
2005 American Control Conference 
June 8-10, 2005. Portland, OR, USA 

FrA16.3 

Missile Autopilot Design using Adaptive Nonlinear 
Dynamic 

Rick Hindman, Ph.D. 
Raytheon Missile Systems 

Tucson, AZ USA 
Rick.Hindman@raytheon.com 

Abstract-This paper describes the continuing project Adap- 
tive Nonlinear Dynamic Inversion (ANDI). The ANDI autopilot 
uses non-linear dynamic inversion with an adaptive element to 
account for any errors in the inversion. A reference model is 
included to provide the desired output performance. This allows 
the missile performance to be tuned by simply adjusting the 
reference model parameters. This will result in a design that is 
robust with respect to aerodynamic modeling inaccuracies and 
to extenal disturbances. 

I. INTRODUCTION 

The typical missile autopilot use gain scheduling where 
the gains are designed using system linearization and linear 
methods. There are some problems when using the method. 
Gain scheduling assumes that flight condition changes slowly. 
When flight condition changes rapidly, the resultant autopilot 
may not possess the stability properties of the linear control 
designs displayed at their local flight conditions. System 
modifications or significant payload variations would require 
an autopilot design for each contingency. 

The nonlinear autopilot design (ANDI) presented in [ 11 
and this paper is based on the work presented in [2],[3]. 
ANDI does not involve gain scheduling, it uses dynamic 
inversion (DI) to account for changes in the missile dynamics 
with flight condition. Since DI is not robust to modeling 
errors, ANDI includes an adaptive control element with an 
artificial neural network (ANN). The ANN is designed to 
correct those errors as well as other small magnitude errors. 
A reference model is used to provide the idealized closed-loop 
behavior for the missile system. The response of the reference 
model to the desired acceleration commands is measured and 
the autopilot controls the missile to mimic that response. 
Pseudo control hedging (PCH) is included to avoid actuator 
saturation which may result in incorrect ANN learning [4]. 
PCH uses an actuator model with rate and position saturations 
to estimate the actual response of the fins to the fin commands. 
The difference between the achieved and the commanded 
fin deflections can then be used to adjust the behavior of 
the reference model when it identifies a response that is too 
aggressive for the actuators. 

11. ANDI 

The ANDI autopilot is designed to cover the entire flight 
envelope without gain scheduling. Variation of parameters in 
the DI allows the designer to control the shape of the response 
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at different flight conditions. When the dynamic pressure 
is high, such as at low altitude and high Mach, changes in 
the parameters allow a more aggressive missile response than 
when the dynamic pressure is much lower. Parameter selection 
will be a much simpler and less extensive task than designing 
a gain schedule. Figure 1 shows a top level block diagram 
for the ANDI system. 

Fig. 1. ANDI Top Level Block Diagram 

The "External Commands" models guidance commands. 
These commands are issued to the "Reference Model" which 
produces the desired command trajectory. This trajectory is 
the input to the "Nonlinear DI Autopilot" and the ANN located 
inside the "Adaptive Control". The ANN augments the DI 
based on a Lyapunov learning rule in order to achieve the 
desired trajectory. The "PCH" adjusts the "Reference Model" 
maintaining the trajectory within system capability. The DI 
with the ANN produce fin commands for the "Actuators" 
which produces fin deflections. The equations of motion, 
"Missile EOM", use the fin deflections to generate body 
angles, forces, and moments. The "Sensors" observes the 
changes in the missile state and produces feedback information 
for the autopilot within the accuracy of the sensors. 

