(t  (Theorem 1). If the linear block is 
exponentially stable and the function )(tf  exponentially 
tends to zero, so does the solution )(t ; Theorem 2 
provides an upper bound for the corresponding Lyapunov 
exponent. For a class of linear blocks (including, in 
particular, the autonomous ones) the value 0K  is found 
such that the system is unstable in the class ),( 00 KK

for any )(t  (Theorem 3).  
In Section 3 systems with a nonnegative transfer 

function are considered. It is shown (Theorem 4) that 
asymptotic stability for Kt),(  guarantees 
absolute stability of the system in the class ),( KK .
Thus, such systems for arbitrary delay )(t  in the 
feedback, satisfy the Aizerman conjecture [12] (note that 
the known results of such kind [13, 14, 15] relate to time-
invariant systems). Under some additional condition, a 
precise upper bound for the stability sector is found 
(Theorem 5).  

In Section 4 applications of the obtained results to 
some systems are discussed. It is shown that a closed-
loop system consisting of any number of first order time-
varying links and arbitrary delay in the feedback satisfies 
the Aizerman conjecture in the class ),( KK . For a 
second order time-invariant system, delay independent 
bounds *K  and 0K  are found in explicit forms; the 
bound *K  is precise, because it is reached for some 
periodic delay )(t .

2. ABSOLUTE STABILITY AND INSTABILITY CRITERIA 

Suppose that the linear block is exponentially stable, then 

                           )](exp[),( stCstw ,               (6)          

where the constants C and 0  are independent on t
and s.

Let us put  

           sstwtW
t

d),()(
0

,   )(sup)( tWtW k  for 

ktt ,                                    

                 )(lim)(lim k
tt

tWtWW
k

.                        

(7)
                      

Here W  is the upper limit of )(tW  as t ; it 
coincides with the conventional limit when the last exists. 
This is certainly the case when the linear block is time-
invariant. Really, here )(),( stwstw , so, setting 

zst , we obtain  

zzwtW
t

d)()(
0

.                             (8)                       

The function )(tW  in (8) increases monotonically and, 
therefore, tends to the limit.  

The following theorem establishes a sufficient 
condition for absolute stability of system (1), (5). 

Theorem 1. If

            WKK /1* ,                             (9)                        

the system is absolutely stable in the class ),( KK .

Proof. Let )(t  be a solution  of equation (1). First let 
us show that for any  01t , there exists 1ttm  such 
that ),[for)()( 1ttttm . Really, otherwise, 
there is a sequence kttt ,...;, 21  as  k , such 
that )()( ktt  for ],[ 1 kttt . Then from (1) and (5) 
we have

     
)(10)()(),(

d))((),(),()(

1

1

1
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t

t
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ttKWttR
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where 

1

0
1 d))((),()(),(

t

kkk sssstwKtfttR .

Observing that )()( kk tWtW , WtW k )( ,
0),( 1ttR k  as kt  and, by (9), 1KW , we find 

that inequality (10) cannot hold for large k . The 
contradiction obtained shows that there exists a sequence 

,...2,1, mtm  such that mtm as  and 
)()( ttm  for ),[ mtt . Evidently, 

0)()( 1mm tt , therefore; there exists 

)(lim mt  as mt . Let us prove that 0 .
By assumption, ht)(  for some h . Assuming 

htt im , analogously (10) we find   

    
(11).)()(),(

d))((),(),()(

imim

t

t
mimm

ttKWttR

sssstwKttRt
m

i

Since the sequence ,...2,1,)( mtm  is convergent, 
then for any 0 , there exists such i that  

mi tt ((  for all im . Therefore, from (11) we 
find  

                     )(),()](1[)( mimmm tWKttRtWKt .   (12)                        
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Since ),( im ttR  for large im tt ,
1)(lim KWtKW m  as kt  and  

)()( mm tWtW , then 1)( mtKW  for large m.
Therefore, inequality (12) is true only if 0)( mt  as 

m , i.e. 0)(t  as  t .
Suppose that along with (6),  

                           )exp()( 1tCtf                        (13) 

for some 01 . In particular, if )(tf  is a solution of 
the linear system in the absence of external perturbations, 
then 1 .

