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Abstract. In this paper, the optimal filtering problem for
polynomial systems with partially measured linear part
over linear observations is treated proceeding from the
general expression for the stochastic Ito differential of
the optimal estimate and the error variance. As a result,
the Ito differentials for the optimal estimate and error
variance corresponding to the stated filtering problem are
first derived. The procedure for obtaining a closed system
of the filtering equations for any polynomial state with
partially measured linear part over linear observations with
delay is then established, which yields the explicit closed
form of the filtering equations in the particular case of a
bilinear system state. In the example, performance of the
designed optimal filter is verified for a quadratic-linear
state with unmeasured linear part over linear observations
against the conventionally designed extended Kalman-Bucy
filter.
Keywords. Filtering, stochastic system, nonlinear
polynomial system, bilinear system

I. INTRODUCTION

Although the general optimal solution of the filtering
problem for nonlinear state and observation equations con-
fused with white Gaussian noises is given by the Kushner
equation for the conditional density of an unobserved state
with respect to observations [1], there are a very few known
examples of nonlinear systems where the Kushner equation
can be reduced to a finite-dimensional closed system of
filtering equations for a certain number of lower conditional
moments. The most famous result, the Kalman-Bucy filter
[2], is related to the case of linear state and observation
equations, where only two moments, the estimate itself and
its variance, form a closed system of filtering equations.
However, the optimal nonlinear finite-dimensional filter can
be obtained in some other cases, if, for example, the state
vector can take only a finite number of admissible states
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[3] or if the observation equation is linear and the drift
term in the state equation satisfies the Riccati equation
d f /dx + f 2 = x2 (see [4]). The complete classification
of the ”general situation” cases (this means that there
are no special assumptions on the structure of state and
observation equations and the initial conditions), where the
optimal nonlinear finite-dimensional filter exists, is given in
[5]. Apart form the ”general situation,” the optimal finite-
dimensional filters have recently been designed ([6], [7]) for
certain classes of polynomial system states with Gaussian
initial conditions over linear observations with invertible
observation matrix.

This paper presents the optimal finite-dimensional filter
for polynomial systems where the observation matrix may
not be invertible and only the nonlinear components of
the system state are assumed to be completely measured,
whereas the linear part of the state may be partially mea-
sured or even not measured at all, thus generalizing the
results of ([6], [7]). The optimal filtering problem is treated
proceeding from the general expression for the stochastic Ito
differential of the optimal estimate and the error variance
[8]. As the first result, the Ito differentials for the optimal
estimate and error variance corresponding to the stated
filtering problem are derived. It is then proved that a closed
finite-dimensional system of the optimal filtering equations
with respect to a finite number of filtering variables can be
obtained if the state equation is polynomial, the observations
are linear, and only the nonlinear components of the state
are assumed to be completely measured. In this case, the
corresponding procedure for designing the optimal filtering
equations is established. Finally, the closed system of the
optimal filtering equations with respect to two variables,
the optimal estimate and the error variance, is derived in
the explicit form for the particular case of a bilinear state
equation.

In the illustrative example, performance of the designed
optimal filter is verified for a quadratic-linear state with
unmeasured linear part over linear observations against the
conventional extended Kalman-Bucy filter. The simulation
results show a definite advantage of the designed optimal
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filter in regard to proximity of the estimate to the real
state value. Moreover, it can be seen that the estimate
produced by the optimal filter asymptotically converges to
the real values of the reference variables as time tends to
infinity, although the system state itself is unstable and the
quadratic component goes to infinity for a finite time. On
the contrary, the conventionally designed extended Kalman-
Bucy estimates diverge from the real values.

The paper is organized as follows. Section 2 presents the
filtering problem statement for a polynomial system state
with partially measured linear part over linear observations.
The Ito differentials for the optimal estimate and the error
variance are derived in Section 3. Section 4 establishes the
procedure for obtaining a closed system of the filtering
equations for any polynomial state with partially measured
linear part over linear observations, which yields the explicit
closed form of the filtering equations in the particular case
of a bilinear system state. In Section 5, performance of the
obtained optimal filter is verified for a quadratic-linear state
with unmeasured linear part over linear observations against
the conventional extended Kalman-Bucy filter.

