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Abstract— The paper treats a heat flux estimation problem
for a system that models the temperature evolution in a
thermoelastic rod, which is allowed to come into contact with
a rigid obstacle. The dynamics of the process are described
by a nonlinear nonlocal PDE of parabolic type. Sensor
configurations, which can provide measurements guaranteeing
the problem to be uniquely solvable, and relevant identification
and adaptive estimation procedures are discussed.

I. INTRODUCTION

This paper addresses an input estimation problem for

a system described by the following nonlinear nonlocal
parabolic partial differential equation [2], [3]:

(1 + a2)θt − θxx = a d
dt max

{
a

1∫
0

θ(ξ, t)dξ − g, 0
}

+Φ(x, t), in ΩT ,
θx(0, t) = ϕ(t), in (0, T ),
θx(1, t) = u(t), in (0, T ),
θ(x, 0) = θ0(x), in Ω

(1)

where Ω = (0, 1) and ΩT = Ω×(0, T ). In the applications,

which we will describe shortly, the boundary input u(t) has

the following form

u(t) = k(g − a

1∫
0

θ(ξ, t)dξ) θ(1, t), in (0, T ), (2)

where k(s) is a nonnegative function of real argument s ∈
R.

In the past, these type of systems have been treated for

existence, uniqueness, and continuous dependence of the

solution on the problem data. Various techniques were used

in the literature to investigate existence and uniqueness

properties of weak and strong solutions [2], [3], [6], [1].

In [17], the observability problem for system (1), (2) was

studied, and in [16] these results were employed to prove

the distributed controllability.

To explain the interest in studying this system, consider

a long thin, homogeneous isotropic elastic rod which un-

dergoes a motion with longitudinal, or axial, displacement.

Then the displacement u(x, t) and the temperature θ(x, t),
where t ≥ 0 and 0 ≤ x ≤ 1, satisfy the equations of
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Fig. 1. The thermoelastic rod with two temperature sensors that measure
average temperature over parts of the rod. The thermoelastic rod is a
prototype problem for a number of applications including disk brakes.

dynamic linear thermoelasticity [11]

κθxx = �cθt + (3λ + 2µ)αθ∗uxt,

(λ + 2µ)uxx = (3λ + 2µ)αθx + �utt,

where θ∗ is a constant reference temperature and the other

parameters that describe thermal and elasticity properties

of the material are also constant. The change of variables

x → x
l , t → κt

�cl2 , θ → θ−θ∗
θ∗ , u → u

l

√
λ+2µ
�cθ∗ , leads to the

non-dimensional equations

θxx = θt + auxt,
butt − uxx = −aθx,

(3)

where

a2 =
θ∗α2(3λ + 2µ)2

�c(λ + 2µ)
, b =

κ2

�c2(λ + 2µ)l2
.

We impose the initial conditions

θ(x, 0) = θ0(x), u(x, 0) = u0(x), ut(x, 0) = u1(x).

To establish the boundary conditions, we consider the case

when the rod is situated between two walls (see Figure 1).

The left end of the rod is permanently attached to a wall,

while the right end is free to expand or contract and

eventually may come into contact with a rigid obstacle.

We choose the Signorini boundary conditions to model the

displacement of the free end [8]:

u(1, t) ≤ g, σ ≤ 0, (u(1, t) − g)σ = 0, (4)

where σ = ux(1, t)− aθ(1, t) is the stress and the constant

g is the nominal gap size between the wall and the free end

in the reference configuration.

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

FrA15.2

3888



In situations where it is reasonable to expect small ac-

celeration, the term butt in (3) can be treated as negligible.

This assumption (referred to as the quasi-static assumption)

together with Signorini’s boundary conditions allows the

problem (3) to be decoupled and formulated in terms of the

temperature only, thereby resulting in the partial differential

equation (1) (see [3] for details). The functions Φ(x, t) and

ϕ(t) reflect the influences of the external heat sources. The

condition (2) models the thermal interaction at the free end

of the rod. This condition means that k is a function of the

actual gap when there is no contact, and that k varies with

the stress, σ(t) = ux(1, t)−aθ(1, t), when there is contact.

