
Finite Horizon Optimal Control of Switched Distributed
Parameter Systems with Moving Actuators

Michael A. Demetriou and Orest V. Iftime

Abstract— The objective of this work is to provide a
theoretical formulation for optimal switching of a moving
(or scanning) actuator for distributed parameter systems.
The proposed hybrid controller switches both the location
and control signal of the plant at the beginning of a time
interval and remains unchanged over the duration of the time
interval. This is repeated for different time intervals. The
method employed is based on LQR optimal control. First,
a set of admissible locations for which the moving actuator
can reside at throughout the duration of a given time interval
is considered. Guiding the moving actuator at these a priori
selected positions at different time intervals is made possible by
solving a double optimization problem. Further, an optimal set
of admissible locations at which the moving actuator can reside
at throughout the duration of a given time interval is chosen.
A numerical example with simulation results is presented.
KEYWORDS: Moving actuator, actuator scheduling, dis-
tributed parameter systems (DPS), optimal control, hybrid
systems, switched systems.

I. INTRODUCTION

The motivation of this work stems from recent work deal-
ing with issues pertaining to the optimal (in certain sense)
placement of actuators and sensors for DPS. For example,
a commonly used method in flexible structures, employs
modal controllability and observability indices/grammians
to judiciously locate sensors and actuators for flexible space
structures (FSS). A more detailed treatment of this along
with a rather exhaustive and very descriptive survey on
actuator and sensor placement for FSS can be found in the
book by Gawronski [12], the book by Moheimani [15] and
also in the survey of van de Wal and de Jager in [18].
For highly dissipative linear parabolic systems, methods
based on numerical considerations were presented by Burns
and King [2], and Burns and Rubio [3]. An analog to a
portion of the current manuscript which is in the same
spirit, namely using LQR/LQG control measures to find
the optimal actuator and sensor locations was presented by
Geromel, [13], [6] for finite dimensional systems.

The rationale for this note is based on the tenet that
as the ultimate goal of the control task is the design and
implementation of the best (with respect to an appropriate
measure) controller (robust, cheap), then the choice of the
actuator/sensor location should naturally be based on a
control point of view. Specifically, using optimal control law
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based on Linear Quadratic Regulator (LQR) or, in the ab-
sence of full state measurements, Linear Quadratic Gaussian
(LQG), the idea is to embed the actuator/sensor location
problem into the control design problem. To be precise, for
arbitrary but fixed actuator and sensor location, one can
obtain the optimal value associated with the H2/LQG, or
alternatively H∞, performance index. Finding the minimum
of this optimal value (of the performance index) would then
give the “best” location over all possible combinations of
sensor and actuator locations. If the problem at hand is
to minimize the performance index by finding a control
policy, then to find the minimum over all optimal values
appears to be the truly optimal way of choosing the sensor
and actuator locations. This was treated in the book by
Omatu and Seinfeld [16] and references therein where both
the optimal sensor and actuator locations for a class of
distributed parameter systems were found using LQR-type
measures. This was also treated in [7] for systems governed
by parabolic PDEs.

In the case of moving actuators, which is the main focus
of this manuscript, fewer results can be found, see for
example [8], [9]. Whether one has many actuators, activates
only one during a given time interval and switches to a
new actuator in a subsequent time interval, or has a single
actuator that is mobile and resides at a specific location for
the duration of a certain time interval, it has little effect
on the proposed algorithm as the two cases are in fact
equivalent. The treatment here is somewhat different from
earlier efforts of a moving actuator in FSS, in the sense
that it is based on minimizing the optimal value of a perfor-
mance index over a time interval in order to find the optimal
actuator position for that interval, as opposed to considering
observability/controllability and energy measures. While
earlier works [8], [9] concentrated on the switching of force
or moment actuators on flexible structures using LQR/LQG
measures, they only provided a suboptimal algorithm for
the actuator scheduling based on the solution of an associate
Algebraic Riccati Equation (ARE). This approach sacrificed
actuator switching optimality in favor of computational
efficiency. A similar scheme was presented in [11], [17],
[10] for thermal manufacturing systems which are governed
by parabolic DPS and which similarly used a suboptimal
actuator guidance policy in order to attain ease of real-time
implementation and achieve savings in computational load.

