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Abstract— The problem of stabilizing a second order SISO
LTI system of the form ẋ = Ax + Bu, y = Cx with feedback
of the form u(x) = v(x)Cx is considered, where v(x) is real-
valued and has domain which is all of R

2. It is shown that,
when stabilization is possible, v(x) can be chosen to take on
no more than two values throughout the entire state space
(i.e., v(x) ∈ {v1, v2} for all x and for some v1, v2), and an
algorithm for finding a specific choice of v(x) is presented. It
is also shown that the classical root locus of the corresponding
transfer function C(sI−A)−1B has a strong connection to this
stabilization problem, and its utility is demonstrated through
several design examples.

I. INTRODUCTION

Stabilization of continuous time systems via hybrid feed-
back (in which a controller which possesses both continuous
and discrete dynamics is employed) is a problem that has
received much attention in the recent literature. Artstein first
raised this question via examples [1]. Litsyn et. al. show in
[2] that the linear system

ẋ = Ax + Bu, y = Cx (I.1)

with (A,B) reachable and (C,A) observable can be stabi-
lized via a hybrid feedback controller which uses a count-
able number of discrete states (and no continuous states)
and which only depends upon the output y as opposed to
the entire continuous state x. A natural question arises as to
whether a hybrid feedback controller can be designed which
uses a finite number of states instead. For the most part,
the answer to this question is still open, though a partial
answer has been given by Hu et. al. in [3] based upon
the so-called conic switching laws of [4] and [5]. In [3],
it is shown that, for a certain class of single-input, single-
output (SISO) second order systems which are reachable
and observable, there exists a feedback control law of the
form u(x) = v(x)Cx where

v(x) =

{
v1, if x1x2 ≥ 0
v2, if x1x2 < 0

(I.2)

with x =
[

x1 x2

]
′

such that the resulting closed-loop
system

ẋ = Ax + v(x)BCx (I.3)

is globally exponentially stable. A control law of the form
I.2 is desirable as it can be implemented as a switch between
two static gains which multiplies the output y = Cx. Note
that, in general, the above strategy does not always work
as the result of [2] sometimes requires a more complicated
hybrid feedback structure to achieve stability, even when
the system described by I.1 is reachable and observable.

Example I.1: Consider I.1 with

A =

[
2 −1

−1 2

]
, B =

[
0
1

]
, C =

[
0 1

]
.

The system is reachable and observable, but I.3 is not stable
for any real-valued choice of v(x) ≡ v(x1, x2) whose
domain is all of R

2 , not just v(x1, x2) of the form I.2.1

To see this, first note that the region x1 < 0, x2 > 0 is
invariant under the flow of I.3 for any choice of v(x1, x2).
Indeed, when x1 = 0, ẋ1 = −x2 < 0, and when x2 = 0,
ẋ2 = −x1 > 0 for all choices of v(x). Moreover, when
x1(0) < 0 and x2(0) > 0, ẋ1 = 2x1 − x2 < 0, which
means that x1(t) is strictly decreasing, and, hence, does
not decay to zero regardless of the choice of v(x1, x2).

The goal of this paper is to answer the following ques-
tions: under what conditions on A ∈ R

2×2, B ∈ R
2×1

and C ∈ R
1×2 can the closed-loop system I.3 be made

asymptotically stable for some choice of v(x1, x2)? And,
moreover, when stability is achievable, how may one design
v(x1, x2) explicitly? As it turns out, the answer to the first
question has a strong connection to the classical control
notion of root locus. Essentially, if one considers control
laws of the form v(x1, x2) = k for some constant k
where k varies continuously over R, then the system I.3
is stabilizable in only one of two situations:

• There exists a value of k such that the matrix A+kBC
is Hurwitz and, hence, I.3 is exponentially stabilizable
via static output feedback.