In applied problems, for which the thermoelastic rod

serves as a prototype, it may be necessary to (i) determine

if there is contact with the obstacle, and if there is contact

then (ii) characterize the conductivity processes at the con-

tacting end. Since the function k(·) in (2) is usually poorly

known1 our objective is to construct estimation algorithms

for identification of the function u(t) in the system (1)

from the available measurements. In this paper, we examine

measurements of two types:

(I) average temperature measurements:

y(t) =

1∫
0

θ(ξ, t)dξ, t ∈ [0, T ]. (5)

(II) weighted average temperature measurements over
parts of the rod:

zi(t) =
∫
Ω

ωi(ξ)θ(ξ, t) dξ, t ∈ [0, T ],

i = 1, 2, ..., I.
(6)

We are especially interested in studying the case when the

sensors are isolated from the contacting end, i.e., ωi(ξ) = 0
for all ξ sufficiently close to 1.

In the subsequent treatment we assume that the measure-

ments are corrupted by additive measurement noise and

the real data are due to either Y (t) = y(t) + η(t) or

Zi(t) = zi(t) + ηi(t) where η(t), ηi(t) are the measure-

ment noises. The measurement noises are assumed to be

Lebesgue measurable functions with known bounds

|η(t)| ≤ µ, |ηi(t)| ≤ µ, t ∈ [0, T ], i = 1, 2, ..., I, (7)

where µ is the bound.

We adopt the following definition.

Definition 1.1: Let θ0(x), Φ(x, t), and ϕ(t) be given and

fixed. The function u(t), t ∈ [0, T ], is said to be identifiable

from the measurements y(t), t ∈ [0, T ], (respectively, zi(t),
t ∈ [0, T ]), if for any two solutions θ1, θ2 of the system (1),

from the conditions y1(t) = y2(t), t ∈ [0, T ], (respectively,

z1
i (t) = z2

i (t), t ∈ [0, T ], i = 1, 2, · · · , I), it follows that

u1(t) = u2(t), t ∈ [0, T ].
We now comment further on the motivation for consid-

ering the problem treated in the paper. If an estimate of

1In fact, in the applications the problem may actually be to identify
k(·).

θx(1, t) = u(t) is available, then from (1), θ(x, t) can be

reconstructed at any x. From this information, and depend-

ing on a particular problem setup, the rod deformation,

stresses/loads within the rod, the contact or no contact

conditions, the material property dependent function k, and

the wall temperature can be reconstructed. This is useful in a

number of practical problems [4] for which the thermoelas-

tic rod serves as a prototype. Specific examples of such

problems include monitoring and actively controlling the

thermally induced loads internal to bearings and machine

tools, in situations when their internal temperature cannot

be directly measured and need to be inferred. The life of

these devices can be extended if their internal loads are kept

within the specified limits; this in a manufacturing envi-

ronment can translate into reduced down-time due to fewer

machine failures. In other applications such as friction brake

pads and clutches, the knowledge of spatially distributed

contact pressure and of potential “no contact” regions as

well as of the temperature of the contacting surfaces can be

useful for monitoring the condition of these devices [18].

More complex models and finite-element approximations

[9] may be required to treat these practical problems. How-

ever, useful insights into necessary sensor configurations

and adaptive estimation procedures can be gained with a

mathematically rigorous treatment of a prototype problem

for the thermoelastic rod.

In Section II of this paper, we formulate the existence and

uniqueness theorem for system (1). Section III is devoted

to the study of the system with the average temperature

measurements (5). Here we present an identifiability result

and an on-line algorithm for estimating the function u(t)
from the measurements Y (t) = y(t)+η(t), and we illustrate

our results with a simulation example. Some remarks on the

application of the results to estimating the function k will

be given. Section IV presents our results on identifiability

of the function u(t) from the measurements (6). Finally,

concluding remarks are made in Section V.

II. THE EXISTENCE AND UNIQUENESS

To formulate the existence and uniqueness result for

system (1), we follow [1] and transform the variable θ(x, t)
to θ̃(x, t), where

θ̃(x, t) = (1 + a2)θ(x, t) − a max{a
∫ 1

0

θ(ξ, t) dξ − g, 0}.
The last integral equation can be uniquely solved for θ(x, t)
and the solution is

θ(x, t) =
θ̃(x, t)
1 + a2

+
a

1 + a2
max{a

1∫
0

θ̃(ξ, t) dξ−a2g−g, 0}.