The system under consideration is assumed to have
multiple but finite actuator candidate positions with only
a single location used by the actuating device over a
certain time interval. The position of the activating device
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changes at the beginning of a new time interval and re-
mains unchanged throughout the duration of the interval.
If power restrictions/considerations only allow a smaller
set (or even just one) of the available actuators to be
active in a given time interval, then a performance-based
actuator allocation would exhibit enhanced performance
over a stationary actuator allocation would. By assuming
a fixed dwell time, necessary for stability under switching
[14], the choice of the actuator location will be changing at
the beginning of each new time interval using a performance
criterion. The novelty here is that both the actuator position
and its associated stabilizing control signal are switched at
the beginning of every time interval using a performance
criterion.

The problem under study is formulated in the next sec-
tion. Prior results on the finite horizon optimal control are
summarized in Section 3. The algorithm for the controller
and actuator switching for a family of switched distributed
parameter systems is given in Section 4 along with a proof
of the optimality of the algorithm. An example of the heat
equation system described by a parabolic partial differential
equation along with its numerical results are presented in
Section 5. Conclusions with directions for future research
are also included in Section 6.

II. OPTIMAL CONTROL PROBLEMS ON A
FINITE-TIME INTERVAL

Let (Sp)p∈P , for some index set P , be the family of linear
continuous-time systems which, for each fixed p ∈ P , is
given by a state linear system (A,Bp,Cp) of the form

(Sp)




d
dt

z(t) = Az(t)+Bpu(t),

y(t) = Cpz(t)
(1)

where the operator A is the infinitesimal generator of a
strongly continuous semigroup T (t) on a Hilbert space Z,
and Bp and Cp are bounded linear operators from a Hilbert
space U to Z, and from Z to a Hilbert space Y , respectively.
We consider the finite-time interval [t0, t f ]. To (Sp)p∈P , the
set of all possible switches between the given systems

Σ = {σ | σ : [t0, t f ] → P piecewise constant}

is associated. The family of switched systems ((Sp)p∈P ,Σ)
taken under consideration in this paper are the hybrid
dynamical systems consisting of the family of continuous-
time systems (Sp)p∈P together with all switching rules
σ ∈ Σ, all initial states z(0) = z0 ∈ Z, and all inputs u ∈
L2([t0, t f ];U). Denote by t0 < t1 < t2 < ... < tn = t f , where
n ∈N\{0}, the finite set of switching time instants, namely
the discontinuities of the switching functions σ.

Suppose that a switching function σ, an initial condi-
tion z0 and an input u are given. Then, on each inter-
val {[ti, ti+1)}n−1

i=0 , the state zσ(t) of the switched system
((Sp)p∈P ,σ) is the mild solution of the Cauchy problem

(1) (see [5, Chapter 3]), i.e. for ti ≤ t ≤ ti+1

zσ(t) = T (t)zσ(ti)+
t

ti
T (t − s)Bσ(ti)u(s)ds. (2)

Then, the output trajectory on each interval {[ti, ti+1)}n−1
i=0 is

yσ(t) = Cσ(ti)zσ(t). (3)

The initial conditions at the beginning of each interval are
{zσ(ti)}n−1

i=0 , and they are considered to be the end values of
the solution on the previous time-interval. Consequently, the
mild solution of any of the switched system ((Sp)p∈P ,σ)
is continuous. With the trajectories (2),(3) we associate the
following cost functional

Jσ(z0;u, t0, t f ) = 〈zσ(t f ),Mzσ(t f )〉
+

t f

t0

(
〈yσ(s),yσ(s)〉+ 〈u(s),Ru(s)〉

)
ds,

(4)

where z0 ∈ Z is the initial condition, u ∈ L2([t0, t f ];U) is the
input trajectory, M is a self-adjoint, nonnegative, bounded
operator on Z and R is a coercive, bounded operator on U .

