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Abstract

We present an exponential stability result for a class
of discontinuous dynamical systems (DDS) determined
by differential equations in Banach space (resp., Cauchy
problems on abstract spaces). We demonstrate the ap-
plicability of our result in the analysis of several impor-
tant classes of DDS, including systems determined by
functional differential equations and partial differential
equations.

1 Introduction

A dynamical system is a four-tuple {T, X, A, S} where
T denotes time, X is the state space (a metric space
with metric d), A is the set of initial states and S de-
notes a family of motions. When T = R+ = [0,∞) we
speak of a continuous-time dynamical system and when
T = N = {0, 1, 2, ...} we speak of a discrete-time dy-
namical system. (For any motion x(., x0, t0) ∈ S, we
have x(t0, x0, t0) = x0 ∈ A ⊂ X and x(t, x0, t0) ∈ X for
all t ∈ [t0, t1)∩T , t1 > t0, where t1 may be finite or infi-
nite. The set of motions S is obtained by varying (t0, x0)
over (T × A).) When X is a finite-dimensional normed
linear space, we speak of finite-dimensional dynamical
systems, and otherwise, of infinite-dimensional dynami-
cal systems. Also, when all motions in a continuous-time
dynamical system are continuous with respect to t (rel-
ative to the metric d for X), we speak of a continuous
dynamical system and when one or more of the motions
are not continuous with respect to t, we speak of a dis-
continuous dynamical system (DDS). Finite-dimensional
dynamical systems may be determined, e.g., by the solu-
tions of ordinary differential equations, ordinary differen-
tial inequalities, difference equations, difference inequal-
ities, and the like, while infinite-dimensional dynami-
cal systems may be determined, e.g., by the solutions
of differential-difference equations, functional differential
equations, Volterra integrodifferential equations, various
classes of partial differential equations, and so forth. Ad-
ditionally, there are dynamical systems whose motions
are not determined by classical equations or inequali-
ties of the type enumerated above (e.g., certain classes
of discrete event systems whose motions are character-
ized by Petri nets, Boolean logic elements, and the like).
The stability analysis of discrete-time dynamical systems
and continuous dynamical systems of the type enumer-
ated above is a mature subject and is addressed, e.g., in

[1]-[3].
Discontinuous dynamical systems (DDS) arise in the

modeling process of a variety of systems, including hy-
brid dynamical systems, discrete event systems, switched
systems, intelligent control systems, systems subjected
to impulsive effects, and the like (see., e.g., [3]-[10]).
The stability analysis of such systems has thus far been
concerned primarily with finite dimensional dynamical
systems (defined on X = Rn with metric generated by
the Euclidean norm) determined by ordinary differen-
tial equations; however, stability results for general DDS
defined on metric space (i.e., X is an arbitrary met-
ric space) have also been established [3], [4], [6], [7].
In principle, these results provide a general basis for
the analysis of DDS determined by the various types
of equations and inequalities enumerated earlier. How-
ever, the applications of these results to specific classes
of DDS, especially infinite dimensional systems, are nor-
mally not entirely straightforward, and usually require
further analysis. (This is also the case for continuous in-
finite dimensional dynamical systems (see, e.g., [1]-[3])).

In two recent papers, the stability analysis of infinite
dimensional DDS determined by a class of functional
differential equations [21] and by linear and nonlinear
semigroups [20] has been addressed. In the present pa-
per, we establish exponential stability result for infinite
dimensional DDS determined by Cauchy problems on
abstract spaces (differential equations on Hilbert and
Banach spaces). This class of systems includes as special
cases DDS determined by the various types of equations
discussed earlier (In a companion paper, we address as-
ymptotic stability results for the class of problems con-
sidered herein [24].). We apply our results in the analysis
of DDS determined by specific classes of functional dif-
ferential equations, Volterra integrodifferential equations,
and partial differential equations.