• There is no value of k for which A+kBC is Hurwitz,
but there does exist a value of k for which the eigen-
values of A+kBC are complex. In this case, v(x1, x2)

1We will implicitly make this assumption on the domain of v(x)
throughout the paper. Note that this eliminates choices of v(x) which
blow up for some value(s) of x, such as v(x) which attempt to divide by
the output y = Cx.
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can be chosen to take on only two values v1 and
v2 throughout the entire state-space, i.e., v(x1, x2) ∈
{v1, v2}, where v1 and v2 are appropriately selected
real constants, and global exponential stability can be
achieved.

A third situation can exist in which there exists no value of
k for which A + kBC is Hurwitz and the eigenvalues of
A+kBC are real for all k. It is precisely these situations for
which no choice of v(x1, x2) will yield asymptotic stability.

Note that, unlike [2], the switching strategies employed
here and in [3] in general require full knowledge of the
state x of I.1 rather than just knowing the output y = Cx.
Nevertheless, finite state automata can be designed which
practically implement the switching strategies presented
here and in [3], though we will not formally show this
here. The main goal of this work is to provide theoretical
limitations as to which SISO second order systems of the
form I.1 do not admit themselves to a stabilizing hybrid
controller which attempts to implement the switching law
of I.2.

The structure of the paper is as follows. First, we examine
two particular case studies in which the form of the B and C
vectors have special structure and analyze the conditions on
the matrix A which will guarantee stability. Also, we will
derive explicit forms for v(x1, x2) which can be used to
achieve stability when it is possible to do so. Next, we will
show that, through appropriate coordinate transformations,
all nontrivial 2 problems can be transformed into either one
of these two case studies and then will use this to establish
the main result. Finally, we explore a general method of
designing such controllers (when they exist) and provide
several examples to illustrate the methodology.

II. CASE STUDIES

In this section, we explore two specific case studies in
which the A, B and C matrices of I.1 have particular
structures. Using appropriate coordinate transformations,
we will then relate the results of this section to derive the
main result for general A, B, and C.

A. Case 1

We first assume a system of the following structure:

A =

[
a b
c 0

]
, B =

[
0
1

]
, C =

[
0 1

]
, (II.4)

where a, c ∈ R, and b ≥ 0. Here, I.3 takes the form[
ẋ1

ẋ2

]
=

[
a b
c v(x1, x2)

] [
x1

x2

]
(II.5)

We summarize the possibilities for stabilizability as a
function of the parameters a, b, and c in the proposition
below:

Proposition II.1: For the system II.5:

2By “nontrivial”, we refer to problems in which neither B nor C is
identically 0.

1) If bc = 0, then II.5 is exponentially stabilizable via
static output feedback if a < 0 and is not stabilizable
for any choice of v(x1, x2) otherwise.

2) If b > 0 and c > 0, when v(x1, x2) = k for some
constant k, then the eigenvalues of II.5 are real for
all k, and II.5 is either exponentially stabilizable via
static output feedback or is not stabilizable by any
choice of v(x1, x2).

3) If b > 0 and c < 0, when v(x1, x2) = k for some
constant k, then the eigenvalues of II.5 are not real
for all k, and II.5 is exponentially stabilizable either
by static output feedback or by feedback of the form

v(x1, x2) =

{
k1, if w′

1
x = 0

k2, if w′

1
x �= 0

for some appropriate choice of w1, k1 and k2.
We prove each part separately below.
Proof of Part 1: Note that if b = 0, the system described

by II.4 has an uncontrollable mode. In this case, stabilizabil-
ity is possible if and only if a < 0 and can be achieved via
v(x1, x2) = k, where k < 0. In a similar vein, if c = 0, II.4
has an unobservable mode. Noting that any initial condition
with x2(0) = 0 satisfies x2(t) = 0 for all t, it is again clear
that stabilizability is possible if and only if a < 0 and can
be achieved by setting v(x1, x2) to a negative real constant.