The aim is to minimize the cost (4) over all possible
trajectories (2),(3) of the switched systems from the given
family ((Sp)p∈P ,Σ). One can formulate the following dou-
ble optimization problem.

Problem 1: Given a family of switched systems
((Sp)p∈P ,Σ), and an initial condition z0 ∈ Z, find an op-
timal control uopt ∈ L2([t0, t f ];U) and an optimal switching
function σopt ∈ Σ that minimize the cost functional (4) over
all possible trajectories (2),(3). In other words, find

Jopt = min
σ∈Σ, u∈L2([t0,t f ],U)

Jσ(z0;u). (5)

Additional assumptions, motivated from engineering appli-
cations and specifically thermal manufacturing [10], are
introduced. In these manufacturing applications, the actu-
ator device (heat source) can most likely be mounted on a
robotic arm, and thus cannot transverse large distances in in-
finitesimal time intervals. In addition, due to computational
restrictions, on-line optimization at every time instance is
not feasible. Instead, it is assumed that the moving actuator
can reside at a given location for a time interval of small
duration (dwell time) whose length is dictated by hardware
limitations and bandwidth, and closed loop system stability
bounds. Thus, we will look at the optimal problem at each
of the subintervals. For simplicity, in this exposition we
consider time intervals of constant length.

Assumption 1 (Finite candidate locations): There are
only a finite number m ≥ 2 of admissible locations for the
moving actuator. Denote by P m = {p1, p2, . . . , pm} ⊂ P the
corresponding index set, and by Σm the set of switching
functions σ.

Assumption 2 (Zero transverse time): The time required
by the actuating device to transverse from location p1 ∈ P
at the end of the time interval [ti, ti +∆t] to location p2 ∈ P
for the subsequent interval [ti + ∆t, ti + 2∆t] is negligible
and may be assumed to be zero, i.e. one has inertialess
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moving source. Alternatively, one may assume that there
are many actuators available, and only one is to be activated
and remain active throughout a given time interval. Thus the
actuator at location p1 ∈ P will be active during the time
interval [ti, ti +∆t] and the actuator at location p2 ∈ P will
be activated for the subsequent interval [ti +∆t, ti +2∆t] with
no additional time required for activating and disengaging
p2 and p1, respectively.

Assumption 3 (Minimum residence time): The choice of
the residence time ∆t is chosen to be larger than the
minimum dwell time τd [14], allowable for stability under
switching.

Under the above assumptions, one may now formulate
the following two optimal problems.

Problem 2: Given a family of switched systems
((Sp)p∈P m ,Σm) which satisfies Assumptions 2 and 3,
and an initial condition z0 ∈ Z, find an optimal control
uopt ∈ L2([t0, t f ];U) and an optimal switching function
σopt ∈ Σ that minimize the cost functional Jσ(z0;u, t0, t f )
over all possible trajectories (2),(3), i.e. solve

Jm
opt(z0; t0, t f ) = min

σ∈Σm, u∈L2
Jm

σ (z0;u, t0, t f ). (6)

Problem 3: Given a family of switched systems
((Sp)p∈P ,Σ) which satisfies Assumptions 2 and 3, and
an initial condition z0 ∈ Z, find an optimal P m

opt ⊂ P that
minimizes

Jopt = min
P m

opt⊂P
Jm

opt . (7)

Problem 2 and Problem 3 have two, respectively three,
degrees of freedom. We seek an optimal control from a
class of available controls. Problem 2 and Problem 3 can
be found in the general classification provided in [4, Figure
1.4, page 45].

An algorithm for solving the optimal control problem on
a finite-time interval for switched distributed parameter sys-
tems will be proposed after recalling some standard results
from optimal control for distributed parameter systems.