(8)

The transformed equations are

θ̃t = 1
1+a2 θ̃xx + Φ(x, t), in ΩT ,

θ̃x(0, t) = (1 + a2)ϕ(t), in (0, T ),
θ̃x(1, t) = (1 + a2)u(t), in (0, T ),
θ̃(x, 0) = θ̃0(x), in Ω

(9)
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θ̃0(x) ≡ (1 + a2)θ0(x) − amax

⎧⎨
⎩a

1∫
0

θ0(ξ)dξ − g, 0

⎫⎬
⎭ .

Referring to the classical theory of linear parabolic equa-

tions [14, Theorem 6.1], we can formulate the following

result for system (9): if θ0 ∈ H1(Ω), u, ϕ ∈ H1/4(0, T ),
Φ ∈ L2(ΩT ), then the problem (9) has a unique solution in

H2,1(ΩT ). Since for θ̃ ∈ H2,1(ΩT ), the function θ(x, t)
in (8) also belongs to H2,1(ΩT ), we can formulate the

following result for the original system (1).

Theorem 2.1: Let θ0 ∈ H1(Ω), u, ϕ ∈ H1/4(0, T ), Φ ∈
L2(ΩT ). Then the problem (1) has a unique solution in

H2,1(ΩT ).

III. THE AVERAGE TEMPERATURE MEASUREMENTS

A. Identifiability theorem

Theorem 3.1: The function u(t), t ∈ [0, T ], is identifi-

able from the measurements y(t), t ∈ [0, T ], defined by

(5).

Proof of Theorem 3.1: Integrating the first equation in

system (1) over the spatial interval Ω = [0, 1], we obtain

(1 + a2)ẏ(t) = u(t) − ϕ(t)
+a d

dt max {ay(t) − g, 0} +
∫ 1

0
Φ(x, t) dx.

(10)

This equation has a unique solution u(t) provided the

function y(t) =
1∫
0

θ(ξ, t)dξ, t ∈ [0, T ], is known. Hence,

the function u(t),t ∈ [0, T ], is identifiable from the mea-

surement data, y(t), t ∈ [0, T ], defined by (5), and the proof

is complete.

Remark 3.1: Let us assume the representation (2) for the

input in system (1). From the theory of linear parabolic

equations [14], we know that, given appropriately smooth

θ0, Φ(x, t), ϕ(t), and known y from H1(0, T ), then there

is only one solution θ(x, t) to the system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 + a2)θt − θxx = a d
dt max {ay(t) − g, 0}

+Φ(x, t), in ΩT ,
θx(0, t) = ϕ(t), in (0, T ),
θx(1, t) = u(t), in (0, T ),
θ(x, 0) = θ0(x), in Ω.

(11)

and, hence, the trace θ(1, t) can be identified uniquely.

Then, for all t where θ(1, t) �= 0, the value of function

k(g − a
1∫
0

θ(ξ, t)dξ) is determined uniquely from (2).

B. An on-line estimation algorithm

In this Section, we present an estimation procedure for

u(t) given the measurement data Y (t) = y(t) + η(t), t ∈
[0, T ] where the measurement noises η(t) satisfy (7).

There is an extensive literature on adaptive estimation

in infinite dimensional systems (see, e.g., [7], [15] and

references therein). In this paper, we adopt an input ob-

server of the form proposed in [5] for finite-dimensional

applications. We also note that we will need some regular-

ization conditions to guarantee convergence because directly

solving equation (10) with respect to u(t), t ≥ 0, is an ill-

posed problem, and would involve the differentiation of the

measurement signal. We will treat the observer gain as a

regularization parameter for an ill-posed problem.