Definition 2. System (1) is called absolutely 
exponentially stable in the class ),( 21 KK  if for any 
functions ),( t , )(tf , satisfying conditions (3), (13)  
and any piecewise continuous nonnegative bounded for 

),0[t  function )(t , there exists an independent on 
these functions constant 0  such that for some C, the 
corresponding solution )(t  of (1) satisfies the 
inequality  

                       )exp()( tCt .                                            

The infimum of -  for which the value C exists is 
called the Lyapunov exponent of the function )(t  (see, 
for example, [16]) of the solution )(t  of system (11), 
(5).  

Let *  be the root of the equation  

                KhW /1),( ,                         (14)                          
where 

),,(lim),( thWhW
t

,    

sstwshtthW
t

d),(])(exp[),,(
0

.

Theorem 2. The Lyapunov exponent of the solution 
)(t  satisfies the inequality  

                     * .                                (15)                                              
Proof. Setting in (1) 

                                                
    ),()exp()( tytt                  (16) 

where ),0( 1* , we obtain  

ssssysstw

ttftty
t

d])),(())([exp[(),(

)exp()()exp()(

0
         

(17)   

   
whence analogously (10) we have  

                                           )(),,(),,()( 1 kkkk tythWKttRty .          (18)                         

Clearly, ),( hW  increases with , so, in view of 
(14), 1),( hKW  for * . Therefore, analogously 
to the proof of Theorem 1, we find that )(ty  is bounded 

on ),0(  which along with (16), proves the theorem.    
Let us now obtain a condition guaranteeing instability 

of the system. To this end, we put  

             sstwtW
t

d),()(
0

0 .                       

(19)
Suppose there exists  

                              
       0)(lim 0

0 tWW
t

.                        (20)                        

Theorem 3.  If  

00 /1 WKK ,                            (21)                        

then  system  (1),(2) is unstable.  

Proof. Let us put  

.0for1)(
,sgn)(,/)(1)( 0000

0
0

tt

WKWtWtf     (22)      

In view of (20) and (22), 0)(0 tf  as t ; by 
(21), ),()(0 KK . By a direct substitution one 
can check that 1)(t  is the corresponding solution of 
equation (1). Since it does not satisfy condition (4), the 
system is unstable. 

Let bK  be the value of the constant K  such that the 
system is stable in the class ),( KK  for bKK  and 
unstable for bKK . Then from Theorems 1 and 3 it 
follows that bK  satisfies the inequality  

       0/1/1 WKW b .                        (23)                        

3. SYSTEMS WITH SIGN-CONSTANT TRANSFER  
FUNCTION 

Suppose now that the transfer function ),( stw  is sign-
constant. Without loss of generality, we assume that  

0for0),( ststw ,                      (24)                        

because the case 0),( stw  is reduced to (3.1) by 
substitution ),(),(1 stwstw , ),(),(1 tt .

Theorem 4. System (1), (24) is absolutely stable in the 
class ),( KK  if it is stable for ))(( ttK .

Proof. Let )(0 t  be the solution of the equation          
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t

sssstwKtft
0

000 d))((),()()( ,         

(25)                     
where  

)()(0 tt    for 0t ,

              )exp()()(0 ttftf  for 0t .                (26) 

Clearly, 0))(())((0 stst  for sufficiently 
small 0t . Let us show that this inequality cannot break 
as t  increases. Really, let ))(())(( 11110 tttt
for some 1t , then, subtracting (1.1) from (3.2), we find  

,d)]),((())(()[,(

)exp()()(0

1

0
01

111
t

ssssssKstw

ttftf

       (27) 

which is impossible, because the right-hand side of (27) 
is positive ( )(0K  for 0 ).  ` 

If )()( 110 tt , then, summing (25) and (1), we 
find   

1

0

01

111

d)]),((())(()[,(

)exp()()(0
t

ssssssKstw

ttftf

,

where the right-hand side is also positive.  
The obtained contradiction shows that )()(0 tt

for 0t  and, therefore, 0)(t  as t .
Suppose, moreover, that limit (20) exists.  

Theorem 5. For absolute stability of system (1), (24), it 
is necessary and sufficient that  

      WK /1 .                                   (28)                                                     

In fact, by (24), )()( 0 tWtW , 0WW , so Theorem 
5 follows directly from inequality (23).  