II. FILTERING PROBLEM FOR POLYNOMIAL STATE WITH

PARTIALLY MEASURED LINEAR PART OVER LINEAR

OBSERVATIONS

Let (Ω,F,P) be a complete probability space with an
increasing right-continuous family of σ -algebras Ft , t ≥ t0,
and let (W1(t) = [W11(t),W12(t)],Ft , t ≥ t0) and (W2(t) =
[W21(t),W22(t)], Ft , t ≥ t0) be independent Wiener processes.
The Ft-measurable random process (x(t) = [x1(t),x2(t)],
y(t) = [y1(t),y2(t)]) is described by nonlinear differential
equations for the system state

dx1(t) = f (x1,x2, t)dt +b11(t)dW11(t), x1(t0) = x10, (1)

dx2(t) = (a20(t)+a21(t)x2(t))dt +b12(t)dW12(t),

x2(t0) = x20, (2)

and linear differential equations for the observation process

dy1(t) = (A01(t)+A1(t)x1(t))dt +B1(t)dW21(t), (3)

dy2(t) = (A02(t)+A2(t)x2(t))dt +B2(t)dW22(t). (4)

Here, x(t) = [x1(t),x2(t)] ∈ Rn is the state vector, x1(t) ∈
Rn1 is the completely measured nonlinear component and
x2(t) ∈ Rn2 is the partially measured linear one, y(t) =
[y1(t),y2(t)] ∈ Rm is the linear observation vector, such
that the component y1(t) ∈ Rn1 corresponds the completely
measured nonlinear state component x1(t) ∈ Rn1 , i.e., the
matrix A1(t) ∈ Rn1×n1 is invertible, and y2(t) ∈ Rm2 corre-
sponds to the partially measured linear component x2(t) ∈
Rn2 , m2 ≤ n2, i.e., the dimension of y2(t) may be less
than that of x2(t). The initial condition x0 ∈ Rn is a
Gaussian vector such that x0, W1(t) = [W11(t),W12(t)], and
W2(t) = [W21(t),W22(t)] are independent. It is assumed that
B(t)BT (t), where B(t) = diag[B1(t),B2(t)], is a positive

definite matrix. All coefficients in (1)–(4) are deterministic
functions of time of appropriate dimensions.

Without loss of generality, the observation process com-
ponents y1(t) and y2(t) are assumed to be uncorrelated.
Indeed, if y1(t) and y2(t) are correlated a priori, their
mutual correlation can always be set to zero by adjusting
terms A01(t) and A02(t) in the equations (3) and (4) (see
[9]).

The nonlinear function f (x1,x2, t) is considered a polyno-
mial of n variables, components of the state vector x(t) =
[x1(t),x2(t)] ∈ Rn, with time-dependent coefficients. Since
x(t) ∈ Rn is a vector, this requires a special definition of
the polynomial for n > 1; some of them can be found in
[6], [7]. In this paper, a p-degree polynomial of a vector
x(t) ∈ Rn is regarded as a p-linear form of n components
of x(t)

f (x, t) = a10(t)+a11(t)x+a12(t)xxT + (5)

. . .+a1p(t)x . . .p times . . .x,

where a10(t) is a vector of dimension n, a11 is a matrix of
dimension, a12 is a 3D tensor of dimension n× n× n, ap

is an (p+1)D tensor of dimension n× . . .(p+1) times . . .×n,
and x× . . .p times . . .× x is a pD tensor of dimension n×
. . .p times . . .× n obtained by p times spatial multiplication
of the vector x(t) by itself. Such a polynomial can also be
expressed in the summation form

dxk(t)/dt = a10 k(t)+∑
i

a11 ki(t)xi(t)+

+∑
i j

a12 ki j(t)xi(t)x j(t)+ . . .

+ ∑
i1...ip

a1p ki1...ip
(t)xi1

(t) . . .xip
(t),

k, i, j, i1 . . . ıp = 1,n.