Consider the system

û(t) = ε(t) + α0(1 + a2)Y (t) − β(t)
− α0 a max{aY (t) − g, 0} + Ψ(t) (12)

where

ε̇(t) = −α0ε(t) − α2
0Y (t),

β̇(t) = −α0β(t) + α2
0a max{aY (t) − g, 0}

Ψ̇(t) = −α0Ψ(t) + α0(ϕ(t) − ∫ 1

0
Φ(x, t)dx),

ε(0) = 0, β(0) = 0, Ψ(0) = 0.

(13)

Here α0 > 0 is the observer gain while the constant a is

fixed and the same as in (1). System (12) is linear with

constant coefficients and with the non-homogeneity of the

square integrable type. Hence, there is a unique solution of

the Caratheodory type (ε(t), β(t), Ψ(t)) which is bounded

on any finite interval 0 ≤ t ≤ T .

Theorem 3.2: Suppose the conditions of Theorem 2.1 are

satisfied. Let u(t) be continuous, then for any t ∈ (0, T ],
we have

û(t) → u(t) as α0 → ∞, µ → 0, α0µ → 0. (14)

Proof of Theorem 3.2: Let

¯̂u(t) = ε(t) + α0(1 + a2)y(t)
−β(t) − α0 amax{ay(t) − g, 0} + Ψ(t) ,

uδ(t) =
1
2δ

t+δ∫
t−δ

u(τ) dτ,

where δ > 0 will be chosen later and u(t) is assumed to be

extended beyond the original interval with the values u(0)
for t < 0 and u(T ) for f > T . Then,

(û − u)2 ≤ 3(û − ¯̂u)2 + 3(¯̂u − uδ)2 + 3(uδ − u)2

(15)

It is well known (see, e.g. [12, p. 85]) that ‖uδ −
u‖L2(0,T ) → 0 as δ → 0. Next, ‖u̇δ‖L2(0,T ) ≤
δ−1‖u‖L2(0,T ), and, finally, for any t ∈ [0, T ], we have

uδ(t) → u(t) as δ → 0. Then, taking into account that

|û(t) − ¯̂u(t)| ≤ α0|η(t)| + α0a|max{aY (t) − g, 0}
− max{ay(t) − g, 0}| ≤ (1 + a2)α0µ,

we conclude that the first and the third terms on the right

hand side of inequality (15) tend to zero for all t ∈
[0, T ] under the conditions stated in Theorem 3.2 and the

additional condition that δ → 0. To prove that ¯̂u(t) → uδ(t)
for t ∈ (0, T ], we consider a Lyapunov-like function

V (t) =
1
2
(¯̂u(t) − uδ(t))2.

Then after straightforward algebraic manipulations, we ob-

tain

V̇ ≤ −α0V (t) +
1

2α0
(α0|uδ − u|

+(1 + 2a2)α2
0µ + |u̇δ|)2.
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This, after integration, yields

V (t) ≤ e−α0tV (0) + 3
2 max

0≤t≤T
|uδ(t) − u(t)|2

+ 3
2 (1 + 2a2)2α2

0µ
2 + 3

2α0

∫ t

0
|u̇δ|2 dτ.

So, we conclude that V (t) → 0 for t > 0 as α0 → ∞, µ →
0, α0µ → 0 and if we take δ = α

−1/4
0 . The proof of

Theorem 3.2 is complete.

Remark 3.2: Theorem 3.2 was proved under the assump-

tion that u(t) is continuous. This assumption is satisfied if

in (2) k ∈ C1(R) and is nonnegative, and if θ0 ∈ H1(Ω),
φ ∈ H1(0, T ), θ0x

(0) = φ(0), and Φ ∈ H1,1(ΩT ). Under

these assumptions there is a unique solution to system (1),

(2) in the space W 2,1(ΩT ), and, hence, the function (2) is

continuous.

Remark 3.3: Consider an observer θ̂(x, t) for θ(x, t)
which is due to system (1) with u(t) replaced by û(t).
Then under the conditions of Theorem 3.2 which ensure

that û → u in L2(0, T ), it is straightforward to prove that

θ̂ → θ in H
3
2 , 3

4 (ΩT ).
Applying the trace theorem (see, e.g., [14, P.9]), we

conclude that there exists a trace θ̂(1, ·) ∈ H
1
2 (0, T ). Due

to the compactness of the inclusion H
1
2 (0, T ) ⊂ L2(0, T ),

under the conditions of Theorem 2.1, we have θ̂(1, ·) →
θ(1, ·) in L2(0, T ).

