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Abstract— In this paper, we present robust adaptive controller
design for SISO linear systems with zero relative degree under
noisy output measurements. We formulate the robust adaptive control
problem as a nonlinear H∞-optimal control problem under imperfect
state measurements, and then solve it using game theory. By using the
a priori knowledge of the parameter vector, we apply a soft projection
algorithm, which guarantees the robustness property of the closed-
loop system without any persistency of excitation assumption on the
reference signal. Due to our formulation in state space, we allow the
true system to be uncontrollable, as long as the uncontrollable part
is stable in the sense of Lyapunov, and the uncontrollable modes
on the jω-axis are uncontrollable from the exogenous disturbance
input. This assumption allows the adaptive controller to asymptotically
cancel out, at the output, the effect of exogenous sinusoidal disturbance
inputs with unknown magnitude, phase, and frequency. These strong
robustness properties are illustrated by a numerical example.

Index Terms— Nonlinear H∞ control; cost-to-come function analy-
sis; adaptive control.

I. INTRODUCTION

The design of adaptive controllers has been an important
research topic since 1970s. The classic adaptive control design,
based on the certainty equivalence principle [1], [2], is to design
the controller as if the system parameters are known and then
in implementation to supply the controller with estimates of the
parameters, using standard identifiers, as if the estimates are true
values. This design method has been proven successful especially
for the linear systems with or without stochastic disturbance inputs
[3]. This approach leads to structurally simple adaptive controllers.
Yet, early designs based on this approach has been shown to be
nonrobust [4] when the system is subject to exogenous disturbance
inputs and unmodeled dynamics. Then, the stability and the
performance of a system under disturbance and/or uncertainty
becomes an important issue. This motivates the study of robust
adaptive control which has attracted significant research attention
since 1980s. Also, this approach fails to generalize to systems
with severe nonlinearities. This motivates the study of nonlinear
adaptive control in 1990s.

Robust adaptive control has been an important research topic
in late 1980s and early 1990s. Various adaptive controllers were
modified to render the closed-loop systems robust [5]. Despite their
successes, they fell short of directly addressing the disturbance
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attenuation property of the closed-loop system.
The topic of nonlinear adaptive control has been widely studied

in the last decade after the celebrated characterization of feedback
linearizable or partially feedback linearizable systems [6]. The
introduction of the integrator backstepping methodology [7] allows
us to design adaptive controllers for parametric strict-feedback and
parametric pure-feedback nonlinear systems systematically. Since
then, many results flourished using this approach, and a complete
list of references can be found in the book [8]. More recently,
systems with unknown sign of the high frequency gain have
been studied using this approach [9]. Moreover, this approach has
been applied to linear systems to compare performance with the
certainty equivalence approach. As to be expected, a systematically
designed nonlinear adaptive control law leads to better closed-loop
performance than that for the certainty equivalence based design
when the system is free of disturbance. However, this approach
has also been shown to to nonrobust when the system is subject
to exogenous disturbance inputs.

H∞-optimal control has been proposed as a solution to the
robust control problem. It achieves the objectives of robust control,
namely, improving transient response, accommodating unmodeled
dynamics, and rejecting exogenous disturbance inputs, by studying
only the disturbance attenuation property for the closed-loop
system. The game-theoretic approach to H∞-optimal control [10]
developed for the linear quadratic problems, offers the most
promising tool to generalize the results to nonlinear systems [11],
[12]. The worst-case analysis approach to adaptive control was
proposed to address the disturbance attenuation property of the
closed-loop system directly. In this approach, the robust adaptive
control problem is formulated as a nonlinear H∞-optimal control
problem under imperfect state measurements. Using cost-to-come
function analysis, it can be converted into a problem under full
information measurements. This full information measurement
problem is then solved for a suboptimal solution using the inte-
grator backstepping methodology. This design paradigm has been
applied to worst-case parameter identification problems, which
has led to new classes of parametrized identifiers for linear and
nonlinear systems. It has also been applied to adaptive control
problems [13], [14], [15], which has led to new classes of
parametrized robust adaptive controllers for linear and nonlinear
systems. In [13], adaptive control for strict-feedback nonlinear
systems was considered under noiseless output measurements. In
[14] and [15], linear systems were considered under noisy output
measurements. [15] generalizes the results of [14], by assuming
part of the disturbance inputs are measured, which then lead to
disturbance feedforword structure in the adaptive controller.