2 Notation and Background Ma-
terial

Let R = (−∞,∞), R+ = [0,∞), let Rn denote real n-
space, and let | . | denote any one of the equivalent norms
on Rn. For a real n × n matrix C (i.e., C ∈ Rn×n) and
x ∈ Rn, let |C| denote the norm of C induced by the
vector norm |x|.

Let X and Z be Banach spaces and let ‖.‖ denote
norm on Banach space. Let H be a Hilbert space with
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inner product < ., . >. In this case, the norm of x ∈ H
is given by ‖x‖ =< x, x >1/2.

Lp(G, U), 1 ≤ p ≤ ∞, denotes the usual space of
all Lebesgue measurable functions with domain G and
range U . The norm of Lp(G, U) will be denoted by ‖.‖p

(or ‖.‖Lp
if more explicit notation is needed). When the

range U does not need emphasis, we utilize the notation
Lp(G). In particular, if G = R+ and U = Rm, we
write Lm

p = Lp(R+, Rm) and when m = 1, we write
Lp = Lp(R+, R). If 1 ≤ p < ∞, we have for f ∈ Lp,
‖f‖p = (

∫ ∞
0

|f(t)|P dt)1/p. Finally, H2(Ω) and H1
0 (Ω)

denote the classical Sobolev spaces (see, e.g., [3]).

3 Continuous Dynamical Sys-
tems Determined by Abstract
Cauchy Problems

A general form of a system of first order differential equa-
tions in a Banach space X is given by

ẋ = A(t, x) (GN)

where t ∈ R+, x ∈ C ⊂ X, A : R+ × C → X and
ẋ = dx

dt . We say that a function x : [t0, t0 + c) → C,
c > 0 is a solution of (GN) if x ∈ C[[t0, t0 + c), C], if
x is differentiable with respect to t ∈ [t0, t0 + c) and if
x satisfies the equation (dx/dt)(t) = A(t, x(t)) for all
t ∈ (t0, t0 + c).

Associated with (GN) we have the initial value prob-
lem, called a Cauchy problem on abstract space, given
by

ẋ = A(t, x), x(t0) = x0 (IGN )

where t ∈ R+, t ≥ t0 ≥ 0 and x0 ∈ C.
Under appropriate assumptions which ensure the ex-

istence of solutions of (GN), the initial value prob-
lem (IGN ) determines a continuous dynamical system
(R+, X, A, SGN ), as defined in Section 1, which is deter-
mined by the solutions x(t) = x(t, x0, t0) of (IGN ) with
x(t0, x0, t0) = x0 for all t0 ∈ R+ and all x0 ∈ C. For the
conditions of existence, uniqueness, continuity with re-
spect to initial conditions, and continuation of solutions
of the initial value problem (IGN ), refer, e.g., to [17].

Differential equations (GN) include as special cases
differential-difference equations, functional differential
equations, Volterra-integrodifferential equations, certain
classes of partial differential equations, and others. We
note, however, that in general, (GN) (resp., (IGN )) will
not generate semigroups.

A special class of (IGN ) are autonomous initial value
problems given by

ẋ = A(x), x(t0) = x0 (IN )

where A : C → X, C ⊂ X. If A is continuously dif-
ferentable (or at least locally Lipschitz continuous), then
the theory of existence, uniqueness and continuation of

solutions of (IN ) is the same as in the finite-dimensional
case [23]. If A is only continuous, then in general (IN )
may not have a solution (see, e.g., [22]). If (IN ) is to in-
clude nonlinear partial differential equations, one must
allow A to be only defined on a dense set C = D(A)
and to be discontinuous. For such functions A, the ac-
cretive property replaces (and generalizes) the Lipschitz
property.