Proof of Part 2: If we set v(x1, x2) = k for some
constant k, the characteristic polynomial of II.5 is given
by

s2 − (a + k)s + ak − bc. (II.6)

First note that both roots of II.6 are real for any value of
k since the discriminant (a+k)2 −4ak +4bc = (a−k)2 +
4bc > 0 for all k. Now, both eigenvalues of II.5 can be
placed in the open left half plane if and only if there exists
a value of k such that a + k < 0 and ak − bc > 0. When
a < 0, there always exists a value of k which satisfies both
of these constraints and, hence, II.5 is stabilizable via static
output feedback.

When a ≥ 0, there is no value k which can satisfy both
inequalities simultaneously when b > 0 and c > 0. Hence,
II.5 cannot be stabilized via static output feedback. To show
that II.5 cannot be stabilized for any choice of v(x1, x2),
first recognize that, when b > 0, and c > 0, the conic region
x1 > 0, x2 > 0 is invariant under the flow of II.5 for any
choice of v(x1, x2). To show this, assume that the statement
is not true, and that there exists a trajectory with x1(0) > 0,
x2(0) > 0 that leaves the open first quadrant by crossing the
axis x1 = 0. At the point of time that the trajectory crosses
the x1 axis, the corresponding value of ẋ1 is given by
bx2 > 0 which means that x1(t) must be increasing when
it crosses the x1 axis, an obvious contradiction. Similarly, if
there exists some choice of v(x1, x2) such that a trajectory
escapes the open first quadrant by crossing the x2 axis, at
the time of crossing, ẋ2 = cx1 > 0.

If a ≥ 0, b > 0, c > 0, then II.5 is not stabilizable for
any choice of v(x1, x2) for essentially the same reason as
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was presented in Example I.1. By virtue of the above, if
x1(0) > 0, x2(0) > 0, then ẋ1 = ax1 + bx2 > 0, which
means that x1(t) is always increasing for any choice of
v(x1, x2).

Proof of Part 3: When c < 0, the roots of II.6 can
be made to lie in the open left half plane when a < 0.
When a ≥ 0, the roots can also be made to lie in the
open left half plane if and only if a2 < −bc. Hence, II.5
is not static output feedback stabilizable if a2 ≥ −bc, yet,
as we now show, there exists a choice of v(x1, x2) which
yields global exponential stability. Closer examination of
the characteristic polynomial II.6 with b > 0, c < 0, and
a2 ≥ −bc yields the following two statements:

• The roots of II.6 are complex with nonnegative real
part whenever a − 2

√−bc < k < a + 2
√−bc.

• There exists a negative real root of II.6 whenever k <
−a.

Since the roots of II.6 can be calculated explicitly as

s =
a + k

2
±

√
(a − k)2 + 4bc

2
, (II.7)

it is clear that the roots are complex whenever the first
bulleted item holds. Moreover, the real part of the roots is
nonnegative since, due to the fact that a2 ≥ −bc,

a + k

2
> a −

√
−bc ≥ 0.

Now, when k < −a, the discriminant satisfies

(a − k)2 + 4bc > 4a2 + 4bc ≥ 0,

hence, the roots are real. Moreover, because the sum of the
roots (a + k)/2 < 0, one root must be negative.

Informally speaking, to find a choice of v(x1, x2) which
asymptotically stabilizes II.5, we use the following basic
design strategy. The above analysis shows that there exists
a value of k1 which yields a real eigenvalue λ1 < 0 and
corresponding real eigenvector q1. If we set v(x1, x2) = k1

along q1, then any initial condition which lies along q1 will
decay exponentially with rate λ1. For all other values of x1

and x2 which do not lie along q1, we find a value k2 for
which the eigenvalues are complex. If we set v(x1, x2) = k2

everywhere else in the state-space, then any initial condition
which does not lie along q1 will rotate until it eventually
“hits” q1 and will decay exponentially thereafter. This idea
is illustrated graphically in Fig. II.1. Here, the dotted line
represents the stable eigenvector q1 when v(x1, x2) = k1,
the dashed line represents a sample phase portrait with
initial condition x(0) when v(x1, x2) = k2 throughout
the entire state-space, and the solid curve represents the
trajectory with initial condition x(0) when v(x1, x2) = k1

along q1 and v(x1, x2) = k2 everywhere else in the state-
space.

