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Abstract— This paper presents a new approach which links the
solution to the Burgers tracking problem to the concept of capture basin
used in viability theory. This link enables the proof of the existence and
uniqueness of the solution of the Burgers tracking problem. The Burgers
tracking problem is linked to the Frankowska solutions of the Burgers
equation. These results are easily extended to any first order hyperbolic
partial differential equation (PDE) written in conservation law form,
which is illustrated with the famous Lighthil-Whitham-Richards (LWR)
PDE, known in highway traffic theory. The implications of these results
on the control of the inviscid Burgers PDE are finally listed.

I. INTRODUCTION

The control of the Burgers partial differential equa-
tion (PDE) and more generally of partial differential
equations has been the focus of an increasing interest
in the past few years [1], [8], [7], [9], [10], [13]. The
difficulty posed by Burgers equation,

∂U(t, x)
∂t

+ U(t, x)
∂U(t, x)

∂x
= 0 (1)

and more generally first order hyperbolic PDEs writ-
ten in conservation law form is the presence of shocks
in their solutions, which make it very difficult for
several techniques to apply. These difficulties are
well known, and have been partially resolved by
some approaches (see in particular [14], [15]). To
this day, we are not aware of global controllability
results which would enable the control of the inviscid
Burgers equation, and the treatment of shocks (see
in particular [11]). This paper proposes a set valued
approach [6] to the problem of controlling the Burgers
PDE, by using the general framework of viability
theory [2], which enables us to take into account
the set valuedeness of solutions (for example at the
location of shocks). The ultimate goal of our work is
to construct controlled entropy solutions, as defined
in [11]. There are three steps towards this goal, from
which the first is presented in this paper. 1) Existence,
uniqueness, and construction of the viability solution
to the Burgers equation. 2) Selection of the entropy
solution from the viability solution. 3) Control of the
viability (and thus entropy solution). Step 1) is fully
described in this paper. Extensions for mobile domain
boundaries are available from the authors. Step 3) is
partially accomplished to this day for the viability
solution, using the concept of capture basin. It will
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be exposed in forthcoming papers. Step 2) can be
achieved in specific cases (infinite domains, convex
flux functions), through transformations known for
one dimensional conservation laws (see for exam-
ple [11]); viability theory can be used to extend these
results to arbitrary domains and flux functions.

This paper is organized as follows. Section II presents
the general Burgers tracking problem in an infinite do-
main. Section III proves the existence, uniqueness of
the viability solution to the Burgers tracking problem
in an infinite domain and links it to the Frankowska
solutions of the Burgers PDE. Section IV extends the
results of Section III to finite domains and boundary
conditions. Section V illustrate the results of the
previous sections with another PDE: the Lighthill-
Whitham-Richards (LWR) PDE.

II. THE BURGERS TRACKING PROBLEM

The goal of this paper is to prove the existence and
uniqueness of the viability solution of (1) in the class
of set valued maps with closed graphs. This problem
is in fact equivalent to a tracking problem which we
now define. We consider

1) x(t) evolving along the real line X := R

2) with a velocity y(t) ∈ Y := R at time t.
We are looking for a set-valued map (T, x) ∈ R+ ×
X � U(T, x) ∈ Y “tracking” the velocities of the
positions x ∈ X at time T ≥ 0. Since the time
appears in many occasions, we denote by T (upper
case) the current time for the solution U(T, x) instead
of t, use as it is done usually. We reserve the notation
t (lower case) for the time involved in the differential
equations or inclusions involved in this study. We
assume that at initial time t = 0, the initial velocities
y ∈ U0(x) at each position x ∈ X are known:
The set-valued map U0 : X � Y is a given initial
condition for the tracking problem. Let us consider
any given time T ≥ 0 and any position x ∈ X . If
the evolution of velocities y(t) is known, then the
evolution of the positions x(t) passing through x at
time T is given by

∀ t ≥ 0, x(t) = x −
∫ T

t

y(τ)dτ

We are looking for a set-valued map U : R+ ×X �

Y providing the velocities y ∈ U(T, x) such that
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there exists an evolution y(·) of velocities satisfying⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i) y(T ) = y

(ii) ∀ t ≥ 0, y(t) ∈ U

(
t, x −

∫ T

t

y(τ)dτ

)

(iii) y(0) ∈ U0

(
x − ∫ T

0
y(τ)dτ

)
Condition (ii) means that y(t) ∈ U(t, x(t)), i.e., that
the velocities “track” the position at each time.