4. DISCUSSION 

The obtained results embrace a wide range of control 
systems with, generally,  time-varying linear block and 
arbitrary delay )(t  in the feedback. In accordance with 
sufficient stability condition (9), such a system is 
absolutely stable in the class ),( 11 WW
where 0  is an arbitrary small value. If the function 

)(tf  in (1) exponentially tends to zero, the stability is 
exponential; the corresponding Lyapunov exponent 
satisfies inequality (15) (Theorem 2). If limit (20) exists, 
the system is certainly unstable in the wider class 

),( 1
0

1
0 WW  (Theorem 3).

Note that these results can be extended to the case 
when the nonlinearity bounds are time-dependent, i.e.,  

0)(,)(),()( 22 tKtKttK .         (29)                        

Really, as is clear from the proofs, it is only necessary to 
replace in the above conditions KW  and 0KW  by  

sstwtK
t

t
d),()(lim

0

 and sstwtK
t

t
d),()(lim

0

,     (30)                     

respectively. 
As is known, the Lur’e problem was first formulated 

for the system  
           )(cxbAxx                                 (31)                        

where bRx n ,  and c are column and row vectors, 
correspondingly. The problem is reduced to equation (1) 
where cx),(  and )(),( stwstw , because 
equation (31) is time-invariant.  

In 1949 Aizerman conjectured [12] that system (31) is 
absolutely stable in the class ),()( 21 KK ,
provided that the linear system kbcxAxx  is stable 
for any ],[ 21 KKk . Subsequently counterexamples 
showed that this conjecture is, in general, false (the 
history of the Aizerman conjecture can be found in the 
book by Gil’ [13]). So, the problem is to find classes of 
systems satisfying the Aizerman conjecture. The first 
result in this direction was obtained by Gil’ [13] who 
proved that if in system (4.3) the transfer function is 
nonnegative, then its absolute stability in the class 

),0( K  is guaranteed by stability of the system 
KbcxAxx . Recently he extended this result to 

distributed and delay time-invariant systems [14, 15].  
In paper [11] time-variable systems with a nonnegative 

transfer function were considered via direct analysis of 
the corresponding Volterra equation. As a result, it was 
shown that stability of such a system for Kt),(
guarantees absolute stability in the class ),( KK .
Theorem 4 of the present paper extends this result to 
systems with arbitrary delay )(t  in the feedback. 
Namely, if the transfer function ),( stw  is nonnegative, 
then for absolute stability of the system in the class 

),( KK , it is necessary and sufficient that it is 
asymptotically stable for ))(( ttK . If in (20) the 

limit 0W  exists (in particular, if the linear block is time-
invariant), the precise bound for the stability sector 
equals WK /1  (Theorem 5) for any delay )(t . Note 
that at first sight the invariance of the stability sector on 

)(t  looks surprising, however, this is due to the fact that 
for WK /1  and )(tf , determined by (22), equation 
(1) admits the ‘unstable’ solution 1)(t  for any )(t .

When analyzing the Lur’e problem, the nonlinearity 
class ),( 21 KK  is usually reduced to 

)(),0( 12 KKKK  by substitution 

11 ),(),( Ktt . It can be shown that on the 
transformation ctt ),(),(1 , the corresponding 
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transfer function ),,( cstw  increases with c , provided 
that 0),,( cstw  for 0st . So, if for 1Kc

( ),0( K ) condition (24) is satisfied, then it 
certainly holds for  121 )(5.0 KKKc

( ),( KK . The converse is not, in general, true, 
i.e., condition (24) valid in the class ),( KK  may be 
lost on the transformation to the class ),0( K .

Clearly, on the transformation ctt ),(),(1 ,
the lower bound of the stability sector, provided by 
Theorem 4, becomes cKcK 2)( . Thus, the largest 
stability sector corresponds to the minimal value 0c
for which the transfer function ),,( cstw  is still 
nonnegative.  