Before we prove this result formally, we need the follow-
ing lemma:

Lemma II.1: Consider the linear system ż = Az where
A ∈ R

2×2 has two complex conjugate eigenvalues. Then

for any w ∈ R
2 and any z(0), there exists t0 ∈ R such

that w′z(t0) = 0.
Proof: If w′z(0) = 0, then the statement immediately

follows. Otherwise, without loss of generality, assume that
w′z(0) > 0. Because the eigenvalues of A are complex, the
entries of the corresponding state transition matrix exp(At)
are linear combinations of the terms exp(σ0t) cos(ω0t) and
exp(σ0t) sin(ω0t) where σ0, ω0 > 0. Hence,

w′z

(
π

ω0

)
= − exp

(
σ0π

ω0

)
w′z(0) < 0.

By continuity of z(t), it then follows that there exists some
time t0 < π/ω0 such that w′z(t0) = 0.

We now formally prove that the above informal descrip-
tion yields an exponentially stable system.

Proposition II.2: For the system II.5 with b > 0, c < 0,
and a2 ≥ −bc, suppose that k1 is chosen such that II.5 with
v(x1, x2)=k1 has a stable eigenvector q1 with corresponding
eigenvalue λ1 < 0, and k2 is chosen such that II.5 has two
complex eigenvalues. Let w1 satisfy w′

1
q1 = 0 and consider

v(x1, x2) =

{
k1, if w′

1
x = 0

k2, if w′

1
x �= 0

.

Then II.5 is globally exponentially stable for the above
choice of v(x1, x2) with decay rate λ1.

Proof: If x(0) = αq1 for some α ∈ R, then
x(t) = exp(λ1t)x(0) and the statement holds. Otherwise,
w′

1
x(0) �= 0, and, by virtue of Lemma II.1, there exists

some value of t0 such that w′

1
x(t0) = 0. Now, x(t) =

exp(λ1(t − t0))x(t0) for all t > t0.

B. Case 2

Now we assume a system of the following structure:

A =

[
a b
0 c

]
, B =

[
0
1

]
, C =

[
1 0

]
, (II.8)

x2

x1

x(0)

Fig. II.1. Illustration of stabilization algorithm for a system which is not
static output feedback stabilizable.
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where a, c ∈ R, and b ≥ 0. Here, I.3 takes the form[
ẋ1

ẋ2

]
=

[
a b

v(x1, x2) c

] [
x1

x2

]
(II.9)

We summarize the possibilities for stabilizability as a
function of the parameters a, b, and c in the proposition
below:

Proposition II.3: For the system II.9:

1) If b = 0, then II.9 is exponentially stabilizable via
static output feedback if a < 0 and c < 0 and is not
stabilizable for any choice of v(x1, x2) otherwise.

2) If b > 0, when v(x1, x2) = k for some constant
k, the eigenvalues of II.9 are not real for all k, and
II.9 is exponentially stabilizable either by static output
feedback or by feedback of the form

v(x1, x2) =

{
k1, if w′

1
x = 0

k2, if w′

1
x �= 0

for some appropriate choice of w1, k1 and k2.
We prove each part separately below.
Proof of Part 1: If b = 0, the system described by II.8

is both uncontrollable and unobservable. In this case, II.9
is stabilizable if and only if a < 0 and c < 0. That II.9 is
unstable if a ≥ 0 is clear; if c ≥ 0, then any solution with
initial condition x1(0) = 0 satisfies ẋ2 = cx2 and, hence,
II.9 is unstable for any choice of v(x1, x2).

