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Abstract— In this paper we consider the problem of esti-
mating the state of a dynamic system from a sequence of
observations that are imprecisely timestamped. We argue that
this problem can be addressed using the Covariance Union
(CU) technique, and we demonstrate its application in a
particular example.

I. INTRODUCTION

Many applications require the maintenance of a high-
fidelity estimate of the state of a dynamic system based on
a sequence of noisy observations. Such applications demand
the use of a filtering mechanism, such as the Kalman filter,
to fit the observation sequence to a given model of the
system dynamics. One assumption that is frequently made is
that the measurement is propagated from the sensing device
to the filter occurs without delay. However, in practice time
delays can occur between when an observation is taken by
a sensor and when it becomes available to the filtering
algorithm leading to fusion with time delayed measure-
ments. When measurements with different time delays are
interleaved with one another, this is known as the Out-of-
Sequence Measurement problem (OOSM) [1].

When the time delays are known, the Kalman filter can
be readily extended to account for the delays. Probably the
simplest approach is to buffer all incoming measurements
and run the filter behind real-time, the length of the delay
sufficient to guarantee that few measurements appear out of
order. Nettleton derived an elegant implementation of this
scheme using the inverse covariance (or information) form
of the Kalman filter [2] when all the delayed measurements
were taken at the same time. However, because the filter
has to run with the latency equal to the maximum latency
of any given sensor, the filter might not be able to run in
real time. To overcome this problem, Larsen developed a
scheme for extrapolating a measurement forward through
time [3]. Using this method, a time delayed measurement
could be incorporated into the filter at a later time. Challa
performed a detailed Bayesian analysis of the problem of
fused measurements and proved that the filtering problem
requires the consideration of the joint density of the current
target state and the target state corresponding to the delayed
measurement [1]. Van der Merwe et al. used this approach
to fuse delayed GPS measurements with inertial measure-
ments for the navigation of a UAV [4]. The equations
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derived by this approach are the same as those derived
by Larsen showing that Larsen’s approach and Challa’s
approach are identical. Zhang has recently developed a
number of sub-optimal algorithms that attempt to reduce
the computational and storage costs by approximating the
cross correlations [5]

Time delays can also be used to fuse measurements that
are taken over time. Both Leonard [6] and Fitzgibbons [7]
calculate the positions of targets in three dimensions using
bearings only measurements. When a measurement of a
target is made, the position of the sensor is recorded. From
a history of measurements and sensor positions, the position
of the target can be reconstructed.

However, all of the methods assume that, although
the measurements are delayed (by a potentially random
amount), the amount of delay is known. However, situations
can arise in which the time delay is not known perfectly.
Possible reasons include:

1) Observations are time stamped when they become
available to the filter, not when the observation was
taken. One example of this is image acquisition using
consumer-grade hardware such as a webcamera. Each
image acquired by the camera is not time stamped
when the image was taken. Rather, the image is time
stamped when the data becomes available to an image
processing application. Because of non deterministic
OS delays (due to buffering, context switches and
the like), the latency between acquiring an image and
making it available is known imperfectly.

2) Observations are time stamped from a local clock
without centralized clock synchronization. In this
case, there will always be deviations between clocks
at different nodes and, as a result, latency cannot be
calculated by subtracting the observation time from
the current filter time.

Even though the latency is unknown, it might be possible
to statistically characterize it through experimentation1. In
this paper we assume that the latency is quantized and is
bounded by known values. As a result, there are a finite
number of possible values of latency for the sensor.

Aron [9] considered the problem of using an inertial
system to assist a computer-vision based tracking system
when the camera tracker became lost. The inertial system
contained unmodelled latency and so a RANSAC algorithm
was applied to fuse the inertial and camera data to find the

1Liang [8], for example, measured the latency in an orientation system
by affi xing a sensor to a pendulum.
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“best fit” when RANSAC gives best results. This resembles
the least squares errors approaches discussed in the survey
paper by Fernandes [10]. However, the difficulty of these
approaches is that, if the time step is incorrectly identified,
catastrophic failures can result.