In this paper, we study the adaptive control design for SISO
linear systems with zero relative degree under noisy output mea-
surements using a similar approach as that of [14]. We assume
that the linear system admits a known upper bound for its dynamic
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order, is observable, has a strictly minimum phase transfer function
with relative degree 0. The linear system may be uncontrollable, as
long as the uncontrollable part is stable in the sense of Lyapunov,
and all uncontrollable modes on the jω-axis are uncontrollable
from the disturbance input. Under these assumptions, the system
may be transformed into the design model, which is linear in
all of the unknown quantities. We formulate the robust adaptive
control problem as a nonlinear H∞-optimal control problem under
imperfect state measurements, where the objectives of transient
performance, asymptotic tracking, and disturbance attenuation are
incorporated into a single game theoretic cost function. To avoid
singularity is the estimation step, we assume that the measurement
is noisy. Then, we can apply cost-to-come function methodology
to derive the estimator, which has a finite-dimensional structure.
To relieve the persistency of excitation condition for the closed-
loop system, we apply a soft projection algorithm for the estima-
tor. Then, the closed-loop system is robust with or without the
persistently exciting signals. After the estimator is determined,
the original problem becomes a nonlinear H∞-optimal control
problem under full-information measurement, and the controller
can be obtained directly based on the cost function at that step. The
closed-loop system admits a guaranteed disturbance attenuation
level with respect to the exogenous disturbance inputs, where the
ultimate attenuation lower bound for the achievable performance
level is equal to the noise intensity in the measurement channel. All
closed-loop signals are bounded when the exogenous disturbance
and the reference trajectory are bounded. Furthermore, it achieves
asymptotic tracking of uniformly continuous and bounded refer-
ence trajectories for all bounded disturbance inputs that are of
finite energy. This result has significant impact on active noise
cancellation problems. That is, when the true system is subject to
disturbances generated by an unknown exogenous linear system,
we can extend our system model to include the states of the
exogenous system as part of the model, and then asymptotically
cancel out the effect of the noise at the output. This feature is
illustrated by an example in the paper.

The balance of the paper is organized as follows. In Section
II, we list the notations to be used in this paper. In Section III,
we formulate adaptive control problem and discuss the general
solution methodology. In Section IV, we present the estimation
and control design using cost-to-come function methodology. In
Section V, we present the main result of the paper which states
the robustness properties of the closed-loop system. The theoretical
results are illustrated by one numerical example in Section VI. The
paper ends with some concluding remarks in Section VII. Due to
page limitation, some details, for example, the detailed proof of the
main result, some derivations, simulation details of the example,
are omitted in this shortened version. For interested readers, please
contact us for a copy of the full version of the paper.

II. NOTATIONS

We denote IR to be the real line; IN to be the set of natural
numbers; C to be the set of complex numbers. For a function f ,
we say that it belongs to C if it is continuous; we say that it belongs
to Ck if it is k-times continuously (partial) differentiable. For any
matrix A, A′ denotes its transpose. For any b ∈ IR, sgn(b) ={

−1 b < 0
0 b = 0
1 b > 0

. For any vector z ∈ IRn, where n ∈ IN, and

any n × n-dimensional symmetric matrix M , |z| = (z′z)1/2 and
|z|2M = z′Mz. For any matrix M , the vector

−→
M is formed by

stacking up its column vectors. For any symmetric matrix M ,
←−
M

denotes the vector formed by stacking up the column vector of
the lower triangular part of M . For n×n-dimensional symmetric
matrices M1 and M2, where n ∈ IN, we write M1 > M2 if
M1 −M2 is positive definite; we write M1 ≥ M2 if M1 −M2 is
positive semi-definite. For n ∈ IN, the set of n × n-dimensional
positive definite matrices is denoted by S+n. For n ∈ IN ∪ {0},
In denotes the n×n-dimensional identity matrix. For any matrix
M , ‖M‖p denotes its p-induced norm, 1 ≤ p ≤ ∞. L2 denotes
the set of square integrable functions and L∞ denotes the set of
bounded functions.