III. STANDARD OPTIMAL CONTROL ON A
FINITE-TIME INTERVAL

In this section we summarize well-known results from
[5, Chapter 6]. For each fixed actuator location p ∈ P m, let
Mp be a self-adjoint, nonnegative, bounded operator on Z
and R as in (4). The optimal control signal that minimizes
the finite horizon cost on the finite time interval [ta, tb]

Jp(z0; ta, tb,u) = 〈zp(tb),Mpzp(tb)〉
+

tb

ta

(
〈yp(s),yp(s)〉+ 〈u(s),Ru(s)〉

)
ds,

(8)

over all trajectories of the system Sp (σ(t) = p for all t ≥ 0),
z0 = z(ta), is given by

uopt
p (t;z0, ta, tb) = −R−1B∗

pΠp(t)z
opt
p (t;z0, ta, tb)

= Kp(t)z
opt
p (t;z0, ta, tb),

(9)

with Kp(t) � −R−1B∗
pΠp(t). The optimal state,

zopt
p (t;z0, ta, tb), is the mild solution of the abstract

evolution equation

d
dt

z(t) = (A−BpKp(t))z(t) := Acl,p(t)z(t)

z(ta) = z0.

(10)

Then Acl,p(t) is the generator of the mild evolution op-
erator Ucl,p(t,s) on the set {(t,s); ta ≤ s ≤ t ≤ tb} and
zopt

p (t;z0,s, tb) = Ucl,p(t,s)z0.
The self-adjoint nonnegative operator Πp(t) ∈ L(Z) for

all t ∈ [ta, tb], and satisfies the Operator Differential Riccati
Equation (ODRE)

d
dt
〈φ,Πp(t)ψ〉 = −〈φ,Πp(t)Aψ〉
−〈Aφ,Πp(t)ψ〉−〈Cpφ,Cpψ〉
+〈Πp(t)BpR−1B∗

pΠp(t)φ,ψ〉, t ∈ [ta, tb],

Πp(tb) = Mp,

(11)

for φ,ψ ∈ D(A). Moreover, it is the unique solution of this
differential Riccati equation in the class of strongly contin-
uous, self-adjoint operators in L(Z) such that 〈φ,Πp(t)ψ〉
is differentiable for φ,ψ ∈ D(A) and t ∈ [ta, tb].

The following relationship between the minimum of
Jp(z0; ta, tb,u), defined by (9), and Πp(ta) holds

min
u∈L2([ta,tb],U)

Jp(z0; ta, tb,u) = 〈z0,Πp(ta)z0〉. (12)

IV. ALGORITHMS FOR SOLVING PROBLEM 2
AND PROBLEM 3

In this section we assume that the family ((Sp)p∈P m ,Σm)
satisfies Assumptions 2 and 3 and an initial condition
z0 ∈ Z is given. Then solutions to the formulated optimal
control problems on a finite-time interval [t0, t f ], Problem
2 and Problem 3, are provided. We must first consider a
set of m fixed values (locations) P m = {p1, p2, ..., pm} in
which the switching function may take values (the moving
actuator may reside at during certain time intervals). The
expression (12) may be used to obtain P m from a larger set
of admissible actuator locations.

The following algorithm provides a solution for Prob-
lem 2.

Algorithm 1: Consider a family of switched systems
((Sp)p∈P m ,Σm).
Part A: Solve m ODREs in each subinterval backwards in
time with the terminal condition for an interval being the
initial condition from the next subinterval.
Step 1: Divide the interval [t0, t f ] into k = [ t f −t0

∆t ] sub-
intervals of length ∆t. ([·] denotes the integer part of a real
number).
Step 2: If t f > k∆t solve ODRE (11) with the initial
condition Πσ(k∆t)(t f ) = M, on the interval [k∆t, t f ], for every
possible value of σ(k∆t). Set

Mσ(k∆t) = Πσ(k∆t)(k∆t).
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The number of ODREs to be solved is m. Else, for each
σ(k∆t) = p ∈ P m, set Mσ(k∆t) = M and proceed with Step
3.
Step 3: Solve, on the interval [tk−1, tk], the ODRE (11) for
each of the m-initial conditions Πσ(tk−1)(tk) = Mσ(tk) and
each value of σ(tk−1). The number of ODREs to be solved
is m2 if t f > tk and m if t f = tk.
Step 4: Continue the procedure until the last interval [t0, t1].
The number of ODREs to be solved is ml+1 if t f > tk, and
ml if t f = tk.