If A is w-accretive and if A generates a quasicontractive
semigroup on C, then the solutions of (IN ) allow the
estimate (see [3])

‖x(t, x0, t0) − x(t, y0, t0)‖ ≤ ew(t−t0) ‖x0 − y0‖ (3.1)

for all t ∈ R+ and for all x0, y0 ∈ C. If in particular, A
satisfies the Lipschitz condition

‖A(x) − A(y)‖ ≤ K ‖x − y‖ (3.2)

for all x, y ∈ C, where K > 0 is a constant, then (3.1)
assumes the form

‖x(t, x0, t0) − x(t, y0, t0)‖ ≤ eK(t−t0) ‖x0 − y0‖ . (3.3)

A special class of (IN ) are linear initial value problems
given by

ẋ = Ax, x(t0) = x0 ∈ D(A) (IL)

for t ∈ R+. Here A : D(A) → X is assumed to be a
linear operator with domain D(A) dense in C ⊂ X and
A is assumed to be closed, or else to have an extension
Ā which is closed.

If A generates a C0 − semigroup, then the solutions
of (IL) admit the estimate

‖x(t, x0, t0)‖ ≤ Meω(t−t0) ‖x0‖ (3.4)

for all t ≥ t0 and x0 ∈ D(A). If in particular, A is a
bounded linear operator, then we have in (3.3) K = ‖A‖
and (3.4) assumes the form

‖x(t, x0, t0)‖ ≤ e‖A‖(t−t0) ‖x0‖ (3.5)

for all t ≥ t0 ≥ 0, x0 ∈ X(see [3]).
If A generates a differentiable C0-semigroup and if

Reλ ≤ −α0 for any λ ∈ σ(A), then given any positive
α < α0, there is a constant K(α) > 0 such that (see [3])

‖x(t, x0, t0)‖ ≤ K(α)e−α(t−t0) ‖x0‖
for all t ≥ t0 ≥ 0, x0 ∈ X (σ(A) denotes the spectrum
of A).

In the remainder of this section, we consider more spe-
cific cases.

Example 3.1. Autonomous first order retarded func-
tional differential equations (with delay −r) are given
by

ẋ(t) = f(xt), t > 0
x(t) = φ(t),−r ≤ t ≤ 0

}
(3.6)
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where f : Cr → Rn, X = Cr = C[[−r, 0], Rn] is a Ba-
nach space with norm defined by

‖φ‖ = max{|φ(t)| : −r ≤ t ≤ 0} (3.7)

and xt ∈ Cr is the function determined by xt(s) = x(t+
s) for −r ≤ s ≤ 0. System (3.6) is clearly a special case
of (IN ).

Assume that f satisfies a Lipschitz condition

|f(ξ) − f(η)| ≤ Kf ‖ξ − η‖ (3.8)

for all ξ, η ∈ Cr. Under these conditions, the initial
value problem (3.6) has a unique solution for every initial
condition φ ∈ Cr, denoted by ψt(., φ) which exists for all
t ∈ R+ (see, e.g., [14]). In accordance with (3.3), we
have for the solutions of (3.6) the estimate

‖ψt(., ξ) − ψt(., η)‖ ≤ eKf t ‖ξ − η‖ (3.9)

for all t ∈ R+ and all ξ, η ∈ Cr.

Example 3.2. If in (3.6), f = L is a linear mapping
from Cr to Rn defined by

L(φ) =
∫ 0

−r

[dB(s)]φ(s), (3.10)

we obtain the initial-value problem

ẋ(t) = L(xt), t > 0
xt = φ(t),−r ≤ t ≤ 0

}
(3.11)

In (3.10), B(s) = [bij(s)] is an n × n matrix whose en-
tries are assumed to be functions of bounded variation
on [−r, 0]. Then L is Lipschitz continuous on Cr with
Lipschitz constant KL less or equal to the variation of
B in (3.10). It has been shown [15] that the operator L
generates a differentiable C0-semigroup. The spectrum
of L consists of all solutions of the equation

det(
∫ 0

−r

eλsdB(s) − λI) = 0. (3.12)

If in particular, all the solutions of (3.12) satisfy the
relation Reλ ≤ −α0, then for any positive α < α0, there
is a constant M(α) > 0 such that

‖ψt(., ξ)‖ ≤ M(α)e−αt ‖ξ‖ (3.13)

t ≥ 0, ξ ∈ Cr. When the roots of (3.12) have positive
real parts, then we obtain, in view of (3.9), the estimate

‖ψt(., ξ)‖ ≤ eKLt ‖ξ‖ (3.14)

t ≥ 0, ξ ∈ Cr.