Definition II.1. (Initial-Value Burgers Tracking Prob-
lem). Given the initial condition U0, a set-valued map
U : R+ × X � X is a solution to the initial-value
Burgers tracking problem if it satisfies both 1) the
Burgers tracking property: any y ∈ U(T, x) satisfies

∀ t ≥ 0, ∀ x ∈ X, y ∈ U (t, x + (t − T )y) (2)

2) the initial condition U(0, x) := U0(x),

This version of the Burgers tracking problem will
be refined in subsequent sections in order to link it
with the constrained Burgers PDE in finite domains.
For clarity, we will first expose our results with this
version of the problem. The theorems will then be ex-
tended to the more interesting cases with constraints.

III. INITIAL VALUE PROBLEMS

Since the solutions starting from single-valued initial
conditions may become set-valued, and since they can
be regarded as initial conditions for future times, we
are led to assume that initial conditions may be taken
in the class of set-valued maps. Let us associate with
a set-valued initial condition U0 : R+ � R+ its
extension U+

0 : R+ × R+ �→ R+ defined by

U+
0 (t, x) =

{
U0(x) if t = 0 & x ∈ R

∅ if t �= 0 & x ∈ R

Note that Graph(U+
0 ) = {0} × Graph(U0).

Definition III.1. (Viability Solution to the Burgers
Tracking Problem). Let us introduce the “character-
istic system”⎧⎨

⎩
(i) τ ′(t) = −1
(ii) x′(t) = −y(t)
(iii) y′(t) = 0

(3)

The set-valued map U : R+ × R+ � R defined by

Graph(U) := Capt(3)(R+ × R × R, Graph(U+
0 )) (4)

is the viability solution satisfying the Burgers tracking
property (2) and the initial condition U(0, x) :=
U0(x), where CaptF (K, C) represents the capture
basin of a target C with constraints K under a
dynamics F , defined in [2], [4] (see Figure 2).

Fig. 1. Illustration of the definition of Graph(U) as the capture
basin Capt(3)(R+ ×R×R, Graph(U+

0 )) of the graph of the set-
valued map U+

0 under the characteristic system (3).

Theorem III.2. (Existence and Uniqueness of the
solution of the Burgers tracking problem under initial
conditions). The viability solution U is the unique
solution V to the initial-value Burgers tracking prob-
lem. Furthermore, U(t, x) is the set of fixed point
y ∈ U0(x − ty) of the map y � U0(x − ty). The
viability solution satisfies the “maximum principle”:

∀ (t, x) ∈ R+ × X, sup
y∈U(t,x)

|y| ≤ sup
x∈X

sup
y∈U0(x)

|y|

or, more precisely

∀ (t, x) ∈ R+ × X, U(t, x) ⊂ Im(U0)

Proof — To say that (T, x, y) belongs to the capture basin
Capt(3)(R+ × R × R, Graph(U+

0 )) amounts to saying that there
exists a finite time t� such that

1) the value (T−t�, x−yt�, y) of the solution to characteristic
differential equation (3) at time t� belongs to the graph of
the set-valued map U+

0 ,
2) for all t ∈ [0, t�], (T − t, x− ty, y) belongs R+ ×R×R.