A more principled way to handle this problem is to extend
Challa’s Bayesian formalism [1] to include the uncertainties
in the time delays. This is analogous to a problem that
arises in multiple target tracking (MTT) [11]. MTT occurs
when a tracking system receives an observation of one
of several different targets, but the exact identity of the
observed target is not known. In the delayed fusion problem,
the tracking system receives an observation which can arise
from one of several different time steps. However, many
MTT algorithms are either fragile or have computational
costs that scale exponentially and cannot be implemented
in real time.

In this paper, we consider the problem of developing
a mechanism for accommodating timestep uncertainty di-
rectly into the observation covariance so that filter con-
sistency is always maintained using the Covariance Union
(CU) algorithm. CU derives consistent estimates when the
association between the observation and the target state is
unknown [12]. Given a set of plausible assocations, CU
calculates the minimum estimate that is guaranteed to be
consistent with respect to all of those assocations.

The structure of this paper is as follows. Section II
describes the problem statement. Section III describes the
approach using the CU algorithm. An example is presented
in Section IV and conclusions are given in Section V.

II. PROBLEM STATEMENT

A. System Description

Consider the system described by the discrete-time linear
equation

x (k) = F (k − 1)x (k − 1) + v (k − 1)

where x (k) is the state vector at time k, v (k − 1) is the
process noise, and F (k − 1) is the state transition matrix.

The observation model is

z (k) = H (k)x (k) + w (k) (1)

where z (k) is the observation vector, w (k) is the observa-
tion noise vector and H (k) is the observation matrix. The
noise vectors v (k − 1) and w (k) are assumed to be zero-
mean and uncorrelated with covariances Q (k) and R (k)
respectively.

Let the estimate of x (i) using observations up to time
step j be x̂ (i | j) with covariance P (i | j). Defining the
estimation error to be

x̃ (i | j) = x (i) − x̂ (i | j) , (2)

the estimate is said to be consistent if

P (i | j) − E
[
x̃ (i | j) x̃T (i | j)

]
≥ 0. (3)

It is normally assumed that the measurement is made
available at the time the measurement is made. However,
this is not always the case. As explained in the introduction,
latencies in sensing and transmission mean that observations
can be delayed by a number of time steps before they are
received and processed by the filter.

B. Fusion of Time Delayed Measurements

Suppose that a given measurement may be delayed by n
timesteps. Defining kn = k − n, the update equation is

x̂ (k | k) = x̂ (k | k − 1) + W (k) ν (kn) (4)

where
ν (kn) = z (kn) − ẑ (kn | kn−1)

is the innovation calculated from the observation at the time
the observation was taken. The estimation error committed
by (4) is

x̃ (k | k) = x̃ (k | k − 1) − W (k) ν (kn) .

Taking outer products and expectations,

P (k | k) = P (k | k − 1) − X (k)WT (k)

− W (k)XT (k)

+ W (k)Pνν (kn | kn−1)W
T (k)

(5)

where
X (k) = E

[
x̃ (k | k − 1) νT (kn)

]
is the cross correlation between the prediction at the current
time and the innovation at the time the observation was
taken. Substituting from (1) and (2) and using the fact that
w (k) is independent,

X (k) = E [x̃ (k | k − 1) x̃ (kn | kn − 1)]HT . (6)

Taking derivatives, it can be shown that the value of
W (k) which minimises the trace of P (k | k) is

W (k) = X (k)P−1

νν
(kn | kn − 1) . (7)

This equation provides a simple, intuitive interpretation
of the weight in the time delayed Kalman filter. The weight
assigned to a measurement is a function of the degree to
which the measurement is correlated with the current state
of the system2.

Therefore, the difficulty in implementing the time-
delayed Kalman filter is in calculating X (k). In this paper
we exploit the linearity assumptions to contruct a linear
closed form solution [3].

By combining the prediction and update steps together,
the prediction from one time step to the next can be written
as

x̂ (k + 1 | k) = Φ (k + 1, k) x̂ (k | k − 1) + F (k)w (k)

+ v (k)

2The result here is algebraically the same as derived by Larsen [3].
However, the interpretation is very different. Larsen considered taking an
observation and extrapolating its value forwards to the current time step
in the fi lter. We consider calculating the correlation backwards from the
current time to the time when the observation was made.
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where

Φ (k + 1, k) =

{(
I − W (k)H (k)

)
F (k) observation

F (k) no observation

combines the effect of the update at time k together with
the prediction at time k +1. Noting that v (·) and w (·) are
independent,

E [x̃ (k | k − 1) x̃ (kn | kn − 1)]

E
[
Φ (k, kn) x̃ (kn | kn − 1) x̃T (kn | kn − 1)

]
= Φ (k, kn)P (kn | kn − 1)

(8)

where

Φ (k, kn) =

k−1∏
i=kn

Φ (i + 1, i) (9)

These results assume that kn is known precisely. However,
as explained in the introduction, various practical limitations
mean that n is not always known perfectly.

