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Abstract— We approach deterministic finite state machines
from a systems point of view and we consider three notions
of input/output stability: finite gain input/output stability,
external stability and incremental input/output stability, as
they apply to this class of systems. We propose linear program-
ming based algorithms for verifying stability of a system, or
lack thereof, in the finite gain input/output and the external
sense. We show that for this class of systems, incremental
input/output stability and external stability are equivalent
notions, stronger than the notion of finite gain input/output
stability.

I. INTRODUCTION

Our interest in deterministic finite state machines (DFM)
stems from our ongoing attempts to use these systems as
approximations of dynamical systems having finite input
and output alphabets [8]. The ultimate goal of our research
is to find a procedure that would enable us to generate,
for a class of systems, nominal finite state machine models
with guaranteed error bounds that are usable for robust
controller synthesis [3]. The issue of stability comes up
in several ways in the context of this approach. Take, for
instance, Hankel model order reduction: the procedure is
applicable to stable LTI systems, is guaranteed to generate
stable reduced order systems, and provides a quantitative
measure of the quality of the approximation in the form of
induced gain bounds that are compatible with robustness
analysis. Similarly for our problem, it makes sense to seek
some notion of stability that is relevant to the question of
existence of good finite state machine approximations, and
to ask whether the approximate models should preserve
this notion of stability. It also makes sense to look for
meaningful gain conditions to quantify the approximation
error and the sensitivity of our nominal model, and hence
of the synthesized closed loop system, to perturbations due
to unmodeled dynamics.

Various notions of stability have been explored for a
range of discrete event and finite state systems. Tradi-
tionally, stability has been understood to mean that the
system’s state converges to some invariant subset of the
states or visits a subset of the states infinitely often. In
[6], logical discrete event systems were considered and two
notions of stability, stability in the sense of Lyapunov and
asymptotic stability, were defined; A Lyapunov function
based approach was proposed for verifying stability of
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logical discrete event systems with a metric state space.
Questions of stability of equilibria and attractiveness of in-
variant sets were addressed for a class of autonomous hybrid
automata in [2], where extensions of LaSalle’s Invariance
Theorem and Lyapunov’s Indirect Method were proposed
for nonblocking hybrid automata having certain properties.
A notion of stability of periodic state trajectories for hybrid
automata was considered in [4]. In [7], a necessary and
sufficient condition for global stability of cyclic linear
differential automata about a periodic trajectory is given.
Notions of asymptotic stability and exponential stability
of invariant sets for hybrid systems defined on an abstract
time space were considered in [9], and sufficient conditions
for stability were presented. An overview of results in
Lyapunov stability of finite-dimensional hybrid systems was
presented in [1], in particular as they pertain to switched
linear systems. In [5], the problem of designing an output
stabilizing controller for discrete-event dynamic systems
was addressed, with the notion of output stability defined
as the requirement that all state trajectories pass through a
given set E infinitely often.

Since our interest in deterministic finite state machines
stems from problems of approximation and robust control,
and keeping in mind that internal stability and input/output
stability are generally decoupled notions in nonlinear sys-
tems, we focus in this paper on three potentially useful
input/output notions of stability: The notion of finite gain
input/output stability, which is widely used in classical
LTI robust control. The notion of incremental input/output
stability, which quantifies the sensitivity of the output of a
system to perturbations in its input, and which is a possible
alternative to the notion of finite gain input/output stability
for robustness analysis of nonlinear systems. The notion
of external stability, which captures the sensitivity of the
output of a system to changes in its initial conditions, and
which was introduced in [8] and shown to be of relevance to
the problem of approximating an analog state system with
finite input alphabet and output quantizer by a deterministic
finite state machine.

II. OVERVIEW OF THE PAPER

A. The Nominal System Model

The nominal system models of interest to us are time
driven, deterministic finite state machines. These models are
understood to be approximations of discrete-time dynamical
systems with finite input and output alphabets.

Definition 1: A deterministic finite state machine (DFM)
S is a set of finite alphabets {U ,Y,Q} and a set of maps
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{f : Q× U → Q, h : Q → Y}.