The first condition means that T − t� = 0 and that (x − Ty, y)
belongs to the graph of U0, i.e., that y ∈ U0(x−Ty). The second
condition means that t ∈ [0, T ]. Therefore, we have proved that
U(T, x) is the set of fixed points of the map y � U0(x − Ty).
When T = 0, we infer that y ∈ U0(x), and thus, that U(0, x) ⊂
U0(x). By construction, U0(x) ⊂ U(0, x), so that the initial
condition is satisfied.

We now use a fundamental theorem of [5] in order to prove that
the Burgers tracking property holds for all positive time: from [5],
we know that the graph of the viability solution is the unique graph
of a set-valued map V between U+

0 and R+ × R × R s.t.:

Graph(V) = Capt(3)(Graph(V), Graph(U+
0 ))

Graph(V) = Capt(3)(R+ × R × R, Graph(V))

The first relation means that for any t ∈ [0, T ], y belongs to
V(T − t, x − yt). By the change of variable s := T − t, this
means that for any s ∈ [0, T ], y ∈ V(s, x + (s − T )y).

The second relation means that for all t ≥ T , y ∈ V(t, x +
(t − T )y). We prove it by contraposition. If it did not satisfy the
tracking property for all t > T , there would exist some t� > T
such that (t�, x + (t� − T )y, y) does not belong to the graph of
V. Hence (t�, x + (t� − T )y, y) ∈ R+ × R × R \ Graph(V)
and, by construction, (t�, x+(t� −T )y, y) ∈ Capt(3)(R+ ×R×
R, Graph(V)) = Graph(V), a contradiction.

Hence these two relations mean that V satisfies both the Burgers

tracking property (2) and the initial condition U0. �
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Theorem III.3. (Frankowska solutions of the Burgers
PDE). The solution U of the Burgers tracking problem
of Definition III.1 is the unique Frankowska solution
of the Burgers PDE, i.e. it satisfies:

• ∀(T, x, y) ∈ Graph(U)\Graph(U+
0 ), T > 0 (by

definition), y ∈ U(T, x), and

0 ∈ DU(T, x, y)(−1,−y)

• ∀y ∈ U(T, x), T ≥ 0, 0 ∈ DU(T, x, y)(1, y)

where the contingent derivative DU is defined by its
graph: Graph(DU(T, x, y)) � TGraph(U)(T, x, y),
and TK(m) denotes the contingent cone of K at m.

Remark — in the case of single valued solutions, the two condi-
tions coincide with the usual notations

∂U(t, x)

∂t
+ U(t, x)

∂U(t, x)

∂x
= 0

Proof — It suffices by [3] to notice than for a Marchaud and
Lipschitz dynamics F , the capture basin CaptF (X, C) of a target
C in the space X is the unique closed subset D such that

• ∀x ∈ D\C, F (x) ∩ TD(x) �= ∅
• ∀x ∈ D, −F (x) ⊂ TD(x)

and express it with the dynamics of the characteristic system (3)

(which trivially satisfies these two assumptions). This property

generalizes with any of the additional assumptions made in the

next sections. �

Proposition III.4. (Single-valuedness of the viability
solution to Burgers’ equation). Assume that the initial
condition U0 : R � R is monotone (increasing)
in the sense that there exists a constant c ∈ R

(positive or negative) such that ∀ (x1, x2), ∀ y1 ∈
U0(x1), y2 ∈ U0(x2),

(y1 − y2)(x1 − x2) ≥ c(x1 − x2)2

Then the solution U(t, ·) to the Burgers equation
starting at U0 is single-valued whenever t ≥ 0 if
c ≥ 0 and 0 ≤ t < 1

|c| if c < 0.

Proof — Available from the authors upon request or see [4].