Proof of Part 2: If we set v(x1, x2) = k for some
constant k, the characteristic polynomial of II.9 is

s2 − (a + c)s + ac − bk. (II.10)

It is clear that if a + c < 0, then there always exists a
choice of k such that ac − bk > 0, and hence II.9 can be
stabilized via static output feedback. If a + c ≥ 0, then II.9
can be stabilized via a choice of v(x1, x2) which takes on
two values throughout the entire state space in a manner
similar to that of Case 1. A more detailed observation of
the roots of II.10 when a + c ≥ 0 reveal the following two
facts:

• The roots of II.10 are complex with nonnegative real
part whenever k < −(a − c)2/4b.

• There exists a negative real root of II.10 whenever k >
ac/b.

Because the roots of II.10 can be calculated explicitly as

s =
a + c

2
±

√
(a − c)2 + 4bk

2
, (II.11)

it is clear that the roots are complex whenever the first
bulleted item holds.

Now, if k is chosen such that a negative real root exists,
then the inequality a + c <

√
(a − c)2 + 4bk must be

satisfied. A simple calculation shows that this is equivalent
to the second bulleted item.

Using this result, we can derive a stabilization algorithm
which is completely analogous to the algorithm of the
previous case:

Proposition II.4: For the system II.9 with b > 0 and a+
c ≥ 0, suppose that k1 is chosen such that II.9 has a stable
eigenvector q1 with corresponding eigenvalue λ1 < 0, and
k2 is chosen such that II.9 has two complex eigenvalues.
Let w1 satisfy w′

1
q1 = 0, and consider

v(x1, x2) =

{
k1, if w′

1
x = 0

k2, if w′

1
x �= 0

.

Then II.5 is globally exponentially stable for the above
choice of v(x1, x2) with decay rate λ1.

Proof: Same as the proof of Proposition II.2.

III. MAIN RESULT

While the case studies of the prior section may seem con-
strained due to the very special structure of the A,B, and
C matrices, an appropriate change of coordinates reveals
that any second order system of the form I.1 and can be
transformed into either Case 1 or Case 2.

Lemma III.2: Consider matrices A ∈ R
2×2, B ∈ R

2×1,
and C ∈ R

1×2 where neither B nor C is identically 0. For
any invertible matrix T ∈ R

2×2, define the triplet (Ã, B̃, C̃)
as (T−1AT, T−1B,CT ), and let

Ã ≡
[

a b
c d

]
.

Then the following statements hold:

1) If CB �= 0, then ∃T such that

B̃ =

[
0
1

]
, C̃ =

[
0 α

]

with α �= 0 and b ≥ 0.
2) If CB = 0, then ∃T such that

B̃ =

[
0
1

]
, C̃ =

[
α 0

]

with α �= 0 and b ≥ 0.

Proof: Let B =
[

β1 β2

]
′

, C =
[

γ1 γ2

]
. To

prove the first result, direct computation shows that the
matrix

T =

[
γ2 β1

−γ1 β2

]

is invertible since det(T ) = γ1β1 + γ2β2 = CB �= 0.
Moreover, B̃ =

[
0 1

]
′

, C̃ =
[

0 α
]

where α =
CB �= 0. If b ≥ 0, then the statement follows. Otherwise,
the transformation

T2 = T

[ −1 0
0 1

]
=

[ −γ2 β1

γ1 β2

]

will satisfy all of the desired properties.
To prove the second part of the statement, consider the

matrix

T =

[
β2 β1

−β1 β2

]
.

Then det(T ) = β2

1
+ β2

2
�= 0, and, hence, T is invertible.

Note that any nonzero C which satisfies CB = 0 may be
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written as C =
[

δβ2 −δβ1

]
, where δ �= 0. Hence,

B̃ =
[

0 1
]
′

, C̃ =
[

α 0
]
, where α = δ(β2

1
+ β2

2
) �=

0. If b ≥ 0, then the statement holds. Otherwise, the
transformation

T2 = T

[ −1 0
0 1

]
=

[ −β2 β1

β1 β2

]

will satisfy all of the desired properties.
We are now ready to present the main result of the paper.
Theorem III.1: Consider the system I.1 with A ∈

R
2×2, B ∈ R

2×1, and C ∈ R
1×2 where neither C nor B is

identically 0. Define the root locus of this system to be the
locus of eigenvalues of I.3 when v(x1, x2) = k as k varies
continuously over R. Then exactly one of the following
statements is true:

1) The system is static output feedback stabilizable.
2) The system is not static output feedback stabilizable,

but it has root locus which takes on complex values
for some values of k ∈ R and is stabilizable by
a control law v(x1, x2) which takes on one of two
values throughout the entire state space.