Part B: Find the optimal switching σopt and uopt
σopt .

Step 5: Find the minimal cost of (6) as

Jm
opt(t0, t f ) = min

σ∈Σm
Jm

σ (z0; t0, t f ,u
opt
σ )

= min
σ∈Σm

〈z0,Πσ(t0)z0〉.
(13)

Step 6: Choose σopt as the switching function corresponding
to the optimal cost Jm

opt(t0, t f ). Then the optimal input is
uopt

σopt .
The total number of ODREs to be solved in the above
algorithm is

∑k+1
l=1 ml = m(mk+1−1)

m−1 , if t f > k∆t, and

∑k
l=1 ml = m(mk−1)

m−1 , when t f = k∆t.

Theorem 1: Consider the switched system ((Sp)p∈P ,σ)
with the cost functional (4). For every z0 ∈ Z there exists a
unique input uopt

σ (·;z0, t0, t f ) ∈ L2([t0, t f ],U) such that

J
(

z0; t0, t f ,u
opt
σ (·;z0, t0, t f )

)
≤ J(z0; t0, t f ,u)

for all u ∈ L2([t0, t f ],U). Moreover, the Algorithm 1 is
optimal.

Proof: Perform Step 1 of the Algorithm. Since
the switching function σ is fixed, applying [5, Theo-
rem 6.1.4] on each of the intervals [t j, t j+1], j = 0, . . . ,k,
tk+1 := t f , one obtains that there exists a unique input
uopt

σ (·;zσ(t j), t j, t j+1) ∈ L2([t j, t j+1],U) such that

J
(
zσ(t j); t j, t j+1,u

opt
σ (·;zσ(t j); t j, t j+1)

)≤ J(zσ(t j); t j, t j+1,u)

for all u ∈ L2([t j, t j+1],U). Combine all optimal inputs
on subintervals in one input function uopt

σ ∈ L2([t0, t f ],U).
Recall that Mσ(t j) = Πσ(t j)(t j), where t j := t0 + j∆t, for
j = 1, . . . ,k. Denote

ασ(t j)(s) = 〈yσ(t j)(s),yσ(t j)(s)〉+ 〈uopt
σ(t j)

(s),Ruopt
σ(t j)

(s)〉.

For any fixed switching function σ, using equality (12) on

intervals [t j, t j+1], one can write

Jm
σ (z0;uopt

σ , t0, t f )

=
k−1

∑
j=0

t j+1

t j

ασ(t j)(s)ds

+
t f

tk
ασ(tk)(s)ds+ 〈z(t f ),Mz(t f )〉

=
k−2

∑
j=0

t j+1

t j

ασ(t j)(s)ds+
tk

tk−1

ασ(tk−1)(s)ds

+ 〈zσ(tk)(tk),Mσ(tk)zσ(tk)(tk)〉

=
k−2

∑
j=0

t j+1

t j

ασ(t j)(s)ds

+ 〈zσ(tk−1)(tk−1),Mσ(tk−1)zσ(tk−1)(tk−1)〉
= . . . . . . = 〈z0,Mσ(t0)z0〉.