Remark 3.4: The input observer (12), (13) for u(t) based

on (10) was developed under the assumption that u(t) is

only continuous. This result is stronger then those proved

in the prior literature including [5].

C. Simulation example

To illustrate the functionality and performance of the

input observer, we consider a simple simulation example.

The function θ(x, t) shown in Figure 2 is of the form

θ(x, t) = u(t)σ(t) cos(ρ(t)x), x ∈ [0, 1], t ∈ [0, 6]

where σ(t) and ρ(t) are appropriately defined functions

from C1[0, T ]. The measurement data Y (t) are presented

in Figure 3 (left). The measurement noise bound here is

µ = 0.005. The parameter α0 is set to 10. Figure 3

(right) confirms good performance of the input observer.

The function u(t) is shown in Figure 3 (right) by the solid

line and its estimate, û(t), is shown by the dashed line.
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Fig. 2. The temperature distribution through the rod (deviation from
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Fig. 3. Left: The measurement data. Right: The true boundary function
u(t) (solid line) and the estimate from the input observer û(t) (dashed
line).

D. More general case of a single sensor

We have shown above that the heat flux can be estimated

from the average temperature measurements across the

whole rod. A more general identifiability result can be ob-

tained by considered a single weighted average temperature

measurement, i.e.,

y(t) =
∫
Ω

ω(ξ)θ(ξ, t) dξ, t ∈ [0, T ], Ω = (0, 1).

We denote

ω(n) =
∫
Ω

ω(x) cos(πnx)dx, n = 0, 1, . . . ,

P (t) = ω(0) + 2
∞∑

n=1
(−1)nω(n) e

−π2n2t
1+a2 , t ≥ 0.

Theorem 3.3: Let

(i) ω ∈ C2(Ω), ω′(0) = ω′(1) = 0,
(ii) P (0) �= 0,

(iii) a2

1+a2

∣∣∣1 − ω(0))
P (0)

∣∣∣ < 1,

(iv) u(·), ϕ(·) ∈ C[0, T ], Φ ∈ L2(ΩT ).

(16)

Then the function u(t), t ∈ [0, T ], is identifiable from y(t),
t ∈ [0, T ].

The proof of Theorem 3.3, based on an application of a

fixed point theorem, is omitted due to lack of space.

Remark 3.5: Theorem 3.3 gives sufficient conditions for

ω(x) to guarantee that the function u(t) is identifiable.

The condition (i) provides some regularity properties for

the Fourier series of ω(x) with respect to the system

{cos(πnx)}∞n=0, x ∈ [0, 1]. If (i) is satisfied, the condition

(ii) means that ω(1) = P (0) �= 0. As in the average

temperature case, the measurement for the weighted average

temperature case must contain information about the tem-

perature from the contacting end of the rod. The condition

(iii), roughly speaking, holds when either a is small enough

or ω(1) ≈ ∫ 1

0
ω(ξ) dξ.

We next investigate if u(t), t ∈ [0, T ], can be identified

from multiple temperature sensors isolated from the con-

tacting end.

IV. THE AVERAGE OBSERVATIONS IN PARTS OF THE ROD

Now suppose that average observations over parts of the

rod, (6), contaminated by the measurement noise (7) are

available for system (1). The questions are, first, determine
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whether the function u(t), t ∈ [0, T ], is identifiable from

the noise-free measurements, zi(t), t ∈ [0, T ], and, second,

given the measurements Zi(t), t ∈ [0, T ], to obtain an

estimate for u(t), t ∈ [0, T ].