U is a finite alphabet set of possible instantaneous values
of the input. Thus input signal u is understood to be
an infinite string over alphabet set U . Similarly, Y is a
finite alphabet set of possible instantaneous values of the
output. Q is a finite set of states of the machine. f is the
state transition function. h is the output function, assumed,
without lack of generality, to define a partition on Q. The
input and output alphabet sets, U and Y , are assumed
to be subsets of the set of integers containing zero. This
assumption is not too restrictive, since an arbitrary finite
set of symbols can always be bijectively mapped to a finite
subset of the set of integers. What constitutes a meaningful
way of defining such a mapping depends on the specifics
of the particular problem: a primary issue is to identify a
value of the input and a value of the output, associated with
some nominal configuration of the system, to be mapped to
the integer zero.

B. The Scope of the Paper

We consider deterministic finite machines, and we define
three notions of input/output stability as they apply to this
class of systems: finite gain input/output stability, external
stability and incremental input/output stability. We present
algorithms for verifying stability of a given machine S,
or the lack thereof, for each of the notions considered.
We also explore the relation between these three notions
for the systems of interest: We show that the notions of
external stability and incremental input/output stability are
equivalent for this class of systems, and that input/output
stability is a weaker notion.

III. NOTIONS OF STABILITY

We begin by precisely defining three notions of in-
put/output stability as they apply to the systems of interest.

A. Finite Gain Input/Output Stability

Definition 2: A deterministic finite state machine S is
said to be finite gain input/output stable if there exists finite
non-negative constants C and γ such that the inequality:

T∑
t=0

|y(t)| ≤ C + γ

T∑
t=0

|u(t)| (1)

holds for all time T ≥ 0, for all initial conditions of the
system and for all admissible input sequences.

For a system that is input/output stable, the greatest lower
bound of γ is called the gain of S and denoted by γo.

B. External Stability

Definition 3: A deterministic finite state machine S is
said to be externally stable if the following two conditions
are satisfied:

(a) S is finite gain input/output stable

(b) There exists a finite time τ > 0 such that for every
input {u(t)}∞t=0 and for any two initial conditions
of the system, q1(0) and q2(0), the corresponding
outputs {y1(t)}

∞
t=0 and {y2(t)}

∞
t=0 satisfy y1(t) =

y2(t) for all t ≥ τ

C. Incremental Input/Output Stability

For any set A, define a function d : A×A → {0, 1} by
the following rule:

d(x, y)
.
=

{
0 if x = y

1 otherwise
(2)

Function d defines a metric that induces the discrete topol-
ogy on set A.

Definition 4: A deterministic finite state machine S is
said to be incrementally input/output stable if the following
two conditions are satisfied:

(a) There exists a finite time τ̂ > 0 such that the
output of S corresponding to an all zero input
satisfies y(t) = 0 for t ≥ τ̂ , for any initial
condition

(b) There exists finite, non-negative constants Ĉ and
γ̂ such that for any two pairs of input se-
quence and initial state, ({u1(t)}

∞
t=0, q1(0)) and

({u2(t)}
∞
t=0, q2(0)), the corresponding outputs,

{y1(t)}
∞
t=0 and {y2(t)}

∞
t=0, satisfy the inequality:

T∑
t=0

d(y1(t), y2(t)) ≤ Ĉ + γ̂

T∑
t=0

d(u1(t), u2(t))

(3)
for all time T ≥ 0.

For a system that is incrementally input/output stable, the
greatest lower bound of γ̂ is called the incremental gain of
S and denoted by γ̂o.

IV. VERIFYING STABILITY

A. Verifying Finite Gain Input/Output Stability

Lemma 1: Let S be a deterministic finite state machine.
The following two statements are equivalent:

(a) S is finite gain input/output stable
(b) There exists a finite time τ > 0 such that the

output of S corresponding to an all zero input
satisfies y(t) = 0 when t ≥ τ for any initial
condition

Proof: First, we prove the statement (a) ⇒ (b): When
S has finite gain and u(t) = 0 for all time t, the gain
condition eq (1) reduces to

∑T

t=0
|y(t)| ≤ C for all T ≥ 0.

But C is finite and y takes its values in a subset of the set
of integers. Hence there must exist some finite time τ such
that y(t) = 0 for all t ≥ τ .
To prove the statement (b) ⇒ (a), suppose that S is not finite
gain input/output stable. Then there must exist at least one
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feasible state trajectory, beginning and ending at the same
state, and such that the cumulative input that drives the
system once along this cyclic trajectory is exactly zero while
the cumulative output of the system as its state evolves once
along this cyclic trajectory is strictly positive. For if that
were not the case, then a sufficiently large but finite choice
of C and γ would guarantee that the gain condition, eq (1),
holds. (For instance, C = γ = nl where n = card(Q)
and l = maxy∈Y |y| would be one such possible choice).
Therefore, the response of S to an all zero input string when
the system is initialized to any of the states of this cycle
can never settle to zero. �

Lemma 1 seems to be a negative statement in the sense
that for the systems of interest, finiteness of the gain does
not tell us very much about the input/output behavior of
the system beyond its ’autonomous’ behavior, and even
less about the sensitivity of the system to perturbations. It
remains to be seen whether this notion of stability can be
of use within a robust analysis and control framework.