III. PROBLEM FORMULATION

We consider the adaptive control problem for single-input and
single-output (SISO) linear time-invariant systems.

Assumption 1: The linear system is known to be at most n
dimensional, n ∈ IN. 	

We consider the following true system dynamics:

˙̀x = Àx̀ + B̀u + D̀ẁ; x̀(0) = x̀0 (1a)

y = C̀x̀ + b0u + Èẁ (1b)

where x̀ is the ǹ-dimensional state vector, ǹ ∈ IN ∪ {0}; u
is the scalar control input; b0 ∈ IR and b0 
= 0; y is the
scalar measurement output; ẁ is the q̀-dimensional unmeasured
disturbance input vector, q̀ ∈ IN; and all input and output signals y,
u, and ẁ are continuous; the matrices À, B̀, C̀, D̀, and È are of the
appropriate dimensions, generally unknown or partially unknown.
The transfer function from u to y is H(s) = C̀(sIǹ−À)−1B̀+b0.

Assumption 2: 1 The pair (À, C̀) is observable. The transfer
function H(s) is known to have relative degree 0, and is strictly
minimum phase. Moreover, the uncontrollable part (with respect
to u) of the unknown system is stable in the sense of Lyapunov.
Any uncontrollable mode corresponding to an eigenvalue of the
matrix À on the jω-axis is uncontrollable from ẁ. 	

Remark 1: If the true system is of order ǹ < n, we can add
(n−ǹ)-dimensional dynamics as outlined in the full version of the
paper, such that the expanded system is of order n and satisfies the
Assumption 2. Hence, without loss of generality, we will assume
that the true system (1) is of order n.

Since (À, C̀) is observable, there always exists an unknown
state diffeomorphism x̀ = T̀ x, and an unknown disturbance
transformation w = M̀ẁ, where w is q ∈ IN dimensional, such
that the system (1) can be transformed into the following form

ẋ = Ax + (yĀ211 + uĀ212)θ + Bu + Dw; x(0) = x0(2a)

y = Cx + uC̄1θ + bp0u + Ew (2b)

where θ is the σ-dimensional vector of unknown parameters of
the system, σ ∈ IN; the matrices A, Ā211, Ā212, B, D, C, E,
and C̄1 are of appropriate dimensions and completely known, and
bp0 ∈ IR is also known. In addition, the high frequency gain of
the transfer function H(s), b0, is equal to bp0 + C̄1θ. The system
(2) is called the design model.

We have the following assumptions about the design model.
Assumption 3: Define ζ := (EE′)−1/2 > 0 and L := DE′. 	
Remark 2: The above transformation matrix T̀ always exists.

One may choose the state diffeomorphism x̀ = T̀ x to be the one
which transforms the pair (À, C̀) into its observer canonical form.
Next, we can choose a unknown matrix M̀ such that the matrices
D and E are completely known.

1When ǹ = 0, Assumption 2 is considered satisfied.
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Assumption 4: The sign of the high-frequency gain b0 is known.
There exists a known smooth nonnegative radially-unbounded
strictly convex function P : IRσ → IR, such that the true value of
θ belongs to the set Θ := {θ̄ ∈ IRσ | P (θ̄) ≤ 1}. Furthermore,
for any θ̄ ∈ Θ, we have sgn(b0)(bp0 + C̄1θ̄) > 0. 	

We make the following assumption about the reference signal.

Assumption 5: The reference trajectory, yd, is continuous, and
available for the control design. 	

The control law is generated by u(t) = µ(y[0,t], yd[0,t]).
Furthermore, it must satisfy the following condition. For any
uncertainty (x0, θ, ẁ[0,∞), yd[0,∞)) ∈ Ẁ := IRn × Θ × C × C,
these exists a unique solution x̀[0,∞) for the closed-loop system,
which result in a continuous control input waveform u[0,∞). We
denote the class of these admissible controllers by Mu.