Example 3.3. A class of initial and boundary value
problems determined by the heat equation is given by

∂u
∂t = a∆u, (t, x) ∈ [t0,∞) × Ω
u(t0, x) = φ(x), x ∈ Ω
u(t, x) = 0, (t, x) ∈ [t0,∞) × ∂Ω,

⎫⎬
⎭ (3.15)

where Ω ⊂ Rn is a bounded domain with smooth bound-
ary ∂Ω, ∆ =

∑n
i=1

∂2

∂x2
i

denotes the Laplacian and a > 0
is a constant.

It has been shown that for each φ ∈ X = H2[Ω, R] ∩
H1

0 [Ω, R] there exists a unique solution u = u(t, x) ,
t ≥ t0, x ∈ Ω for (3.15) such that U , defined by
U(t) = u(t, .), is a continuously differentiable functions
from [t0,∞) to X with respect to the H1-norm (to be
specified later) [3]. Then (3.15) can be written as an
abstract Cauchy problem in the space X with respect to
the H1-norm,

U ′(t) = AU(t), t ≥ t0 (3.16)

with initial condition U(t0) = φ ∈ X, where the operator
A is linear and is defined as A =

∑n
i=1

d2

dx2
i
.

In establishing an estimate of the H1-norm of the so-
lutions of (3.15), we choose the function

v(φ) = ‖φ‖2
H1 =

∫
Ω

(|∇φ|2 + |φ|2)dx (3.17)

for any φ ∈ X. Let u(t, .) denote a solution of (3.15)
and let U(t) = u(t, .) ∈ X. Evaluating dv/dt along the
solutions of (3.15), we have

d[v(U)]
dt

=
∫

Ω

∂

∂t
[

n∑
i=1

(
∂u

∂xi
)2 + u2]dx

=
∫

Ω

[
n∑

i=1

2(
∂u

∂xi
)

∂2

∂xi∂t
+ 2u

∂u

∂t
]dx

= −
n∑

i=1

2
∫

Ω

∂2u

∂x2
i

∂u

∂t
dx + 2a

∫
Ω

u∆udx

= −2a

∫
Ω

(∆u)2dx − 2a

∫
Ω

|∇u|2 dx

≤ −2a

∫
Ω

|∇u|2 dx. (3.18)

By Poincaré’s inequality [3], we have

∫
Ω

|u|2 dx ≤ γ2

∫
Ω

|∇u|2 dx, (3.19)

where γ can be chosen as δ/
√

n and Ω can be put into
a cube of length δ. Hence we have

d[v(U)]
dt

≤ −a(
∫

Ω

|∇u|2 dx +
1
γ2

∫
Ω

|u|2 dx) ≤ −c ‖U‖2
H1

(3.20)
for all φ ∈ X, where c = min{a, a

γ2 } > 0. Therefore,

‖U(t)‖H1
≤ e−

c
2 (t−t0) ‖U(t0)‖H1

(3.21)

for t ≥ t0.
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4 Discontinuous Dynamical Sys-
tems Determined by Differen-
tial Equations in Banach Space

We first consider a family of initial-value Cauchy prob-
lems in Banach space X of the form

ẋ(t) = Ak(t, x), t ≥ τk

x(τk) = xk

}
(ICk

)

for k ∈ N . For each k ∈ N , we assume that Ak :
R+ × X → X and that ẋ = dx/dt. Throughout, we
will assume that for every (τk, xk) ∈ R+ ×X, (ICk

) pos-
sesses a unique solution x(k)(t, xk, τk) which exists for
all t ∈ [τk,∞) and which is continuous with respect to
initial conditions. We express this by saying that (ICk