The estimation problem is to find the optimal es-
timate x̂(t) = [x̂1(t), x̂2(t)] of the system state x(t) =
[x1(t),x2(t)], based on the observation process Y (t) =
{y(s) = [y1(s),y2(s)],0 ≤ s ≤ t}, that minimizes the Eu-
clidean 2-norm

J = E[(x(t)− x̂(t))T (x(t)− x̂(t)) | FY
t ]

at every time moment t. Here, E[z(t) | FY
t ] means the

conditional expectation of a stochastic process z(t) = (x(t)−
x̂(t))T (x(t) − x̂(t)) with respect to the σ - algebra FY

t
generated by the observation process Y (t) in the interval
[t0, t]. As known [8], this optimal estimate is given by the
conditional expectation

x̂(t) = [x̂1(t), x̂2(t)] =

= m(t) = [m1(t),m2(t)] = E(x(t) | FY
t )

of the system state x(t) = [x1(t),x2(t)] with respect to the
σ - algebra FY

t generated by the observation process Y (t)
in the interval [t0, t].
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As usual, the matrix function

P(t) = E[(x(t)−m(t))(x(t)−m(t))T | FY
t ]

is the estimation error variance.
The proposed solution to this optimal filtering problem

is based on the formulas for the Ito differential of the
conditional expectation E(x(t) | FY

t ) and its variance P(t)
(cited after [8]) and given in the following section.

III. OPTIMAL FILTER FOR POLYNOMIAL STATE WITH

PARTIALLY MEASURED LINEAR PART OVER LINEAR

OBSERVATIONS

The optimal filtering equations could be obtained using
the formula for the Ito differential of the conditional expec-
tation m(t) = E(x(t) | FY

t ) (see [8])

dm(t) = E( f̄ (x, t) | FY
t )dt+

E(x[ϕ1(x)−E(ϕ1(x) | FY
t )]T | FY

t )×
(
B(t)BT (t)

)−1(dy(t)−E(ϕ1(x) | FY
t )dt),

where f̄ (x, t) = [ f (x, t),a20(t)+ a21(t)x2(t)] is the polyno-
mial drift term in the entire state equation, f (x, t) is the
polynomial drift term in the equation (1), and ϕ1(x) is the
linear drift term in the entire observation equation equal to
ϕ1(x) = A0(t)+A(t)x(t), where A0(t) = [A01(t),A02(t)] and
A(t) = diag[A1(t),A2(t)]. Upon performing substitution, the
estimate equation takes the form

dm(t) = E( f̄ (x, t) | FY
t )dt+

E(x(t)[A(t)(x(t)−m(t))]T | FY
t )×

(B(t)BT (t))−1(dy(t)− (A0(t)+A(t)m(t)) =

E( f̄ (x, t) | FY
t )dt +E(x(t)(x(t)−m(t))T | FY

t )AT (t)×
(B(t)BT (t))−1(dy(t)− (A0(t)+A(t)m(t))dt) =

E( f̄ (x, t) | FY
t )dt +P(t)AT (t)× (6)

(B(t)BT (t))−1(dy(t)− (A0(t)+A(t)m(t))dt).

The equation (3) should be complemented with the initial
condition m(t0) = E(x(t0) | FY

t0
).

To compose a closed system of the filtering equations, the
equation (6) should be complemented with the equation for
the error variance P(t). For this purpose, the formula for the
Ito differential of the variance P(t) = E((x(t)−m(t))(x(t)−
m(t))T | FY

t ) could be used (cited again after [8]):

dP(t) = (E((x(t)−m(t))( f̄ (x, t))T | FY
t )+

E( f̄ (x, t)(x(t)−m(t))T ) | FY
t )+b(t)bT (t)−

E(x(t)[ϕ1(x)−E(ϕ1(x) | FY
t )]T | FY

t )
(
B(t)BT (t)

)−1×
E([ϕ1(x)−E(ϕ1(x) | FY

t )]xT (t) | FY
t ))dt+

E((x(t)−m(t))(x(t)−m(t))[ϕ1(x)−E(ϕ1(x) | FY
t )]T | FY

t )

×(
B(t)BT (t)