The viability solution inherits of all other properties
of capture basins. For instance, the capture basin of an
union of targets being the union of the capture basins
of each of the targets by [5], the map associating with
any initial condition U0i(x) the solution Ui(t, x) is
a morphism1 with respect to the union (of set-valued
maps):

Proposition III.5. (Morphism Property of the Via-
bility Solution). Let Ui(t, x) denote the solution to

1The group structure (+, 0) of the vector space is replaced by
the lattice structure (∪, ∅) on the subsets of the vector space, for
which the maps associating an initial condition the solution of the
semi-linear equation is a lattice-morphism.

the Burgers equation satisfying the initial condition
Ui(0, x) = U0i

(x). Then

if U0(x) :=
⋃
i∈I

U0i(x), then U(t, x) =
⋃
i∈I

Ui(t, x)

In other words, one could say that the solution de-
pends “unionly” on the initial conditions, instead of
linearly. But this morphism property is as useful as
the linearity property of solutions to linear systems.

Example — Piecewise Linear Initial Conditions. The single-valued
initial conditions usually studied as main examples are piecewise
linear maps of the form

U0(x) =
n∑

i=0

(αix + βi)χAi
(x)

where the functions χAi
are the characteristic functions of the n+1

intervals Ai associated with a finite sequence δ1 < . . . < δn by
formulas ⎧⎨

⎩
A0 := ]−∞, δ1]
Ai := ]δi, δi+1] , i = 1, . . . , n − 1
An := ]δn, +∞[

These intervals form a partition of R and the initial condition is
single-valued. The Burgers equation being nonlinear, we cannot
express the values of the solution U(t, x) as the sum of the
values of solutions Ui(t, x) satisfying the initial conditions (αix+
βi)χAi

(x). However, we may use the remarkable morphism
property stated in Proposition III.5 to compute the solutions starting
at the very same initial condition, but rewritten in the form

U0(x) =

n⋃
i=0

(αix + βi)ΞAi
(x)

where the set-valued map ΞA are the set-valued characteristic

functions of the interval A defined by ΞA(x) = +1 whenever

x ∈ A and ΞA(x) := ∅ (instead of 0) whenever x /∈ A.

Definition III.6. (Characteristic set-valued maps of
sets and shocks). The characteristic set-valued map
characteristic set-valued map ΞA of a subset A ⊂ X
of any vector space is defined by

ΞA(x) := Ξ(A; x) :=
{

1 if x ∈ A
∅ if x /∈ A

If F : X � Y is a set-valued map, we denote by
FΞA : X � Y the set-valued map defined by

F (x)ΞA(x) := F (x)Ξ(A; x) :=

{
F (x) if x ∈ A
∅ if x /∈ A

In particular, the shock at a point σ of intensity S ⊂
Y is described by SΞσ and associates with any x the
subset S when x = σ and the empty set otherwise.

Therefore, it is sufficient to compute the solutions
Ui(t, x) to the Burgers tracking problem starting at
(αix + βi)ΞAi(x) or at shocks SΞσ to obtain the
solution starting at U0. Observe that whenever one
can approximate an initial condition by piecewise
constant (or even better, linear) set-valued maps, we
shall be able to approximate the solution of the Burg-
ers equation by solutions starting at these approximate
solutions that can be explicitly computed.
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Application — Elementary building block solutions

1) If U0 := 0ΞA, then, U(t, x) = 0Ξ(A; x).
2) If U0 := βΞA, then U(t, x) = βΞ(A + βt; x).
3) If U0 := (αx + β)ΞA(x),then

• If t �= − 1
α

, then

U(t, x) :=

(
αx + β

1 + αt

)
Ξ((1 + αt)A + βt; x)

• If t = − 1
α

, then there exists a shock of size αA + β

at −β

α
: U

(
− 1

α
, x

)
:= (αA + β) Ξ

(
−β

α
; x

)
.

The location of the shock does not depend on A, but only
on the coefficients α and β.

4) If U0(x) = SΞσ(x) is a shock of size S at x = σ, then

U(t, x) =

(
x − σ

t

)
Ξ (tS + σ; x).