3) The system has a root locus which is real for all values
of k ∈ R and is not stabilizable by control of the form
I.3 for any choice of v(x1, x2).

Proof: Using Lemma III.2, whenever C and B are
not identically 0, there exists a coordinate transformation
where I.3 is either of the form[

ẋ1

ẋ2

]
=

[
a b
c d + αv(x1, x2)

] [
x1

x2

]

or the form[
ẋ1

ẋ2

]
=

[
a b

c + αv(x1, x2) d

] [
x1

x2

]
,

with α �= 0 and b ≥ 0. Since α �= 0, the substitutions
ũ(x1, x2) = d+αv(x1, x2) and ũ(x1, x2) = c+αv(x1, x2)
are invertible. Hence, any system of the form I.1 for which
neither C nor B is identically 0 can be transformed into
the form of either Case 1 or Case 2 of the previous section.
Since the statements of the theorem were shown to be true
for both of these case studies, it then follows that the result
must hold in the more general setting.

IV. DESIGN METHODOLOGY

Note that in order to obtain a stabilizing controller
(when it exists), one need not carry out the transformations
described in Lemma III.2. Rather, one may analyze the
root locus of the matrix A + kBC directly and (when
necessary) find a stable eigenvector to derive an appropriate
control law v(x1, x2). Moreover, when (A,B) is reachable
and (C,A) is observable, we may employ classical root
locus techniques to the corresponding transfer function
C(sI −A)−1B to quickly ascertain the geometric behavior
of the root locus. When either (A,B) is not reachable and/or
(C,A) is not observable, we may still use classical root
locus techniques on the transfer function C(sI − A)−1B,

but we must take care to include the unreachable and/or
unobservable modes in our analysis.

The following basic algorithm will yield a stabilizing
controller when one exists:

1) Compute the transfer function C(sI − A)−1B and
examine the corresponding root locus of I.1 (i.e. the
roots of 1 − kC(sI − A)−1B as k varies over R,
along with any fixed unreachable and/or unobservable
modes of the original state-space model).

2) If examination of the root locus shows that ∃k0 for
which both of the eigenvalues of A + k0BC lie in
the open left half-plane, find such a value of k0 and
choose v(x1, x2) = k0 for all x.

3) If examination of the root locus indicates that there
exists a value k1 for which one of the eigenvalues
A+k1BC lies in the open left half-plane and a value
k2 for which the imaginary part of the eigenvalues
is nonzero, find corresponding values of k1 and k2,
along with the (real) eigenvector w1 of A+k1BC cor-
responding to the stable eigenvalue. Choose v(x1, x2)
such that

v(x1, x2) =

{
k1, if w′

1
x = 0

k2, if w′

1
x �= 0

where w1 satisfies w′

1
q1 = 0.

4) If neither 2) nor 3) holds, declare the system unsta-
bilizable by any choice of v(x1, x2).

V. EXAMPLES

Example V.2: We consider three reachable, observable
systems of the form

ẋ = Aix + Biu, y = Cix, i ∈ {1, 2, 3}

A1 =

[ −6 −6
−6 7

]
A2 =

[
0 1
6 1

]
A3 =

[
0 1

−12 7

]

B1 =

[ −1
1

]
B2 =

[
0
1

]
B3 =

[
0
1

]

C1 =
[

0 1
]

C2 =
[

1 1
]

C3 =
[ −2 1

]
.