A. Identifability result. I

In this Subsection, we treat in detail the special case when

I = 2 and the measurements zi(t), i = 1, 2 are available for

all t ≥ 0. We show that if functions ω1 and ω2 are C2[0, 1]
and not identical, while

∫
Ω

ωi(ξ) dξ �= 0, i = 1, 2, (without

loss of generality, we assume that
∫
Ω

ωi(ξ) dξ = 1), then the

function u(t) is identifiable from the measurements z1(t),
z2(t), t ≥ 0 defined by (6). We define,

ω
(n)
i =

∫
Ω

ωi(x) cos(πnx) dx, ω̄(n) = ω
(n)
2 − ω

(n)
1 ,

i = 1, 2, n = 1, 2, ...,

P (t) = 2
∞∑

n=1
(−1)nω̄(n) e

−π2n2t
1+a2 . (17)

If t = 0 the series (17) is the Fourier Cosine expansion of

ω2(x) − ω1(x) evaluated at x = 1. Since ω1(x) and ω2(x)
are zero outside of χi ⊂ [0, 1), it can be demonstrated that

for t = 0 the series converges and P (0) = 0. For t > 0, the

series in (17) converges due to the exponential decay of its

elements with n.

Theorem 4.1: Let I = 2 and suppose that the functions

ωi, i = 1, 2, satisfy the assumptions made in Section I

and, in addition, P (t) is not identically zero. Suppose also

that u ∈ L1(0, +∞). Then the function u(t), t ≥ 0,

is identifiable from the measurements z1(t), z2(t), t ≥ 0
obtained from (6).

Proof of Theorem 4.1: Let θ(x, t) solve the initial-

boundary value problem (1). Using the notations from the

previous section, we will denote y(t) =
∫ 1

0
θ(ξ, t) dξ, but

in contrast to the functions z1(t), z2(t), defined by (6), this

function is now assumed unknown for t > 0.

Using Green’s function for a parabolic equation in a one-

dimensional domain with Neumann boundary conditions

G(x, ξ, t) = 1 + 2
∞∑

n=1
cos(πnx) cos(πnξ)e−

π2n2t
1+a2 ,

x, ξ ∈ Ω, t > 0,
(18)

and taking into account that
∫
Ω

ωi(x) dx = 1, the measure-

ment equation (6) can be written as follows:

zi(t) = 1
1+a2

∫
Ω

∫
Ω

ωi(x)G(x, ξ, t)θ0(ξ) dξdx

+ a
1+a2 (max {ay(t) − g, 0} − max {ay(0) − g, 0})

+ a
1+a2

∫
Ω

t∫
0

∫
Ω

G(x, ξ, t − τ)Φ(ξ, τ)ωi(x) dξdτdx

− 1
1+a2

∫
Ω

t∫
0

G(x, 0, t − τ)ϕ(τ)ωi(x) dτdx

+ 1
1+a2

∫
Ω

t∫
0

G(x, 1, t − τ)u(τ)ωi(x) dτdx.

(19)

Then, recalling the notation (17), we can write the differ-

ence z2(t) − z1(t) formally in the form:

z2(t) − z1(t) =
∫ t

0
P (t − τ)u(τ) dτ + F (t), t ≥ 0

(20)

where F (t) is a function that depends only on the known

data ϕ(t), Φ(x, t), θ0(x), ω1(x), and ω2(x), and where P (t)
is defined by (17). We will prove that (20) has a unique

solution.

Suppose the contrary, i.e. let (20) have two solutions.

Then the equation∫ t

0

P (t − τ)u(τ) dτ = 0 (21)

considered for t ≥ 0, has a nontrivial solution ū(t). Since

ωi ∈ C2[0, 1], the function P (t) is in L1(0,∞). Then,

applying the Laplace transform to each side of (21), we

get

Ū(s) ·
∞∑

n=1

(−1)nω̄(n)

s + π2n2

1+a2

= 0, s = σ + j p. (22)

The second factor in this product is an analytic function in

the domain σ > 0. Thus the product can be equal to zero

only if Ū(s) = 0, and we conclude, that ū(t) = 0, t ≥ 0.

B. A numerical solution
To numerically solve the integral equation (20), the fol-

lowing off-line procedure can be used. Consider a function

uε(t) yielding the following Volterra integral equation of

the second kind:

εu(t) +
∫ t

0

K(t, τ)u(τ) dτ = F(t), t ∈ [0, T ], (23)

where K(t, τ) =
∫ T

max{t,τ} P (s − τ)P (s − t) ds, F(t) =∫ T

t
P (τ−t)[Z2(τ)−Z1(τ)−F (τ)] dτ . Assuming that ε > 0,

there exists a unique solution to (23) uε ∈ L2(0, T ). As

shown in [10, Chapter 3, §9], uε → u strongly in L2(0, T )
as α → 0 and µ = o(

√
ε). So, to approximate u in (1),

we may use any numerical scheme available for Volterra

integral equations of the second kind (see e.g., [10]).