)−1(dy(t)−E(ϕ1(x) | FY
t )dt),

where the last term should be understood as a 3D tensor
(under the expectation sign) convoluted with a vector, which
yields a matrix. Upon substituting the expressions for ϕ1,
the last formula takes the form

dP(t) = (E((x(t)−m(t))( f̄ (x, t))T | FY
t )+

E( f̄ (x, t)(x(t)−m(t))T ) | FY
t )+b(t)bT (t)−

(E(x(t)(x(t)−m(t))T | FY
t )AT (t)(B(t)BT (t))−1×

A(t)E((x(t)−m(t))xT (t)) | FY
t ))dt+

E((x(t)−m(t))(x(t)−m(t))×
(A(t)(x(t)−m(t)))T | FY

t )(B(t)BT (t))−1×
(dy(t)−A(t)m(t))dt).

Using the variance formula P(t) = E((x(t − h)−m(t −
h))xT (t)) | FY

t ), the last equation can be represented as

dP(t) = (E((x(t)−m(t))( f̄ (x, t))T | FY
t )+ (7)

E( f̄ (x, t)(x(t)−m(t))T ) | FY
t )+b(t)bT (t)−

P(t)AT (t)(B(t)BT (t))−1A(t)P(t))dt+

E(((x(t)−m(t))(x(t)−m(t))(x(t)−m(t))T | FY
t )×

AT (t)(B(t)BT (t))−1(dy(t)−A(t)m(t −h))dt).

The equation (7) should be complemented with the initial
condition P(t0) = E[(x(t0)−m(t0)(x(t0)−m(t0)

T | FY
t0

].
The equations (6) and (7) for the optimal estimate m(t)

and the error variance P(t) form a non-closed system of
the filtering equations for the nonlinear state (1),(2) over
linear observations (3),(4). Let us prove now that this system
becomes a closed system of the filtering equations in view
of the polynomial properties of the function f (x, t) in the
equation (1).

As shown in [6], [7], a closed system of the filtering
equations for a polynomial state over linear observations
can be obtained if the observation matrix A(t) is invertible
for any t ≥ t0. This condition implies [6], [7] that the random
variable x(t)−m(t) is conditionally Gaussian with respect
to the observation process y(t) for any t ≥ t0.

In the considered observation equations (3),(4), only the
matrix A1(t) in (3) is invertible, whereas the matrix A2(t)
in (4) is not. Nonetheless, the error variable components
x1(t)−m1(t), m1(t) = E[x1(t) | FY

t ], corresponding to A1(t)
in (3) form a conditionally Gaussian vector with respect to
the entire observation process y(t) = [y1(t),y2(t)], since the
observation process components y1(t) and y2(t) are uncor-
related (by assumption) and the innovations process y1(t)−∫ t

t0
(A01(s) + A1(s)m1(s))ds is conditionally Gaussian with

respect to y1(t) ([6], [7]). The error variable components
x2(t)−m2(t), m2(t) = E[x2(t) | FY

t ], corresponding to A2(t)
in (4) also form a conditionally Gaussian vector with respect
to the entire observation process y(t) = [y1(t),y2(t)], since
x2(t) is Gaussian and the observation process components
y1(t) and y2(t) are uncorrelated. Thus, the entire vector
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x(t)−m(t) = [x1(t)−m1(t),x2(t)−m2(t)] is conditionally
Gaussian with respect to the entire observation process
y(t) = [y1(t),y2(t)] (see [9]), and, therefore, the following
considerations outlined in [6], [7] are applicable.