The transfer functions Hi(s) corresponding to each of
these state space descriptions are given by

H1(s) =
s

s2 − s − 6

H2(s) =
s + 1

s2 − s − 6

H3(s) =
s − 2

s2 − 7s + 12

The root locus for each of the above transfer functions is
depicted in Fig. V.2. From the first root locus diagram for
H1(s), it is clear that the root locus is real for all k, but
the zero at s = 0 prevents one eigenvalue from entering the
left half plane. Hence, there is no switching control law of
the form I.2 which can asymptotically stabilize this system.
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While the root locus for H2(s) is also real for all k, the
presence of the zero at s = −1 allows both eigenvalues
to lie in the open left half plane for sufficiently negative
values of k. Indeed, when k = −7, the eigenvalues are
approximately −5.83 and −0.17. Hence, the second system
can be made stable via static output feedback.

The third system H3(s) has a root locus that takes on
complex values for some negative values of k, but both
eigenvalues never lie in the left half plane simultaneously.
Nevertheless, one of the eigenvalues can be made negative
for sufficiently negative values of k. Indeed, when k =
−20/3, −1 is an eigenvalue of A3 + kB3C3 with corre-
sponding eigenvector q1 =

[
1 −1

]
′

. When k = −1, the
eigenvalues of A3+kB3C3 are complex (3±i). Noting that
w1 =

[
1 1

]
′

satisfies w′

1
q1 = 0, a stabilizing switching

controller is given by u(x1, x2) = v(x1, x2)C3x, where
v(x1, x2) is given by

v(x1, x2) =

{ − 20

3
, if x1 + x2 = 0

−1, if x1 + x2 �= 0
.

The purpose of the root locus diagrams in the previous
example is to illustrate how one can almost immediately
tell whether stability can be achieved by a single gain,
two gains, or by no control of the form u(x1, x2) =
v(x1, x2)Cx. Using the standard root locus techniques on
the transfer function C(sI − A)−1B, it is fairly quick and
easy to determine the basic geometric features of the locus
and, hence, determine in which of the three stabilization
categories a given system lies.

Example V.3: We now consider two unreachable systems
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Fig. V.2. Root loci for H1(s), H2(s), and H3(s). The root loci for
positive k are depicted on the left, while the root loci for negative k are
depicted on the right.

of the form

ẋ = Aix + Bu, y = Cx,

where B =
[

1 0
]
, C =

[
1 1

]
and

A1 =

[ −1 1
0 1

]
, A2 =

[ −1 1
0 −1

]
.

In both cases, the transfer function C(sI − Ai)
−1B =

1/(s+1), from which it is clear that the root locus lies along
the negative real line for an appropriately chosen value of
the gain k. However, since the root locus of the entire
system is given by the root locus of the transfer function
united with the fixed, unreachable modes, only the second
system is stabilizable in this case since the unreachable
mode lies in the open left half plane. The first system has a
root locus which is real for all k, but an unstable eigenvalue
at s = 1 always exists. Hence, no feedback of the form
u(x1, x2) = v(x1, x2)Cx can stabilize the first system for
any v(x1, x2).

VI. CONCLUSION AND FUTURE WORK

Some remarks are in order. First, the switching law
presented in this paper is not implementable from a practical
standpoint since the value of the gain is constant every-
where except on a measure zero set. Nevertheless, with
the addition of a finite state automaton and appropriate
modifications to the switching law, a robust version of this
switching law can be implemented and is the subject of
future work.

Second, while it is arguable that a connection between
stabilizability with the given controller structure and the
geometric behavior of the corresponding root locus is strong
only because of the simplistic nature of second order
systems, preliminary work indicates that a connection still
exists between the two for higher dimensional systems.
Indeed, for a certain class of higher dimensional systems,
there is an indication that the root locus provides certain
negative results in the sense that a system cannot be
stabilized by control of the form u(x) = v(x)Cx for any
v(x) if the root locus possesses certain geometric properties
similar to the geometric properties of the second order case
presented here.
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