The above was written for t f > k∆t, but a similar argument
works for t f = k∆t. Then

J(z0; t0, t f ,u
opt
σ (·;z0, t0, t f )) ≤ J(z0; t0, t f ,u)

for all u ∈ L2([t0, t f ],U).
The optimality of the above algorithm follows from the

first part of this theorem and the fact that all possible
switches are considered when Jm

opt(t0, t f ) of (13) is com-
puted.
Consider a variable initial time tλ with t0 ≤ tλ ≤ t f . In
Theorem 1 no condition on the initial time t0 was necessary.
Consequently, for a fixed switching function σ, z(tλ) = z0,λ
and the cost functional (8) with ta = tλ and tb = t f , an
optimal input signal uopt

σ (·;z0,λ, tλ, t f ) is obtained. Further,
zopt

σ (·;z0, t0, t f ) and zopt
σ (·;z0,λ, tλ, t f ) will denote the optimal

state trajectories corresponding to each of the two intervals.
The following principle of optimality follows easily from

the uniqueness of the optimal trajectory for a fixed switch-
ing function, proved in Theorem 1.

Lemma 1: Consider a fixed switching function σ ∈ Σm.
Then the equality

zopt
σ (s;z0, t0, t f ) = zopt

σ (·;zopt
σ (tλ;z0, t0, t f ), tλ, t f ).

holds for all s ∈ [tλ, t f ]. The above statement is not true
when the switching function is not fixed, i.e., one allows
to choose the switching function during computation of the
optimal input.

Some simple properties that can be associated to the
above analysis are given as follows.

Lemma 2: Consider a fixed switching function σ ∈ Σm.
Then the following statements hold:

1) The optimal trajectory does not depend on the initial
choice of the time t0.

2) If t0 ≤ t1 ≤ t2 ≤ tk, then Πσ(t2) ≤ Πσ(t1).
3) Πσ(·) is strongly continuous from the right in [t0, t f ].
4) If t0 ≤ t1 ≤ t2, then

Jm
σ (z0;uopt

σ , t0, t1) ≤ Jm
σ (z0;uopt

σ , t0, t2).
Solving the optimal control problem on a finite-

time interval [t0, t f ] for the class of switched systems
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((Sp)p∈P m ,Σm) did not require restrictive assumptions on
the component systems. As a consequence, one can apply
the above algorithm in a very general setting.

Further, a solution to Problem 3 is proposed for the case
when the set P is finite with its cardinality n (the number
of available positions for placing actuators) smaller than the
cardinality of the set of available actuators (chosen already
to be m). The solution is very simple and it is provided by
the following algorithm.

Algorithm 2: Consider all (m combination of n possible
choices) families of switched systems ((Sp)p∈P m ,Σm) which
satisfies Assumptions 2 and 3, with the initial condition
z(t0) = z0 ∈ Z.
Step 1: For each resulting family of switched systems find,
using Algorithm 1, the optimal cost Jm

opt(t0, t f ).
Step 2: Minimize the criterion (7) from Problem 3 to find
the optimal set of locations P m

opt . Then the optimal switching
function and optimal input signal are σopt

m and uopt
σopt

m
.

V. GUIDANCE OF MOVING ACTUATOR OF THE
HEAT EQUATION

The above formulation of the optimization problem for
switched systems is more general than one needs for pro-
viding methodologies for optimal and suboptimal efficient
switching of a moving actuator for distributed parameter
systems. The generality comes from the fact that, for the
set of systems (1), we have not imposed the restriction
that the bounded operators (Bp)p∈P and (Cp)p∈P model
point actuators and sensors. Usually, a point actuator and/or
sensor is modelled as a delta distribution in the point where
the actuator is applied, which does not “always” represent a
bounded operator. This is one way to view the problem and
provide an optimal trajectory for the actuator position, as
treated in [4]. The particular example here will consider the
operators (Bp)p∈P and which approximately model a point
actuator. For example when heating a metal rod [5], one
can consider U = Y = C, Z = L2(Ω), and for each p ∈ P

Bpu =
1
2ε

1[ξ0,p−ε,ξ0,p+ε](ξ)u, (14)

where

1[α,β](ξ) =
{

1 for α ≤ ξ ≤ β
0 elswhere .

We consider that the state is fully accessible, i.e. Cp = I for
every p ∈ P . For the 1-D diffusion system with Dirichlet
boundary conditions we take Ω = [0,L], L = 2. Then the
system is given by

∂z
∂t

(t,ξ) = 0.01
∂2z
∂ξ2 (t,ξ)+

1
2ε

1[ξ0,p−ε,ξ0,p+ε](ξ)u(t,ξ)

y(t,ξ) = z(t,ξ).