First, since the random variable x(t)− m(t) is condi-
tionally Gaussian, the conditional third moment E((x(t)−
m(t))(x(t)−m(t))(x(t)−m(t))T | FY

t ) of x(t)−m(t) with
respect to observations, which stands in the last term of
the equation (7), is equal to zero, because the process
x(t)−m(t) is conditionally Gaussian. Thus, the entire last
term in (7) is vanished and the following variance equation
is obtained

dP(t) = (E((x(t)−m(t))( f̄ (x, t))T | FY
t )+ (8)

E( f̄ (x, t)(x(t)−m(t))T ) | FY
t )+b(t)bT (t)−

P(t)AT (t)(B(t)BT (t))−1A(t)P(t))dt,

with the initial condition
P(t0) = E[(x(t0)−m(t0)(x(t0)−m(t0)

T | FY
t0

].
Second, if the function f̄ (x, t) is a polynomial function of

the state x with time-dependent coefficients, the expressions
of the terms E( f̄ (x, t) | FY

t ) in (6) and E((x(t) − m(t))
( f̄ (x, t))T | FY

t ) in (8) would also include only polynomial
terms of x. Then, those polynomial terms can be represented
as functions of m(t) and P(t) using the following property
of Gaussian random variable x(t)−m(t): all its odd condi-
tional moments, m1 = E[(x(t)−m(t)) |Y (t)],m3 = E[(x(t)−
m(t)3 |Y (t)],m5 = E[(x(t)−m(t))5 |Y (t)], ... are equal to 0,
and all its even conditional moments m2 = E[(x(t)−m(t))2 |
Y (t)],m4 = E[(x(t)−m(t))4 |Y (t)], .... can be represented as
functions of the variance P(t). For example, m2 = P,m4 =
3P2,m6 = 15P3, ... etc. After representing all polynomial
terms in (6) and (8), that are generated upon expressing
E( f̄ (x, t) | FY

t ) and E((x(t)−m(t))( f̄ (x, t))T | FY
t ), as func-

tions of m(t) and P(t), a closed form of the filtering equa-
tions would be obtained. The corresponding representations
of E( f (x, t) | FY

t ) and E((x(t)−m(t))( f (x, t))T | FY
t ) have

been derived in [6], [7] for certain polynomial functions
f (x, t).

In the next subsection, a closed form of the filtering
equations will be obtained from (6) and (8) for a bilinear
function f (x, t) in the equation (1). It should be noted,
however, that application of the same procedure would
result in designing a closed system of the filtering equations
for any polynomial function f (x, t) in (1).

A. Optimal Filter for Bilinear State with Partially Measured
Linear Part over Linear Observations

In a particular case, if the function

f (x, t) = a10(t)+a11(t)x+a12(t)xxT (9)

is a bilinear polynomial, where x is an n-dimensional vector,
a10(t) is an n1-dimensional vector, a11 is an n1×n - matrix,
and a12 is a 3D tensor of dimension n1 ×n×n, the repre-
sentations for E( f̄ (x, t) | FY

t ) and E((x(t)−m(t))( f̄ (x, t))T |

FY
t ) as functions of m(t) and P(t) are derived as follows

(see [6])

E( f̄ (x, t) | FY
t ) = a0(t)+a1(t)m(t)+ (10)

a2(t)m(t)mT (t)+a2(t)P(t),

E( f̄ (x, t)(x(t)−m(t))T ) | FY
t )+ (11)

E((x(t)−m(t))( f̄ (x, t))T | FY
t ) =

a1(t)P(t)+P(t)aT
1 (t)+

2a2(t)m(t)P(t)+2(a2(t)m(t)P(t))T .

where a0(t) = [a10(t),a20(t)], a1(t) = diag[a11(t),a21(t)],
and a2 is a 3D tensor of dimension n× n× n defined as
a2 ki j = a12 ki j, if k ≤ n1, and a2 ki j = 0, otherwise.

Substituting the expression (10) in (6) and the expression
(11) in (8), the filtering equations for the optimal estimate
m(t) = [m1(t),m2(t)] of the bilinear state x(t) = [x1(t),x2(t)]
and the error variance P(t) are obtained

dm(t) = (a0(t)+a1(t)m(t)+ (12)

a2(t)m(t)mT (t)+a2(t)P(t))dt+

P(t)AT (t)(B(t)BT (t))−1[dy(t)−A(t)m(t)dt],

m(t0) = E(x(t0) | FY
t )),

dP(t) = (a1(t)P(t)+P(t)aT
1 (t)+ (13)

2a2(t)m(t)P(t)+2(a2(t)m(t)P(t))T +

b(t)bT (t))dt −P(t)AT (t)(B(t)BT (t))−1A(t)P(t)dt.