Intuitively, Lemma 1 says that S is finite gain in-
put/output stable iff all its zero input state trajectories
converge to an invariant subset of Q that only contains states
whose corresponding output is zero. The next result builds
on this intuition.

Let Qo = {q ∈ Q | h(q) = 0}. Define an indicator
function θ : Q → {0, 1} by the following rule:

θ(q)
.
=

{
0 q ∈ Qo

1 otherwise
(4)

Theorem 1: S is finite gain input/output stable if and
only if there exists a non-negative function of the state,
V : Q → R

+ such that eq (5) holds for all qi ∈ Q:

V (f(qi, 0)) − V (qi) ≤ −θ(qi) (5)

Proof : To prove sufficiency, note that when u(t) = 0 for
all t ≥ 0, eq (5) implies that:

V (q(t + 1)) − V (q(t)) ≤ −θ(q(t)) (6)

holds for all t ≥ 0. Hence for any initial condition q(0),
and for any time T > 0, by summing up eq (6) along the
state trajectory from t = 0 to t = T , we get:

V (q(T + 1)) − V (q(0)) ≤ −

T∑
t=0

θ(q(t)) (7)

Hence, we have:

V (q(0)) ≥

T∑
t=0

θ(q(t)) (8)

There must exist some finite time τ such that θ(q(t)) = 0
for t ≥ τ , otherwise the summation on the right hand side
of eq (8) can be made infinite and hence V (q(0)) would
be infinite as well, which is not the case when the linear
program is feasible. Hence y(t) = h(q(t)) = 0 for all t ≥ τ

and S is finite gain input/output stable by Lemma 1.

To prove necessity we assume S is finite gain input/output
stable and we explicitly show how to construct a function
V that satisfies eq (5). Define function V : Q → R

+ by
the following rule:

V (qi) =

∞∑
t=0

|yi(t)| (9)

where {yi(t)} is the output trajectory corresponding to
initial state qi and an all zero input string. Since S is finite
gain input/output stable, by Lemma 1 there exists a time τ

such that yi(t) = 0 for t ≥ τ . Hence, function V is bounded
and non-negative by construction. Moreover, we have:

V (f(qi, 0)) − V (qi) =
τ∑

t=0

|yk(t)| −
τ∑

t=0

|yi(t)| (10)

where {yk(t)} is the output trajectory corresponding to
initial state qk = f(qi, 0) and an all zero input string. But,
for any i, we have:

τ∑
t=0

|yi(t)| =
τ∑

t=0

|yk(t)| + |h(qi)| (11)

and also:
|h(qi)| ≥ θ(qi) (12)

Hence, the inequality V (f(qi, 0)) − V (qi) ≤ −θ(qi) holds
for every qi ∈ Q. �

Therefore, the problem of verifying finite gain in-
put/output stability of a given finite state machine with
n states is equivalent to checking feasibility of a linear
program of the form Ax ≥ b, x ≥ 0, where the compo-
nents of x, the n-dimensional vector of decision variables,
correspond to the values of the function V at each point
in Q. Matrix A is an n × n matrix of 0’s, 1’s and −1’s.
Each row of A is either identically zero or consists of a
“1” entry along the diagonal and a “-1” elsewhere. Vector
b is an n-dimensional vector of 0’s and 1’s.

Once the finite gain input/output stability of a DFM has
been established, its gain can be computed, if desired, using
a bisection algorithm based on Theorem 1 in [3].

B. Verifying External Stability

Let Q̂o = {(q1, q2) ∈ Q2 | h(q1) = h(q2)}. Define an
indicator function φ : Q2 → {0, 1} by the following rule:

φ(q1, q2)
.
=

{
0 (q1, q2) ∈ Q̂o

1 otherwise
(13)

Theorem 2: S is externally stable if and only if it is finite
gain input/output stable and there exists a non-negative
function V : Q2 → R

+ such that eq (14) holds for all
pairs of states (q1, q2) ∈ Q2 and for all u ∈ U .