C. The Effect of Unknown Time Delays

Suppose the true timestep is kN whereas the assumed
time step is kn.

Now,

x (kN ) = Ψ (kN , kn)x (kn) + v (kN , kn)

where

Ψ (kN , kn) =

kN∏
i=kn

F (i) .

The innovation is

ν (kn) = z (kN ) − ẑ (kn | kn − 1)

= Hx (kN ) + w (kN )

− Hx̂ (kn | kn − 1)

= HΨ (kN , kn)x (kn) + Hv (kN , kn)

+ w (kN ) − Hx̂ (kn | kn − 1)

= HΨ (kN , kn) x̃ (kn | kn − 1)

+ HΨ (kN , kn) x̂ (kn | kn − 1) + Hv (kN , kn)

+ w (kN ) − Hx̂ (kn | kn − 1)

= HΨ (kN , kn) x̃ (kn | kn − 1)

+ H (Ψ (kN , kn) − I) x̂ (kn | kn − 1)

+ v (kN , kn) + w (kN )

Therefore, an error in the assumed time step can be
treated as an error in the observation model which includes
a mis-specification of the observation matrix and an obser-
vation sequence which contains correlated noise.

This structure bares a strong relationship to that which
arises with Multiple Target Tracking (MTT). One of the
most widely used methods for dealing with MTT is Mul-
tiple Hypotheses Tracking (MHT) [11]. MHT creates a
distinct updated state estimate for each element of the
set of possibilities under the assumption that subsequent
observations will tend to be consistent only with the valid

updates, thus allowing the others to be discarded (pruned).
However, MHT can result in an exponential proliferation
of hypotheses and cannot be implemented in real time.
Rather, various adhoc pruning strategies must be used to
limit the computational growth. The simplest approach, the
Probabilistic Data Association Filter (PDAF), assumes that
there is a single target [11]. However, the fewer hypotheses
an algorithm maintains, the more prone it is to catastrophic
failure due to an incorrect identification of the timestep.

In this paper we consider the alternative approach of ex-
panding the observation covariance so that it takes account
of the uncertainty in the time stamp using the Covariance
Union (CU) algorithm.

III. COVARIANCE UNION

Covariance Union (CU) considers the following problem:
suppose a filtering algorithm is provided with two observa-
tions with means and covariances (m1,M1) and (m2,M2)
respectively. It is known that one observation corresponds
to a correct association, and the other to an incorrect
association. However, the identity of the consistent estimate
is unknown and cannot be determined. In this circumstance,
the only way the KF can be guaranteed to give a consistent
estimate is if it updates with an observation which is
consistent with respect to both measurements [12]3. This
unioned estimate has a mean and covariance (u,U) and
obeys the property

U ≥ M1 + (u − m1) (u − m1)
T (10)

U ≥ M2 + (u − m2) (u − m2)
T (11)

where some measure of the size of U (e.g., determinant) is
minimized. Given this Covariance Union (CU) of the two
measurements, the KF can be applied directly to update
the prediction (x̂ (k | k − 1) ,P (k | k − 1)) with the CU-
derived observation (u,U). In other words, the above equa-
tions simply say that if the estimate (m1,M1) is consistent,
then the translation of the vector m1 to u will require its
covariance to be enlarged by the addition of a matrix at
least as large as the outer product of (u−m1) in order to
be consistent. The same reasoning applies if the estimate
(m2,M2), is consistent.

One simple strategy would be to choose the unioned
estimate to be set the unioned mean to be one of the input
estimates, u = m1. In this case, U must be chosen so
that the estimate is consistent with the worst case error —
namely that the real update should be m2. However if u can
be placed somewhere between m1 and m2 then the worst
case error is reduced and a smaller value of U is needed.

Because the inequality is convex, many algorithms for
convex or semidefinite optimization methods can be used.