Proposition III.7. (Viability solution to the Burgers tracking prob-
lem for piecewise linear initial conditions). The viability solution
to the Burgers tracking property (2) satisfying the initial condition

U(0, x) =
⋃
i∈I

(αix + βi)ΞAi
(x)

is equal to:

• Case when t �= − 1
αi

for all i ∈ I,

U(t, x) =
⋃
i∈I

(
αix + βi

1 + αit

)
Ξ ((1 + αit)Ai + tβi; x)

(5)
The cardinal of the set I(t, x) :=
{i ∈ I such that x ∈ (1 + αit)Ai + tβi} denotes
the number of elements of U(t, x) and plays the role of a
“valuemeter”, i.e. it measures the degree of set-valuedeness
of the solution, which is the count of I(t, x).

U(t, x) =

{
αix + βi

1 + αit

}
i∈I(t,x)

• Case when αi < 0 and t = − 1
αi

for some i ∈ I: we obtain
shocks:

U

(
− 1

αi
, x

)
= (αiAi + βi) Ξ

(
− βi

αi
; x

)

at points − βi

αi
of size αiAi + βi, which plays the role of a

“valuemeter” in case of shocks because we can write

U

(
− 1

αi
,− βi

αi

)
= αiAi + βi

IV. BOUNDARY AND INITIAL CONDITIONS

Instead of taking X := R, it might be useful to only
consider K := [ξ, +∞[. This can be regarded as a
viability constraint on the spacial variable x, that can
be taken into account by introducing the set-valued
map Ψξ defined by

Ψξ(t, x) :=
{

X if x ≥ ξ
∅ if x < ξ

Then the viability solution defined by

Graph(U) := Capt(3)(Graph(Ψξ), Graph(U+
0 ))

is still the unique solution V to the initial-value
problem for the Burgers tracking problem, satisfying
both the Burgers tracking property

∀ t ≥ 0, ∀ x ∈ [ξ, +∞[ , y ∈ V (t, x + (t − T )y)

and the initial condition V(0, x) = U0(x). The
values U(T, x) are made of the fixed points

y ∈ U0(x − Ty) ∩
]
−∞,

x − ξ

T

]

because x−Ty must be larger than of equal to ξ. Such
fixed points may no longer exist, and they never exist

if T >
x − ξ

y
. See Figure 2 for an illustration. For

compensating for such empty values, we may “add”
(in the union sense) to the initial data U0 other data,
such as boundary-value data. Indeed, x(t) ∈ K :=
[ξ,+∞[ at some time t come either from some initial
position x at time 0 or from the lower bound ξ of
[ξ,+∞[ at a later time. We take this new fact into
account by introducing the sets Γξ(t) of velocities of
states x(t) arriving at time t at the lower bound ξ
of [ξ,+∞[. We extend this (set-valued) map by the
set-valued map Γξ : R+ × X � X defined by:

Γξ(t, x) :=
{

Γξ(t) if x = ξ
∅ if x �= ξ

Fig. 2. Illustration of the definition of Graph(U) as the capture
basin Graph(Uξ) := Capt(3)(Graph(Ψξ), Graph(Γξ)) of the
initial condition by the augmented dynamics of the characteristic
system (3).

Definition IV.1. (Burgers tracking problem under
boundary conditions). Given the boundary condition
Γξ : R+×K � Y , a set-valued map V : R+×K �

Y is a solution to the boundary-value problem for the
Burgers tracking problem if it satisfies

1) the Burgers tracking property:

∀ t ≥ max
(

0, T − x − ξ

y

)
,

∀ x ∈ X, y ∈ U (t, x + (t − T )y)
2) the boundary condition: U(t, ξ) := Γξ(t),

Theorem IV.2. (Existence and Uniqueness of the
Solution of the Burgers Tracking Problem under
boundary conditions) Assume that K := [ξ, +∞]. The
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viability solution defined by