V ((f(q1, u), f(q2, u))) − V ((q1, q2)) ≤ −φ(q1, q2) (14)

Proof : To prove sufficiency, suppose that S is finite gain
input/output stable and that function V with the desired

3934



properties exists. Note that for any input {u(t)}∞t=0 and for
any two initial conditions q1(0) and q2(0), eq (14) implies
the following inequality holds for all segments of the
corresponding state trajectories {q1(t)}

∞
t=0 and {q2(t)}

∞
t=0:

V (f(q1(t), u(t)), f(q2(t), u(t))) − V (q1(t), q2(t))

≤ −φ(q1(t), q2(t)) (15)

Eq (15) is satisfied for all t ≥ 0. Hence, by summing up
eq (15) from t = 0 to t = T , we obtain:

V (f(q1(T ), u(T )), f(q2(T ), u(T )))− V (q1(0), q2(0))

≤ −
T∑

t=0

φ(q1(t), q2(t)) (16)

Thus, for any T > 0 we have:

V (q1(0), q2(0)) ≥

T∑
t=0

φ(q1(t), q2(t)) (17)

Since the linear program is assumed to be feasible,
V (q1(0), q2(0)) is bounded. Hence, for every input se-
quence {u(t)}, there must exist some finite time τ > 0
such that φ(q1(t), q2(t)) = 0 for all t ≥ τ . Moreover,
the smallest such time τ is bounded above by n2, where
n = card(Q). For if that were not the case, we can
construct an input sequence for which no such τ exists,
leading to a contradiction. Therefore, there exists a finite
time τ > 0 such that for any pair of initial conditions
(q1(0), q2(0)), and for any input sequence {u(t)}∞t=0, the
corresponding output sequences match starting at time τ :
y1(t) = y2(t) for all t ≥ τ .
To prove necessity, assume that S is externally stable.
Thus there exists a finite time τ > 0 such that for any
input sequence {u(t)}∞t=0 and for any pair of initial con-
ditions, (q1, q2) ∈ Q2, the corresponding output sequences
{y1(t)}

∞
t=0 and {y2(t)}

∞
t=0 satisfy y1(t) = y2(t) for all

t ≥ τ , or equivalently d(y1(t), y2(t)) = 0 for all t ≥ τ .
Define function V : Q2 → R

+ by the following rule:

V (q1, q2)
.
= max

u∈U∞

∞∑
t=0

d(y1(t), y2(t))

.
= max

u∈Uτ

τ∑
t=0

d(y1(t), y2(t)) (18)

V is bounded and non-negative by construction. To show
that V satisfies eq (14), note that for any pair (q1, q2) ∈ Q2

and for any input u ∈ U we have:

V (q1, q2) ≥ V (f(q1, u), f(q2, u)) + φ(q1, q2) (19)

Equality is achieved when an optimal pair of state tra-
jectories ({qo

1(t)}, {q
o
2(t)}), corresponding to initial states

qo
1(0) = q1 and qo

2(0) = q2 and whose corresponding output
trajectories ({yo

1(t)}, {y
o
2(t)}) define the value of V (q1, q2),

are such that qo
1(1) = f(q1, u) and qo

2(1) = f(q2, u). �

Therefore, the problem of verifying that a finite gain
input/output stable DFM system S with n states is ex-
ternally stable is equivalent to the problem of checking
feasibility of a linear program of the form Ax ≥ b, x ≥ 0.
The components of x, the n2-dimensional vector of decision
variables, correspond to the values of the function V at each
point in Q2. Matrix A consists of 0’s, 1’s and −1’s and has
dimension an2×n2, where a is the cardinality of the input
alphabet set U . The entries along each row of A sum up to
zero and include at most two non-zero values. Vector b is
an n2-dimensional vector of 0’s and 1’s.

It will be shown in the next section that the problem of
verifying incremental input/output stability for this class of
systems is equivalent to the problem of verifying external
stability.

V. RELATION BETWEEN NOTIONS OF
STABILITY

In this section, we explore the relation between the three
notions of input/output stability stability considered for
deterministic finite state machines.

Theorem 3: Let S be a finite state machine and consider
the following three statements:

(a) S is incrementally input/output stable
(b) S is externally stable
(c) S is finite gain input/output stable

The statement (a) ⇔ (b) ⇒ (c) is true. The statement (c)
⇒ (b) is not true.