P(t0) = E((x(t0)−m(t0))(x(t0)−m(t0))
T | FY

t )),

where A0(t) = [A01(t),A02(t)], A(t) = diag[A1(t),A2(t)],
and B(t) = diag[B1(t),B2(t)].

By means of the preceding derivation, the following result
is proved.

Theorem 1. The optimal finite-dimensional filter for the
bilinear state (1),(2) with partially unmeasured linear part
(2), where the quadratic polynomial f (x, t) is defined by
(9), over the linear observations (3),(4) is given by the
equation (12) for the optimal estimate m(t) = E(x(t) | FY

t )
and the equation (13) for the estimation error variance
P(t) = E[(x(t)−m(t))(x(t)−m(t))T | FY

t ].
Thus, based on the general non-closed system of the

filtering equations (6),(7), it is proved that the closed
system of the filtering equations (6),(8) can be obtained for
any polynomial state (1),(2) with partially measured linear
part (2) over linear observations (3),(4). Furthermore, the
specific form (12),(13) of the closed system of the filtering
equations corresponding to a bilinear state is derived. In the
next section, performance of the designed optimal filter for a
bilinear state with partially measured linear part over linear
observations is verified against a conventional extended
Kalman-Bucy filter.
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IV. EXAMPLE

This section presents an example of designing the optimal
filter for a quadratic-linear state with unmeasured linear part
over linear observations and comparing it to a conventional
extended Kalman-Bucy filter.

Let the unmeasured state x(t) = [x1(t),x2(t)] satisfies the
quadratic and linear equations

ẋ1(t) = 0.1(x2
1(t)+ x2(t)), x1(0) = x10, (14)

ẋ2(t) = 0.1x2(t), x2(0) = x20, (15)

and the observation process is given by the linear equation

y(t) = x1(t)+ψ(t), (16)

where ψ(t) is a white Gaussian noise, which is the weak
mean square derivative of a standard Wiener process (see
[8]). The equations (14)–(16) present the conventional form
for the equations (1)–(3), which is actually used in practice
[10]. Note that only the state quadratic part (14) is mea-
sured, whereas the linear part (15) is not measured at all.

The filtering problem is to find the optimal estimate
for the quadratic-linear state (14)–(15), using linear ob-
servations (16) confused with independent and identically
distributed disturbances modelled as white Gaussian noises.
Let us set the filtering horizon time to T = 6.5.

The filtering equations (6),(8) take the following partic-
ular form for the system (14)–(16)

ṁ1(t) = 0.1(m2
1(t)+P11(t)+m2(t))+ (17)

P11(t)[y(t)−m1(t)],

ṁ2(t) = 0.1m2(t)+P12(t)[y(t)−m1(t)], (18)

with the initial conditions m1(0) = [E(x1(0) | y(0)) = m10
and m2(0) = [E(x2(0) | y(0)) = m20,

Ṗ11(t) = 0.4(P11(t)m1(t))+0.2P12(t)−P2
11(t), (19)

Ṗ12(t) = 0.2(P12(t)m1(t))+

0.1(P12(t)+P2(t))−P11(t)P12(t),

Ṗ22(t) = 0.2P22(t)−P2
12(t),

with the initial condition
P(0) = E((x(0)−m(0))(x(0)−m(0))T | y(0)) = P0.

The estimates obtained upon solving the equations (17)–
(19) are compared to the estimates satisfying the following
extended Kalman-Bucy filtering equations for the quadratic-
linear state (14)–(15) over the linear observations (16),
obtained using the direct copy of the state dynamics (14)–
(15) in the estimate equation and assigning the filter gain
as the solution of the Riccati equation:

ṁK1(t) = 0.1(m2
K1(t)+mK2(t))+ (20)

PK11(t)[y(t)−mK1(t)],

ṁK2(t) = 0.1mK2(t)+PK12(t)[y(t)−mK1(t)], (21)

with the initial conditions mK1(0) = [E(x1(0) | y(0)) = m10
and mK2(0) = [E(x2(0) | y(0)) = m20,

ṖK11(t) = 0.2PK12(t)−P2
K11(t), (22)

ṖK12(t) = 0.1(PK12(t)+PK2(t))−PK11(t)PK12(t),

ṖK22(t) = 0.2PK22(t)−P2
K12(t),

with the initial condition
PK(0) = E((x(0)−m(0))(x(0)−m(0))T | y(0)) = P0.