)
is well posed. In addition, for each k ∈ N , we assume
that Ak(t, 0) = 0, t ∈ R+. This ensures the existence of
the zero solution x(k)(t, xk, τk) = 0, t ≥ τk, with xk = 0,
which means that xk = 0 ∈ X is an equilibrium of

ẋ(t) = Ak(t, x). (Ck)

We now consider discontinuous initial-value problems in
Banach space X given by

ẋ(t) = Ak(t, x), τk ≤ t < τk+1

x(τk+1) = gk(x(τ−
k+1)), k ∈ N,

}
(DC)

where for each k ∈ N , Ak is assumed to possess the
identical properties given in (Ck), where gk ∈ C[X, X],
and

x(t−) = limt′→t,t′<tx(t′). (4.1)

For each k ∈ N , we assume that gk(0) = 0. The set
E = {τ0, τ1, τ2, ...}, denoting the set of discontinuities,
is assumed to be an unbounded closed discrete subset of
R+ with τ0 < τ1 < τ2 < ... < τk < ....

Under the above assumptions for (DC) and (Ck), it
is now clear that for every (t0, x0) ∈ R+ × X, t0 = τ0,
(DC) has a unique solution x(t, x0, t0) which exists for
all t ∈ [t0,∞). This solution is made up of a sequence
of solution segments x(k)(t, xk, τk), defined over the in-
tervals [τk, τk+1), k ∈ N , with initial conditions (τk, xk),
where xk = x(τk), k = 1, 2, ... and where (τ0 = t0, x0)
are given. Furthermore, (DC) admits the zero solution
x(t, x0, t0) = 0 for t ≥ t0 (with x0 = 0), and therefore,
x0 = 0 ∈ X is an equilibrium for (DC).

Remark 4.1. Consistent with the characterization of
discontinuous dynamical system (DDS) given in Section
1, it is clear from the above that (DC) determines a
discontinuous dynamical system {T, X, A, S}, where T =
R+, A = X, the metric on X is determined by the norm
‖.‖ defined on X (i.e., d(x, y) = ‖x − y‖), and S denotes
the set of all the piecewise continuous solutions of (DC)
corresponding to all possible initial conditions (t0, x0) ∈
R+ ×X. In the interests of brevity, we will refer to this
DDS simply as “system (DC)”, or simply as “(DC)”.

In finite dimensional spaces all norms are equivalent
and therefore, when addressing convergence properties
for such systems, such as stability, the choice of norm
plays no important role. This is not the case in infinite
dimensional systems and the various stability concepts
depend intricately on the particular norm (i.e., on the
particular Banach space) on hand.

Definition 4.1. a) The zero solution of (DC) is expo-
nentially stable if there exists α > 0, and for every ε > 0
and every t0 ≥ 0 , there exists a δ = δ(ε) > 0 such
that ‖x(t, x0, t0)‖ < εe−α(t−t0) for all t ≥ t0, whenever
‖x0‖ < δ.

b) The zero solution of (DC) is exponentially stable in
the large if there exists α > 0, γ > 0 and for every β > 0,
there exists k(β) > 0 such that

‖x(t, x0, t0)‖ ≤ k(β) ‖x0‖γ
e−α(t−t0)

for all t ≥ t0, whenever ‖x0‖ < β.

The above definitions are adaptations of correspond-
ing stability and boundedness definitions for (GN)
(resp., (Ck)) (see, e.g., [3], [11]-[12]).

5 Main Stability Results

Theorem 5.1. Assume that there exists a function V :
X × R+ → R+ and three positive constants c1, c2 and b
such that

c1 ‖x‖b ≤ V (x, t) ≤ c2 ‖x‖b (5.1)

for all x ∈ X and t ∈ R+ (resp., for all x in some neigh-
borhood of the origin 0 ∈ X and t ∈ R+).

i) Assume that for every x(., x0, t0), V (x(t, x0, t0), t)
is continuous for all t ≥ t0 ≥ 0 except on a set of discon-
tinuities E = {t0 = τ0, τ1, τ2, ...}. Furthermore, assume
that there exists a function h ∈ C[R+, R+], independent
of x(., x0, t0), such that h(0) = 0 and such that for any
x(., x0, t0),