Proof: The implication (b) ⇒ (c) follows immediately
from Definition 3.
To show that (a) ⇒ (b), note that when u1(t) = u2(t) for
all t, eq (3) reduces to

∑T

t=0
d(y1(t), y2(t)) ≤ Ĉ, for all

T ≥ 0. Since Ĉ is finite and function d takes on values in
{0, 1}, there exists some finite τ such that d(y1(t), y2(t)) =
0 for all t ≥ τ , regardless of initial conditions. Moreover,
it follows from Definition 4 and Lemma 1 that S is finite
gain input/output stable. Hence, S is externally stable.
To show that (b) ⇒ (a), suppose that S is not incrementally
input/output stable. Then there exists a pair of initial states
(qo

1 , q
o
2) and a pair of inputs ({u1(t)}, {u2(t)}) that differ

by only a finite number of terms, and whose corresponding
outputs {y1(t)} and {y2(t)} differ by an infinite number of
terms. For this choice of initial states and inputs, let to ≥ 0
be the smallest time such that: u1(t) = u2(t) for t ≥ to.
The corresponding outputs {y1(t)} and {y2(t)} satisfy the
condition that for every t ≥ to, there exists some τ ≥ t such
that y1(τ) �= y2(τ). Now consider input {u(t)} defined as
follows:

u(t)
.
= u1(t + to) (20)

Set q1(0) equal to the state of the machine S at time
to when S is initialized to qo

1 and driven by input u1.
Similarly, set q2(0) equal to the state of the machine S

at time to when S is initialized to qo
2 and driven by input

u2. Note that by construction, there cannot exist a time τ

3935



0

1

1

0, 1

0

q1 q2

q3

Fig. 1. Counterexample 1: State transition diagram

such that the outputs of S corresponding to ({u(t)}, q1(0))
and ({u(t)}, q2(0)) become equal for all t ≥ τ . Hence S is
not externally stable.
To show that the statement (c) ⇒ (b) does not hold, we
give the following counterexample.
Counterexample 1: Consider a finite state machine S with
3 states, Q = {q1, q2, q3}, with binary input and output
alphabet sets U = Y = {0, 1} and with transition function
f defined by the rule:

f
.
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f(q1, 0) = q1

f(q1, 1) = q3

f(q2, 0) = q2

f(q2, 1) = q1

f(q3, 0) = q2

f(q3, 1) = q2

(21)

The state transition diagram of this machine is given in
Figure 1. The output function h is defined by the rule:

h
.
=

⎧⎨
⎩

h(q1) = 0
h(q2) = 0
h(q3) = 1

(22)

By inspection, it is easy to see that this system is finite
gain input/output stable since the only zero-input cyclic
trajectories are the self transitions of q1 and q2, both states
for which the output is zero. To check this formally, note
that function V taking the value 0 at q1 and q2 and taking
the value 1 at q3 is a feasible solution to the linear program
proposed in Theorem 1.
However, this system is clearly not externally stable; When
the initial state is q(0) = q1 and the input is constantly 1,
the output is 0100100100 . . .. On the other hand, when the
initial state is q(0) = q3 and for the same input as before,
the output is 1001001001 . . .. By inspection, the outputs
cannot become equal from some time τ and on. �

Remark 1: The equivalence between the notions of exter-
nal stability and incremental input/output stability is specific
to deterministic finite state machines. We do not expect this
result to carry through in the general setting for arbitrary
nonlinear systems.

VI. CONCLUSIONS AND FUTURE WORK

We considered deterministic finite state machine systems
and defined three notions of input/output stability as they
apply to this class of systems: finite gain input/output
stability, external stability and incremental input/output sta-
bility. We proposed linear programming based algorithms to
verify stability in the finite gain input/output sense and the
external sense. We showed that the notions of incremental
input/output stability and of external stability are equivalent
for this class of systems. We also showed that they are much
stronger than the notion of input/output stability for this
class of systems. This is not a surprising result since the
systems in question are not linear, and it is well known
that nonlinear systems can have small gain and infinite
incremental gain.

On the negative side, the problem of external stability
verification may not be practically computable for many
machines of interest (based on our results, in order to
verify external stability of a machine of size n, we need
to check feasibility of a linear program with n2 decision
variables). Future work will focus on constructing more
efficient algorithms for external stability verification and
computation of incremental gain bounds. Moreover, it is yet
to be shown that these notions of stability can be used to
express practical control objectives or to formulate robust-
ness criteria, as in the case of classical robust control. Thus,
another research direction is exploring the utility of these
three notions in a robust analysis or control framework.
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