A.  Dynamic Inversion 
DI is a specific type of feedback linearization where the 

nonlinear plant dynamics are inverted and used as feedback. 
This technique requires exact knowledge of the plant dy- 
namics. This requirement can be overcome by including an 
adaptive element to correct for inaccuracies. Typically DI 

391 8 



can only be applied to systems that are minimum phase. Tail 
controlled missiles are non-minimum phase when acceleration 
at the center of gravity (CG) is used as a system output. This 
problem is overcome using DI on the autopilot inner loop only, 
which redefines the output to be minimum phase. [5] [3] [6] 

B. Adaptive Neural Network 
There are two methods of adaptive control: direct and 

indirect. The indirect method involves an adaptive system 
that produces estimates of system parameters. With the direct 
adaptive method, the algorithm adjusts the control parameters 
directly, which may not translate to physical system parameters 
at all. One method of direct adaptive control uses ANNs which 
are widely used for their ability to accurately approximate 
continuous nonlinear functions. When used to augment DI, 
ANNs can help remove the effects of system and aerodynamic 
modeling inaccuracies. This paper is restricted to multilayer 
feedforward networks. The weights of the various layers are 
trained using an online update law, designed using a Lyapunov 
stability proof. The resultant system modifies the weights 
continuously and augments the computed control signal. This 
increases the robustness of the DI autopilot to uncertainties in 
the inversion parameters. [2] [3] 

C. Supporting Technologies 
1) Model Following: The reference model provides the 

ideal closed loop behavior of the system. The reference 
models used in the ANDI autopilot are second order in 
observability canonical form. This form for the reference 
model is specified by the ANN and the EO. As long as the 
error observer is of the required form then the ANN training 
laws will work as intended. For a system attempting to 
follow a step input, large errors are immediately observed by 
the autopilot. These errors will generate, through feedback 
signals, large control commands which drive the system to 
the commanded levels rapidly. When a continuous reference 
model replaces the step command the initial errors observed 
by the autopilot are small and grow slowly producing a 
slow response. Therefore in order to accurately follow a 
given reference model trajectory, the autopilot must provide 
lead using feed-forward signals computed from the desired 
trajectory. 

2) Output Redefinition: In order to use DI on non-minimum 
phase systems, the autopilot is separated into two elements, an 
inner loop and an outer loop. [3] The inner loop is minimum 
phase and suitable for DI while the outer loop maintains 
the non-minimum phase characteristics of the system. To 
bridge the two elements, the output of the outer loop is 
redefined in terms of the appropriate minimum phase variables, 
a combination of a and q in the pitch channel and /3 and r in 
the yaw channel. 

3) Outer Loop Control: The outer loop control stabilizes 
system accelerations using classical P1 control techniques. 
ANDI uses PI control on the error signals. The gains for 
the PI control are calculated using the desired 5‘ and w of 
the outer loop transfer function. The outer loop control also 

includes a feed forward term based on the commands from 
the reference model. 

4) Error Observer: The weight training laws of each artifi- 
cial neural network require knowledge of the error between the 
model state and the missile state. However, only the missile 
output (acceleration) is available, not the state. Using an error 
observer driven by the output error, an estimate of the state 
error is obtained. [ 2 ]  The error observer model is a LTI system 
based on the reference model dynamics. In order to match the 
minimum phase characteristics of the reference model outputs, 
the plant outputs are converted to minimum phase. 

5) Pseudo Control Hedging: A commanded control level 
may not be fully achieveable due to fin rate or position 
saturation. The achieved actuator position can be estimated 
by modeling the response of the actuators to command. The 
pseudo control hedging signal is the amount of pseudo control 
lacking due to actuator saturations. [4] In the ANDI model, 
the command is produced not by the reference model, but 
from the outer loop acting on the commanded and measured 
accelerations. 

111. CONCLUSION 
This paper has presented an introduction to the ANDI 

autopilot on a skid-to-turn missile model. The commanded 
accelerations are processed by a reference model to provide 
the desired missile behavior. The ANN uses the response 
from the reference model and the DI autopilot to remove 
inversion errors and adjust the control signal to the actuators 
to achieve the desired acceleration response. The outer loop 
control maintains the non-minimum phase characteristics of 
the system while the inner loop control generates the minimum 
phase control signal used by the DI. PCH is used to adjust 
the reference model response when it would drive the system 
beyond the physical capabilities of the actuators. 
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