The objectives of our control design are to make the output of
the system, Cx+b0u, to asymptotically track the reference trajec-
tory yd, and guarantee the boundedness of all closed-loop signals,
while rejecting the uncertainty (x0, θ, ẁ[0,∞), yd[0,∞)) ∈ Ẁ . For
design purposes, instead of attenuating the effect of ẁ, we attenu-
ate the effect of w. We take the uncertainty (x0, θ, w[0,∞), yd[0,∞))
to belong to the set W := IRn×Θ×C×C. All of these objectives
can be captured by the optimization of a single game-theoretic cost
function, defined as follows.

Definition 1: A controller µ ∈ Mu is said to achieve distur-
bance attenuation level γ if there exist a nonnegative function
l(t, θ, x, y[0,t], yd[0,t]) such that

sup
(x0,θ,ẁ[0,∞),yd[0,∞))∈Ẁ

Jγtf
≤ 0; ∀tf ≥ 0 (3)

where

Jγtf
:=

∫ tf

0

((
Cx(τ ) + u(τ )C̄1θ + bp0u(τ ) − yd(τ )

)2

+l(τ, θ, x(τ ), y[0,τ ], yd[0,τ ]) − γ2|w(τ )|2
)

dτ

−γ2
∣∣∣[ θ′ − θ̌′

0 x′
0 − x̌′

0

]′∣∣∣2
Q̄0

(4)

θ̌0 ∈ Θ is the initial guess of θ; x̌0 is the initial guess of x0;
Q̄0 is the quadratic weighting matrix, quantifying the level of
confidence in the estimate

[
θ̌′
0 x̌′

0

]′
; Q̄−1

0 admits the structure[
Q−1

0 Q−1
0 Φ′

0

Φ0Q
−1
0 Π0 + Φ0Q

−1
0 Φ′

0

]
, where Q0 and Π0 are σ×σ- and

n × n-dimensional positive definite matrices, respectively.

Clearly, when the inequality (3) is achieved, the squared L2

norm of the output tracking error Cx + uC̄1θ + bp0u − yd is
bounded by γ2 times the squared L2 norm of the transformed
disturbance input w plus some constant. When the L2 norm of ẁ is
finite, the squared L2 norm of Cx+uC̄1θ+bp0u−yd is also finite,
which implies lim

t→∞
(Cx(t) + u(t)C̄1θ + bp0u(t) − yd(t)) = 0,

under additional assumptions.

The following notation will be used throughout this paper. Let
x̌ denote the estimate of x, x̃ denote x− x̌, θ̌ denote the estimate
of θ, θ̃ denote θ − θ̌.

To formulate this robust adaptive control problem as an H∞

control problem with imperfect state measurements, we expand
the state space to include the parameter θ as part of the state. Let
ξ denote the expanded state vector ξ = [θ′ x′]′. We have

ξ̇ =

[
0σ×σ 0σ×n

yĀ211 + uĀ212 A

]
ξ +

[
0σ×1

B

]
u

+

[
0σ×q

D

]
w =: Ā(u, y)ξ + B̄u + D̄w

y =
[

uC̄1 C
]
ξ + bp0u + Ew =: C̄(u)ξ + bp0u + Ew

The worst-case optimization of the cost function (4) can be
carried out in two steps as depicted in the following inequality.

sup
(x0,θ,ẁ[0,∞),yd[0,∞))∈Ẁ

Jγtf

≤ sup
y[0,∞)∈C,yd[0,∞)∈C

sup
(x0,θ,w[0,∞),yd[0,∞))∈W|y[0,∞),yd[0,∞)

Jγtf
(6)

The inner supremum operator will be carried out first. It is the
estimation design step, which will be presented in Section IV.
We will calculate the maximum cost over all uncertainties that is
consistent with the given measurement waveform.

The outer supremum operator will be carried out second. It is the
control design step, which will be discussed after the estimation
design. In this step we design the control input u, which guarantees
the robustness of the closed-loop system.

This completes the formulation of the problem. Next, we turn
to the estimation and control design in the next section.