V (x(t, x0, t0), t) ≤ h(V (x(τk, x0, t0), τk),
t ∈ (τk, τk+1), k ∈ N

(5.2)

and such that for some positive constant q, h satisfies

h(r) = o(rq) as r → 0. (5.3)

ii) Assume that there exists a constant c3 > 0 such that

DV (x(τk, x0, t0), τk) ≤ −c3 ‖x(τk, x0, t0)‖b
, k ∈ N

(5.4)
for all x(., x0, t0) and all x0 ∈ X (resp., for all x(., x0, t0)
with x0 in some neighborhood of the origin 0 ∈ X),
where DV (x(τk, x0, t0), τk) is defined by

DV (x(τk, x0, t0), τk)
= 1

τk+1−τk
[V (x(τk+1, x0, t0), τk+1)

−V (x(τk, x0, t0), τk)],
(5.5)

Then the zero solution of (DC) is exponentially stable in
the large (resp., exponentially stable).

Proof. The proof is omitted due to space limitations.
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6 Applications

Example 6.1. (Time-invariant differential equations in
Banach space)
If in (Ck) we let Ak(t, x) ≡ Ak(x), then (ICk

) takes the
form

ẋ(t) = Ak(x)
x(τk) = φk

}
(I ′Ck

)

k ∈ N , t ∈ [τk,∞), and (DC) assumes the form

ẋ(t) = Ak(x), τk ≤ t < τk+1

x(τk+1) = gk(x(τ−
k+1))

}
(DC ′)

k ∈ N . Assuming that for all k ∈ N , Ak(0) = 0 and
that Ak satisfies the Lipschitz condition

‖Ak(x) − Ak(y)‖ ≤ Kk ‖x − y‖ (6.1)

for all x, y ∈ X, we obtain, in accordance with (3.3), the
estimate ∥∥∥x(k)(t, φk, τk)

∥∥∥ ≤ eKk(t−τk) ‖φk‖ (6.2)

for all t ≥ τk and all φk ∈ X. In system (DC ′) we
assume that for all k ∈ N , gk(0) = 0 and that

‖gk(x)‖ ≤ γk ‖x‖ (6.3)

for some γk > 0 and for all x ∈ X and we let τk+1−τk =
λk

Proposition 6.1. Let Kk,γk and λk be the parameters
for system (DC ′) given in (6.1)-(6.3). If for all k ∈ N ,
γkeKkλk ≤ α < 1, where α > 0 is a constant, then the
zero solution of (DC ′) is exponentially stable, in fact,
exponentially stable in the large.

Proof. The proof is omitted due to space limitations.

Example 6.2. (Time-invariant linear functional differ-
ential equations)
If in (Ck) we let X = Cr and Ak(t, x) = Ak(x) = Lkxt,
where Cr, xt and Lk are defined as in Examples 3.1 and
3.2, then (ICk

) takes the form

ẋ(t) = Lkxt

xτk
= φk,

}
(6.4)

k ∈ N , t ∈ [τk,∞). If in (DC) we let gk(η) = Gkη, then
(DC) assumes the form

ẋ(t) = Lkxt, τk ≤ t < τk+1

xτk+1 = Gkxτ−
k+1

,

}
(6.5)

k ∈ N . For each k ∈ N , Lk is defined, as in (3.10), by

Lk(φ) =
∫ 0

−r

[dBk(s)]φ(s). (6.6)

We suppose that all assumptions that we made for L
given in (3.10) hold as well for Lk. Then Lk is Lip-
schitz continuous on Cr with Lipschitz constant Kk less
or equal to the variation of Bk, and as such, condition
(6.1) still holds for (6.4). As in (3.12), the spectrum of
Lk consists of all solutions of the equation

det(
∫ 0

−r

eλksdBk(s) − λkI) = 0. (6.7)