Graph(Uξ) := Capt(3)(Graph(Ψξ), Graph(Γξ))
(6)

is the unique solution of the Burgers tracking prob-
lem (IV.1) with boundary conditions. Furthermore,
Uξ(T, x) is the set of fixed point of the map

y � Γξ

(
T − x − ξ

y

)
∩

[
x − ξ

T
, +∞

[

where T ≥ x − ξ

y
(It is always empty when

T <
x − ξ

y
). It satisfies the “maximum principle”

∀ (t, x) ∈ R+ × K, sup
y∈Uξ(t,x)

|y| ≤ sup
t∈R+

sup
y∈Γξ(t)

|y|

or, more precisely

∀ (t, x) ∈ R+ × K, Uξ(t, x) ⊂ Im(Γξ)

Proof — The proof is analogous to the one of Theorem III.2.To
say that (T, x, y) belongs to the capture basin

Capt(3)(Graph(Ψξ), Graph(Γξ)) =: Graph(Uξ)

amount to saying that there exists a finite time t�(T, x, y) such
that

1) the value (T − t�(T, x, y), x − yt�(T, x, y), y) of the
solution to characteristic differential equation (3) at time
t�(T, x, y) belongs to the graph of the set-valued map Γξ

2) for all t ∈ [0, t�(T, x, y)], (T − t, x − ty, y) belongs to
the graph of Ψξ

The first condition means that x − yt�(T, x, y) = ξ and that
(T − t�(T, x, y), ξ, y) belongs to the graph of Γξ , i.e., that y ∈
Γξ(T − t�(T, x, y)). It is sufficient to note that this amounts to

saying that t�(T, x, y) =
x − ξ

y
and T ≥ t�(T, x, y) =

x − ξ

y
,

or, equivalently, that y ≥ x − ξ

T
. In particular, we observe that

y ≥ 0

The second condition means that for all t ∈ [0, t�(T, x, y)], x −
yt ≥ ξ, i.e., that t ≤ t�(T, x, y) =

x − ξ

y
.

Therefore, we have proved that Uξ(T, x) is the set of fixed points
of the set-valued map

y � Γξ

(
T − x − ξ

y

)
∩

[
x − ξ

T
, +∞

[

Since Graph(Γξ) ⊂ Graph(Uξ), we know that Γξ(T ) ⊂
Uξ(T, ξ). They are equal, because, if y ∈ Uξ(T, ξ), then
(T, ξ, y) belongs to the capture basin: Indeed, (T−t�(T, ξ, y), ξ−
t�(T, ξ, y)y, y) ∈ Graph(Γξ), and thus, ξ − t�(T, ξ, y)y ≥ ξ.
Since y > 0, we infer that t�(T, ξ, y) = 0 so that y ∈ Γξ(T ).
Hence the boundary condition is satisfied.

As in the proof of Theorem III.2, [5] states that the graph of the
viability solution is actually the unique graph of a set-valued map
V between Γξ and Ψξ satisfying

Graph(V) = Capt(3)(Graph(V), Graph(Γξ))

Graph(V) = Capt(3)(Graph(Ψξ), Graph(V))

The rest of the proof is similar to the proof of Theorem III.2. �

Using again [5] stating that the capture basin of an
union of targets is the union of the capture basins, we
can combine the initial and the boundary condition
by taking the unions of the solution UU0 associated
with the initial condition U0 (which may have empty
values) and of the solution Uξ associated with the
boundary condition Γξ.

Definition IV.3. (Viability Solution to the
Initial/Boundary-Value Burgers Tracking Problem)
A map U is a solution to the initial/boundary-value
Burgers tracking problem if it satisfies

1) the Burgers tracking property:

∀ t ≥ max
(

0, T − x − ξ

y

)
,

∀ x ∈ X, y ∈ U (t, x + (t − T )y)
2) the initial condition U(0, x) := U0(x),
3) the boundary condition U(t, ξ) := Γξ(t),

We shall say that the set-valued map U : R+×R+ �

R defined by

Graph(U) := Capt(3)(Graph(Ψξ), Graph(U+
0 ∪Γξ))

(7)
is the viability solution to the initial/boundary-value
Burgers tracking problem.