3This is related to a result by Nishimura [13]. Nishimura considered
the problem of modelling errors and showed that even if the process and
observation models contain errors, a consistent estimate can be achieved
by increasing the process and observation noise by a suffi cient amount.
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In this paper we assume that u can be formed from a convex
combination of m1 and m2

4:

u = ωm1 + (1 − ω)m2

where 0 ≤ ω ≤ 1. The appendix summarises an iterative
method for calculating U [14].

This result can be applied directly to the case of filter-
ing measurements with unknown time stamps. Specifically,
given that a set of time steps can be identified [kmax, kmin],
the updates can be calculated for kmax and kmin and CU
can be applied to merge the two sets of updates together.

IV. EXAMPLE

Consider the problem of estimating the position and
velocity of a 1D particle. The state of the system is

x (k) =

(
x
ẋ

)
.

The particle moves with piecewise constant velocity:

F (k) =

[
1 ∆t
0 1

]
.

The process noise acts on the acceleration. Therefore,

Q (k) =

[
∆t3/3 ∆t2/2
∆t2/2 ∆t

]
q

where q = 10−3 is the acceleration covariance.
The position is measured by the sensor,

H (k) =
[
1 0

]
.

The observation noise is additive with covariance R (k) =
10−2.

The measurement is taken at a rate of once every 50
timesteps. However, there is a random delay, uniformly
distributed between 2 and 10 timesteps, before the mea-
surement can be timestamped and made available to the
filter.

Five algorithms were tested5:

1) knownDelay. This filter is implemented with the
delay known perfectly. It is a test of the delayed filter
and provides a means of quantifying the effect of
unknown time delays.

2) meanDelay. This filter assumes the time delay is the
average value, 6.

3) maxLikelihood. For each time step in the range
[2,10] calculate the predicted value and the likelihood
of the estimate using the Gaussian likelihood model.
Select the time step with the highest likelihood.

4This form of u was chosen for computational convenience and it is
possible that other forms can lead to a signifi cantly smaller value of U.

5We do not examine MHT in our tests because its performance is almost
entirely dependent on the amount of extra memory that is permitted and
the strategy that is used for pruning hypotheses. All that can be said for
sure is that any amount of pruning will make an MHT fi lter susceptible
to producing inconsistent estimates in the same way as our maximum
likelihood fi lter.
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(a) Covariance history of x.
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Fig. 1. Covariance histories for the fi lter estimates.

4) CU. Calculate the estimates k2 and k10 and fuse them
together using CU. ω was chosen to minimise the
determinant of P (k | k).

5) PDAF. Like maxLikelihood, calculate the likelihood
of each time step. Take the weighted average of the
estimates from the different time steps, weighted by
the likelihood.

Fig. 1 plots the covariance histories of one complete run
for all of the filters. We only plot the estimate immediately
following the time step (time step in plot = 50 * filter time
step, hence 8000 time steps has 160 updates). These plots
suggest that knownDelay, meanDelay and maxLikelihood
filters calculate similar covariances whereas the CU and
PDAF calculate estimates with significantly larger covari-
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Scheme σxx σẋẋ

knownDelay 5.1176 0.2131
meanDelay 5.1148 0.2131

maxLikelihood 5.8736 0.2226
CU 9.2287 0.2567

PDAF 7.0729 0.2294

TABLE I

THE AVERAGE STANDARD DEVIATIONS OF x AND ẋ FOR EACH FILTER.
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1.1

Time step

ω

Fig. 2. Time history of ω for one run of the CU fi lter.

ances. This is quantified in Table I which lists the average
standard deviation in each filter. Fig. 2 plots the history of
ω for one run of the CU filter. After some initial transients,
the filter rapidly settles to a value of ω ≈ 0.5. This solution
appears to resemble that from the meanDelay filter, but
expanding the covariance to cover the worst case errors.
Furthermore, the CU filter is different from using the PDAF
and setting the probabilities of k2 and k10 to be 0.5. The
reason is that the PDAF would take the numerical average
of the covariances whereas the CU filter takes the minimum
bounding covariance.

However the covariance histories, by themselves, do not
prove whether the filter is consistent. Rather, we perform
a statistical test on the normalised state error of the
estimate [11].