In accordance with (3.13), when all solutions of (6.7)
satisfy the relation Reλk ≤ −α0, then for any positive
αk < α0, there is a constant Mk(αk) > 0 such that the
solutions of (6.4) allow the estimate

∥∥∥x(k)(t, φk, τk)
∥∥∥ ≤ Mk(αk)e−αk(t−τk) ‖φk‖ (6.8)

for all t ≥ τk ≥ 0 and φk ∈ Cr. When the above as-
sumption is not true, then in accordance with (3.14),
the solutions of (6.4) still allow the estimate

∥∥∥x(k)(t, φk, τk)
∥∥∥ ≤ eKk(t−τk) ‖φk‖ (6.9)

for all t ≥ τk and φk ∈ Cr. Thus, in all cases we have∥∥∥x(k)(t, φk, τk)
∥∥∥ ≤ Qkewk(t−τk) ‖φk‖ (6.10)

for all t ≥ τk ≥ 0 and φk ∈ Cr, where Qk = 1 and
wk = Kk when (6.9) applies and Qk = Mk(αk) and
wk = −αk, αk > 0, when (6.8) applies.

Finally, for each k ∈ N , Gk in (6.5) is assumed to be
a linear operator, Gk : Cr → Cr. We have

‖Gkη‖ ≤ ‖Gk‖ ‖η‖ (6.11)

for all η ∈ Cr, where ‖Gk‖ is the norm of Gk induced by
the norm ‖.‖ defined on Cr.

Proposition 6.2. Let wk, ‖Gk‖ , Qk, λk be the parame-
ters for system (6.5) defined above. If for all k ∈ N ,
‖Gk‖Qkewkλk ≤ α < 1, where α > 0 is a constant, then
the zero solution of (6.5) is exponentially stable, in fact,
exponentially stable in the large.

Proof. The proof is omitted due to space limitations.

Example 6.3. (Heat equation)
We consider a family of initial and boundary value prob-
lems determined by the heat equation

∂u
∂t = ak∆u, (t, x) ∈ [τk,∞) × Ω
u(τk, x) = φk(x), x ∈ Ω
u(t, x) = 0, (t, x) ∈ [τk,∞) × ∂Ω,

⎫⎬
⎭ (6.12)

where Ω ⊂ Rn is a bounded domain with smooth bound-
ary ∂Ω and ak ∈ R+ are constants. Next we consider a
DDS determined by

∂u
∂t = ak∆u, (t, x) ∈ [τk, τk+1) × Ω
u(τk+1, .) = gk(u(τ−

k+1, .)),
u(t, x) = 0, (t, x) ∈ R+ × ∂Ω

⎫⎬
⎭ (6.13)
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where all symbols are defined similarly as in (6.12), gk :
X → X, X = H2[Ω, R] ∩ H1

0 [Ω, R] with the H1-norm
(see, (3.17)), k ∈ N . We assume that gk(0) = 0 and
there exists γk such that ‖gk(φ)‖H1 ≤ γk ‖φ‖H1 for all
φ ∈ X, k ∈ N .

Along any solution u(k) of (6.12), similarly as in Ex-
ample 3.3 (see, (3.21)), we obtain the estimate∥∥∥U (k)(t)

∥∥∥
H1

≤ e−
ck
2 (t−τk)

∥∥∥U (k)(τk)
∥∥∥

H1

(6.14)

for t ≥ τk, where ck = min{ak, ak

γ2 }, where γ is a
constant determined by Ω (see, (3.19)). Each solution
u(t, x, φ, t0) of (6.13) is made up of a sequence of so-
lution segments u(k)(t, x, φk, τk), defined on [τk, τk+1)
for k ∈ N , which are determined by (6.12) with φk =
u(τk, .).

Proposition 6.3. For system (6.13), let ωk = − ck

2 and
λk = τk+1−τk, k ∈ N . If for all k ∈ N , γkeωkλk ≤ α < 1,
where α > 0 is a constant, then the zero solution of (6.13)
is exponentially stable, in fact, exponentially stable in the
large.

Proof. The proof is omitted due to space limitations.
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