Fig. 3. Example of viability solution to the Burgers track-
ing problem (and equivalently Frankowska solution of the
Burgers PDE) with initial data U0(x) := max(0.5, 2(1 −
(x − 3)2))Ξ([0, 3]; x) ∪ max(1, 2(1 − (x − 3)2))Ξ([3, 5]; x)
∪min(1, (x−7)2)Ξ([5, 7]; x)∪max(0.2, (x−7)2)Ξ([7, 10]; x)
and boundary condition Γ0(t) := 0.5Ξ([0, 2]; t).

Theorem IV.4. (Existence and uniqueness of the
solution of the Burgers tracking problem under initial
and boundary conditions) Assume that K := [ξ,+∞]
and that U0(ξ) = Γ(0, ξ). The viability solution
U defined by (7) is the unique solution to the
initial/boundary-value Burgers tracking problem sat-
isfying both the Burgers tracking property

∀ t ≥ max
(

0, T − x − ξ

y

)
,
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Fig. 4. Comparison between the entropy solution (solid) and the
viability solution (dashed) of the LWR PDE (8), both calculated
analytically for a given initial condition shown in the upper
subfigure. A full explanation of the example is given in [7]. Clearly,
after the appearance of shocks, the viability solution remains set-
valued. Numerical computations of these results using [16] for the
viability solution and [12] for the entropy solution are available
from the authors.

∀ x ∈ [ξ,+∞[ , y ∈ V (t, x + (t − T )y) and the
initial and boundary conditions{

(i) ∀ x ≥ ξ, U(0, x) = U0(x)
(ii) ∀ t ≥ 0, U(t, ξ) = Γξ(t)

It is the union (t, x) � U(t, x) := UU0(t, x) ∪
Uξ(t, x) of the viability solutions UU0(t, x) asso-
ciated with the initial datum U0 and the viability
solution Uξ(t, x) associated with the boundary datum
Γξ. Furthermore, U(T, x) is the set of velocities y
satisfying{

y ∈ U0(x − Ty) if T ≤ x−ξ
y

y ∈ Γξ

(
T − x−ξ

y

)
if T ≥ x−ξ

y

It satisfies the “maximum principle”

∀ (t, x) ∈ R+×K, Uξ(t, x) ⊂ Im(U0)∪ Im(Γξ)

Proof — Available from the authors upon request or see [4].

V. APPLICATION TO THE LWR PDE

The method presented above generalizes to any first
order hyperbolic PDE written in conservation law
form. In this last section, we illustrated this fact, and
use the example to show the status of our method
and upcoming steps. Consider the Lighthill-Whitham-
Richards (LWR) PDE, defined by:

∂U
∂t

+ v

(
1 − 2U

ρ∗

)
∂U
∂x

= 0 (8)

This PDE is often used as a first order model for
highway traffic (see [7] and references therein for an
explanation of the PDE). In this PDE, v and ρ∗ are
constants. Several remarks pertain to Figure 4 and
will serve as conclusion to this article.

1) The viability solution to the Burgers tracking
problem (and equivalently to the Burgers partial dif-
ferential equation) may be set valued. The entropy
solution is an integrable selection of the viability
solution (it cannot be continuous if the solutions is
set-valued).
2) The results shown in this article can be used for
controlling the Burgers partial differential equation.
For example, by imposing the proper Ψξ, one can
constraint the solution to be in any desired set (in
particular to track a desired manifold). When the
corresponding capture basin is empty, this provides
a certificate of infeasibility of the problem. The so-
lutions to the corresponding controlled problems will
be published in forthcoming papers.
3) The question of single-valued discontinuous selec-
tions of the viability solution, which is unique in the
class of set-valued maps with closed graph, will be
published in forthcoming papers, with corresponding
proofs of existence and uniqueness.
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