Let

q(k) =
(
x̂ (k | k) − x (k)

)
P−1 (k | k)

×
(
x̂ (k | k) − x (k)

)T

.

This quantity is a χ2 distribution with 2 degrees of
freedom. Therefore, if the true mean squared error in the
estimate is P (k | k), then E [q(k)] = 2. If the expected
value exceeds this then the filter is not consistent — the
filter estimated covariance is smaller than the mean squared
error. If the expected value is smaller than this then the filter
overestimates the covariance.
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Fig. 3. The time history of log[q(k)].

Scheme E [q(k)]
knownDelay 1.9992
meanDelay 37.6949

maxLikelihood 54.9323
CU 1.3172

PDAF 1.8749

TABLE II

THE AVERAGE NORMALISED MEAN SQUARED ERROR FOR EACH FILTER.

Fig. 3 plots the logarithm of the normalised state error
for all the filters calculated across all the runs6 and Table II
presents the average normalised results. The results clearly
show that the smaller covariances on the averageDelay and
maxLikelihood filters are misleading — both yield highly
inconsistent results. The result for the knownDelay filter
validates the expression for time delayed measurements.
The PDAF filter operates consistently and suggests that the
effect of the uncertainty in the time stamp is to increase the
average standard deviation of x by approximately 40%. The
CU estimate is also consistent, but has a larger covariance.

These results clearly indicate that the uncertainty in
the time stamp has a significant impact on estimator per-
formance and, in this case, the PDAF gives a smaller
covariance. However, two caveats must be noted. First, the
PDAF has a significantly higher computational cost in terms
of the number of filter evaluations which must be made.
Kalman filter updates (and the innovation likelihoods) must
be calculated for all the timesteps within which the delay
is feasible. In this example, eight updates are required.
However, it is clear that the computational load increases
as the window of the potential time delay increases. On the
other hand, the CU filter only needs to be calculated twice.
Second, it is important to note that this example is a simple,
linear time invariant system and, as such, the likelihood

6The log-normalised plot is necessary because of the large magnitude
errors of the maximum likelihood estimator.
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assumptions are correct. However, real systems are highly
nonlinear and no such guarantees hold true. For example,
low quality inertial systems contain errors (due to compass
biases) that are highly correlated. As a result, the likelihood
calculation will be extremely crude.

V. CONCLUSIONS

This paper has considered the problem of applying the
Kalman filter to observation sequences in which the times-
tamp for each observation is not precisely known. We have
argued that this problem has analogies with the identity
ambiguity problem that arises in multi-target tracking ap-
plications. Such problems can be addressed with multiple
hypothesis and Covariance Union (CU) methods. We have
described a way in which CU can be applied to the problem
and we have compared the performance of the algorithm
against a range of approaches. The results show that PDAF
yields the most accurate performance. However, it requires
significant computational costs and is strongly dependent on
the accuracy of the likelihood model. CU, on the other hand,
only requires the evaluation of two Kalman filter updates
and does not rely on specific assumptions as to the veracity
of the likelihood model.

Future work will examine the use of a hybrid of CU
and MHT in which we will assume that the true MHT
hypothesis is maintained so that the only remaining problem
is resolving the ambiguity of which hypothesis it is. The
application of CU to the set of maintained hypotheses will
yield a consistent result that may be superior to the use of
CU alone.

APPENDIX

This derivation was first described in [14].
Given the prior observations (m1,M1) and (m2,M2)

and a candidate mean u, this appendix describes a method
for calculating U which is guaranteed to be consistent.
We assume that the estimate u is given by the convex
combination of the two prior estimates,

u = ωm1 + (1 − ω)m2

Define

U1 = M1 + {u − m1} {u − m1}
T

= M1 + (1 − ω)2(m1 − m2)(m1 −m2)
T

U2 = M2 + {u − m2} {u − m2}
T

= M2 + ω2(m1 − m2)(m1 − m2)
T

Let
S =

√
[U2]

where U2 = ST S. Furthermore, let V and D be the matri-
ces of eigenvectors and eigenvalues of

(
S−1

)T
U1S

−1. A
covariance matrix U which obeys conditions (10) and (11)
is

U = ST Vmax (D, I)VT S

where max (A,B) calculates the matrix which is the
element-wise maximum of the matrices A and B.
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