Let ],[ 0
2

0
1 KK  be the Hurwitz angle of linear system 

(1.1) with kt),(  (i.e. it is asymptotically stable 

for 0
2

0
1 KkK  and unstable or not asymptotically 

stable for 0
1Kk  and 0

2Kk ). If the transfer function is 
nonnegative and the limit 

0W

 exists, then from Theorem 
5 it follows that. Since, by Theorem 4, stability for 

Kt),(  provides stability in the class ),( KK ,

then 0
2

0
1 KK . A more detailed analysis shows that 

0
2

0
1 KK .
Let the linear block be a closed-loop system consisting 

of n (generally, time-varying) links. Suppose that the 
individual transfer functions nistwi ,...,1),,(  are sign-
constant. For a sign-constant input, the output of each 
link is sign-constant as well, therefore, so is the transfer 
function ),( stw  of the entire linear block.  

Suppose, in particular, that the links are of the first 
order, i.e. the linear block is described by the equations   

       
.,...,2,)(

,0)(

1

11
nixkxtax

xtax

iiiii

i              

(32)                     

There exists an extensive literature devoted to an 
analysis of feasibility of the Aizerman conjecture to 
closed-loop systems with the first order time-invariant 
links and time-invariant feedback )( . In particular, 
Bergen and Williams proved [17] that systems of the 
third order satisfy the Aizerman conjecture. Trukhan 
extended this result on systems with up to five stable 
links of the first order [18]. For an arbitrary number of 
links, the transfer function is positive, so stability in the 
class ),0( K  follows from Gil’ theorem [13]. Let us 
show that the above findings enable us to essentially 
generalize these results in some respects.

Evidently, the individual transfer functions of a link,  

nissastw
t

s

ii ,...,1,]d)(exp[),( ,          

(33)
                       

is positive, hence, the transfer function of time-varying 
system (32) is positive as well. So, from Theorem 4 it 
follows that system (32) with the feedback 

))),((( ttt  is absolutely stable in the class 
),( KK , provided that it is stable for 

)),(( tttK . If in (20) the limit 0W  exists, then 
for any prescribed delay )(t , the obtained bound for the 
stability sector coincides with the upper bound of the 
Hurwitz angle, i.e. 0

2* /1 KWK  (Theorem 5). 
However, as is mentioned above, the obtained lower 
bound of the stability sector, 0

1/1 KW  (note that the 
results [17,18] provide stability of the particular systems 
in the whole Hurwitz angle).  

Consider now the second order system  
                   

0)),((()()1()(2)( 2 tttxtxhtxhtx ,  (34)             

0),0(,),( 22 tKxxtxKx .

Here  
),sin()](exp[),( ststhstw

],cossin)[exp(
1

1)(
2

0 tthht
h

tW

so )1/(1 2
0 hW . Integrating (7), we find, see [11],   

)].exp(1/[)]exp(1[ hhW
By Theorems 1,2 and 3, for any )(t , system (34) is 

absolutely exponentially stable if 
)2/coth(/1* hWKK  and unstable for 

2
0 1 hKK .

The functions )(* hK  and )(0 hK  are plotted in the 
Figure; as is seen, they approach each other as h
increases. This, in particular, testifies that the impact of a 
delay )(t  in the feedback on the system stability 
decreases with an increase of  stability of the linear part.  

                                     Figure 

Note that the obtained delay independent stability 
condition )2/coth(* hKK  is precise, because for 
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*KK , the function )(t  can be found such that 
equation (34) is unstable. Really, let us put  

).()(),,0[for)(
)),((),)((( *

ttttt

ttxKtttx
        (35) 

Putting 0)0(,1)0( xx  and observing that 

*),)((( Ktttx  for ),0[t , we find that the 
corresponding solution is  

2
*

2
*

1
)sin(cos1

1
)exp()(

h

K
tht

h

K
httx

.

Setting here )2/coth(* hK , we obtain  
0)(,1)( xx . Clearly, *),)((( Ktttx  for 

)2,[t , so analogously we find 
.0)2(,1)2( xx  Thus, the corresponding solution 

of equation (34) is 2 - Putting 0)0(,1)0( xx  and 
observing that *),)((( Ktttx  for ),0[t , we find 
that the corresponding solution is  

2
*

2
*

1
)sin(cos1

1
)exp()(

h

K
tht

h

K
httx .

(35)

Setting here )2/coth(* hK , we obtain  
0)(,1)( xx . Clearly, *),)((( Ktttx  for 

)2,[t , so analogously we find 
.0)2(,1)2( xx  Thus, the corresponding solution 

of equation (34) is 2 -periodic; therefore, in accordance 
with the above definition, the system is unstable.   
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