C. Identifability result. II
Now suppose that that the measurement data z1(t), z2(t)

are available on a finite time interval 0 ≤ t ≤ T , (T < ∞).
In this case, as before, the integral equation (20) con-

strains the function u. By differentiating (20) with respect

to time, it may appear that (20) is reducible to a well-

studied Volterra integral equation of the convolution type,

which would be solvable by standard numerical techniques.

Unfortunately, this is not the case because P (0) = 0.

Therefore, a different approach is required.

In the following theorem, the sufficient conditions for the

signal u(t), 0 ≤ t ≤ T , to be identifiable are given.

Theorem 4.2: Suppose ω1(x), ω2(x) satisfy the condi-

tions of Theorem 4.1 and
∞∑

n=1

(−1)nω̄(n) 1
n2

�= 0. (24)
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Assume also that u ∈ C[0, T ] and u(t) ≡ const, t ∈ [T −
δ, T ], for some δ ∈ (0, T ]. Then the function u(t), t ∈
[0, T ], is identifiable from the measurements z1(t), z2(t),
t ∈ [0, T ].

Proof of Theorem 4.2: Having assumed that the function

u(t), t ∈ [0, T ], is not identifiable, we again face equation

(21) but on the finite interval [0, T ], and deduce that it

has a nontrivial solution u(t), t ∈ [0, T ]. According to the

assumption of the theorem, this solution must be constant on

some interval [T − δ, T ]. So, u(t) = uT , for t ∈ [T − δ, T ].
Then from (21), we deduce

∞∑
n=1

e
−π2n2t

1+a2 (−1)nω̄(n)×[
T−δ∫
0

e
π2n2τ
1+a2 u(τ) dτ + e

π2n2(T−δ)
1+a2 (1+a2)uT

π2n2

]

−uT

∞∑
n=1

(−1)nω̄(n) (1+a2)
π2n2 = 0, t ∈ [T − δ, T ].

(25)

The functions {e−π2n2t
1+a2 }∞n=0 are linearly independent in

L2(0, T − δ). Hence, from (25), we see that uT = 0. Then,

sequentially,

ω̄(n)

∫ T−δ

0

e
π2n2τ
1+a2 u(τ) dτ = 0, n = 1, 2, ... (26)

Now, let us construct the function ū(t), which is equal to

u(t) for t ∈ [0, T ] and equal to zero for t > T . Equalities

(26) will result in
t∫
0

P (t − τ)ū(τ) dτ = 0 for all t ≥ 0,

which, as shown above, means that u(t) = 0, t ∈ [0, T ].
With this, Theorem 4.2 is proved.

Remark 4.1: It follows immediately from arguments

similar to the ones we used to prove Theorem 4.2, that if,

in addition to the measurements, the values of the function

ū(t), t ∈ [0, T ], are known on a subinterval t ∈ [T − δ, T ],
then the function ū(t) can be identified on the whole

interval [0, T ] provided the weights ωi(x), i = 1, 2, satisfy

the conditions of Theorem 4.2.

Remark 4.2: The numerical procedure described in Sub-

section IV-B can be used for estimating the function u(t),
t ∈ [0, T ], if the condition of Theorem 4.2 are satisfied.

V. CONCLUSION

An input estimation problem for a one dimensional quasi-

static thermoelastic equation has been studied where the

unknown input is the Neumann-type boundary condition

at the contacting end. Identifiability results and estimation

procedures were described for different types of temper-

ature measurements. It was shown that for the case of a

single sensor measuring weighted average temperature of

the rod, the measurement must contain information about

the temperature at the contacting end of the rod. However,

if two separate sensors are available, and under appropriate

additional conditions, these two sensors can be isolated from

the contacting end of the rod.
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