(15)

For this system we solved Problem 2 by implementing
Algorithm . The computations were carried out via codes
written in Matlab� run on a dual processor DELL� work-
station(Xeon 2.8GHz, 2× 2GB). The closed loop system

was discretized using a spline-based Galerkin approxima-
tion scheme with 20 basis elements. The resulting finite
dimensional system of ordinary differential equations was
integrated using the stiff ODE solver from the Matlab�

ODE library, routine ode23s based on a fourth order
Runge-Kutta scheme. All required (spatial) integrals were
computed numerically via a composite two point Gauss-
Legendre quadrature rule. The resulting ODREs (11) were
solved using the BDF 1-step method presented in [1].

The set of candidate positions was chosen via

P m =
{

p j ∈ [0,L] : p j =
jL

m+1
, j = 1, . . . ,m

}
,

which accounts for m = 3,4,5, and the LQR parameters
were chosen as R = 10−4, Q = 103I, M = I with ∆t = 3 sec
and the initial condition was z(0,ξ) = 10sin(πξ). Due to the
large memory required for storage of the Riccati solutions,
the interval [0,9] was divided into three intervals, thus only
allowing switches at t1 = 3 sec and at t2 = 6 sec. To add
effects of disturbances, the term(

1[0.2L,0.3L](ξ)sin(πt
5 )+1[0.4L,0.6L](ξ)sin(πt

5 − π
2 )

+1[0.8L,0.9L](ξ)sin(πt
5 + π

2 )
)
/200

was added to the right hand side of (15).

0 1 2 3 4 5 6 7 8 9
0

5

10

L
2

norm for the case of m=3 actuator locations

0 1 2 3 4 5 6 7 8 9
0

5

10

L
2

norm for the case of m=4 actuator locations

0 1 2 3 4 5 6 7 8 9
0

5

10

L
2

norm for the case of m=5 actuator locations

Time (sec)

Fig. 1. L2(0,L) norm of z(t,ξ) vs time for different available actuator
locations.

Figure 1 depicts the evolution of the L2(Ω) norm of
z(t,ξ) for the open loop (dashed), fixed actuator (dotted),
and moving actuator (solid) for different choices of m. It is
observed that when the actuator is allowed to move at the
locations in P m, it improves the performance and in this
case the state norm converges to zero faster than the case
of a fixed actuator. Figure 2 depicts the spatial distribution
versus the spatial variable ξ at t = 9 sec. It is also observed
that the convergence of the state is improved when the
actuator is allowed to move. The actuator allocation for
m = 3, m = 4 and m = 5 is depicted in Figure 3 for both
the fixed (dashed) and the switching (solid) actuator.
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Fig. 2. Distribution at t = t f sec vs ξ for different available actuator
locations.
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Fig. 3. Actuator allocation (switching) for m = 3, m = 4 and m = 5
actuator locations; switching (solid) and fixed (dashed).

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this note, we presented an algorithm and summarized
the proof of the optimal switching policy of moving actuator
for a class of hybrid DPS. The method employed is based
on LQR optimal control on finite time interval. Unlike
similar work for lumped parameter systems, here both
the actuator and the control signal were changing at the
beginning of a given time interval. The theoretical results
were supported by an extensive numerical study on the
heat equation with full accessible state which demonstrated
the improved efficiency and enhanced performance of the
moving actuator over the case of using a single stationary
actuator.

B. Future Works

Due to computational issues that appear during the im-
plementation of the optimal algorithm, we do not claim that
in our theoretical approach we considered possible practical

difficulties. For example we did not address in this paper
the question of including disturbances or issues arising
from the implementation procedure when solving a large
number of ODREs. However, in the presented simulations
a disturbance was added. Results providing answers to these
questions appeared elsewhere or will be further investigated.
Simulations for other examples will be also performed by
the authors.
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