Numerical simulation results are obtained solving the
systems of filtering equations (17)–(19) and (20)–(22). The
obtained values of the estimates m(t) and mK(t) satisfying
the equations (17)–(18) and (20)–(21), respectively, are
compared to the real values of the state variables x(t) in
(14)–(15).

For each of the two filters (17)–(19) and (20)–(22) and
the reference system (14)–(15) involved in simulation, the
following initial values are assigned: x10 = x20 = 1.1, m10 =
m20 = 0.1, P011 = P012 = P022 = 1. Gaussian disturbance
ψ(t) in (16) is realized using the built-in MatLab white
noise function.

The following graphs are obtained: graphs of the refer-
ence state variables x1(t) and x2(t) for the system (14)–
(15); graphs of the optimal filter estimates m1(t) and m2(t)
satisfying the equations (17)–(19); graphs of the estimates
mK1(t) and mK2 satisfying the equations (20)–(22). The
graphs of all those variables are shown on the entire
simulation interval from t0 = 0 to T = 6.5 (Fig. 1). Note
that the gain matrix entry P11(t) does not converge to zero
as time tends to infinity, since the polynomial dynamics of
third order is stronger than the quadratic Riccati terms in
the right-hand sides of the equation (19).

The following values of the reference state variables
x1(t), x2(t) and the estimates m1(t), m2(t), mK1(t), mK2(t)
are obtained at the reference time points T = 5,6,6.5:
for T = 5, x1(5) = 6.05, m1(5) = 5.69, mk1(5) = 4.40,
x2(5) = 1.81, m2(5) = 1.75, mK2(5) = 2.35; for T = 6,
x1(6) = 16.05, m1(6) = 16.42, mk1(6) = 9.99, x2(6) = 2.00,
m2(6) = 1.97, mK2(6) = 3.47; for T = 6.5, x1(6.5) =
96.99, m1(6.5) = 96.68, mk1(6.5) = 25.33, x2(6.5) = 2.11,
m2(6.5) = 2.09, mK2(6.5) = 6.26.

Thus, it can be concluded that the obtained optimal filter
(17)–(19) for a quadratic-linear state with unmeasured linear
part over linear observations yield definitely better estimates
than the conventional extended Kalman-Bucy filter (20)–
(22). Subsequent discussion of the obtained simulation
results can be found in Conclusions.

V. CONCLUSIONS

The simulation results show that the values of the es-
timate calculated by using the obtained optimal filter for
a quadratic-linear state with unmeasured linear part over
linear observations are noticeably closer to the real values
of the reference variable than the values of the estimate
given by the conventional extended Kalman-Bucy filter.
Moreover, it can be seen that the estimate produced by the
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optimal filter asymptotically converges to the real values of
the reference variables as time tends to infinity, although
the reference system (14)–(15) itself is unstable and the
nonlinear component x1(t) goes to infinity for a finite
time. On the contrary, the conventionally designed extended
Kalman-Bucy estimates diverge from the real values. This
significant improvement in the estimate behavior is obtained
due to the more careful selection of the filter gain matrix in
the equations (17)–(19), as it should be in the optimal filter.
Although this conclusion follows from the developed theory,
the numerical simulation serves as a convincing illustration.
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Fig. 1. Graphs of the reference state variables x1(t) (State 1) and x2 (State
2) satisfying the equations (14)–(15), graphs of the optimal filter estimates
m1(t) (Optimal estimate 1) and m2(t) (Optimal estimate 2) satisfying the
equations (17)–(18), and graphs of the estimates mK1(t) (Kalman estimate
1) and mK2(t) (Kalman estimate 2) satisfying the equations (20)–(21), on
the entire simulation interval [0,6.5].
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