IV. ESTIMATION AND CONTROL DESIGN

In this section, we present the estimation and control design
for the adaptive control problem formulated. The first step is
estimation design. In this step, the measurement waveform y[0,∞)

and the reference trajectory yd[0,∞) are assumed to be known.
Since the control input is a causal function of y and yd, then it
is also known. We apply the cost-to-come function methodology.
Set function l in (4) to be |ξ − ξ̂|2Q̄, where ξ̂ is the worst-case
estimate for ξ, ξ̂ = [θ̂′ x̂′]′, and Q̄ is a matrix-valued weighting
function to be introduced later. The cost function becomes

Jγtf
=

∫ tf

0

(
|Cx(τ ) − yd(τ ) + u(τ )C̄1θ + bp0u(τ )|2

+|ξ(τ ) − ξ̂(τ )|2Q̄(τ,y[0,τ],yd[0,τ])
− γ2|w(τ )|2

)
dτ

−γ2
∣∣∣[ θ′ − θ̌′

0 x′
0 − x̌′

0

]′∣∣∣2
Q̄0

(7)

By the cost-to-come function analysis of [14], we have

˙̄Σ = (Ā(u, y) − ζ2L̄C̄(u))Σ̄ + Σ̄ (Ā(u, y) − ζ2L̄C̄(u))′

+γ−2D̄D̄′−γ−2ζ2L̄L̄′−Σ̄
(
γ2ζ2 (C̄(u))′C̄(u) − (C̄(u))′

·C̄(u) − Q̄(t, y[0,t], yd[0,t])
)
Σ̄; Σ̄(0) = γ−2Q̄−1

0 (8a)
˙̌ξ = Ā(u, y)ξ̌ − Σ̄Q̄(t, y[0,t], yd[0,t])ξc + Σ̄ (C̄(u))′(C̄(u)ξ̌

−(yd − bp0u)) + B̄u + ζ2
(
γ2Σ̄ (C̄(u))′ + L̄

)
(y − bp0u

−C̄(u)ξ̌); ξ̌(0) =
[

θ̌′
0 x̌′

0

]′
(8b)

where L̄ =
[

01×σ L′
]′

and ξc := ξ̂ − ξ̌.
Then, the cost function (7) can be equivalently written as, when

Σ̄ exists on [0, tf ] and Σ̄(t) is positive definite ∀t ∈ [0, tf ].

Jγtf
= −|ξ(tf ) − ξ̌(tf )|2(Σ̄(tf ))−1 +

∫ tf

0

(
(C̄(u(τ ))ξ̌(τ )

+bp0u(τ ) − yd(τ ))2 − γ2ζ2(y(τ ) − bp0u(τ )

−C̄(u(τ ))ξ̌(τ ))2 + |ξ̂(τ ) − ξ̌(τ )|2Q̄(τ,y[0,τ],yd[0,τ])

−γ2|w(τ ) − w∗(ξ(τ ), ξ̌(τ ), Σ̄(τ ), u(τ ), w(τ ))|2
)

dτ (9)
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where w∗ : IRn+σ × IRn+σ × S+(n+σ) × IR × IRq → IRq

is the worst-case disturbance for estimation step, given by
w∗(ξ, ξ̌, Σ̄, u, w) = ζ2E′ (y − bp0u − C̄(u)ξ) + γ−2 (Iq −
ζ2E′E)D̄′Σ̄−1 (ξ − ξ̌).

The following steps closely resembles that in [14]. Parti-

tion Σ̄(t) as

[
Σ(t) Σ̄12(t)

Σ̄21(t) Σ̄22(t)

]
, where Σ(t) is σ × σ-

dimensional, and introduce Φ(t) := Σ̄21(t)(Σ(t))−1 and Π(t) :=
γ2 (Σ̄22(t)−Σ̄21(t) (Σ(t))−1Σ̄12(t)). Also partition ξ̌ compatibly
as

[
θ̌′ x̌′

]′
.

For the boundedness of Σ, the weighting matrix Q̄ in (7) admits
the following structure

Q̄(t, y[0,t], yd[0,t]) =

[
−Φ′

In

]
γ4Π−1∆Π−1

[
−Φ′

In

]′

+

[
ε (C̄1u + CΦ)′ (γ2ζ2 − 1) (C̄1u + CΦ) 0σ×n

0n×σ 0n×n

]
where ∆(t) = γ−2β∆Π(t) + ∆1, with β∆ ≥ 0 being a constant
and ∆1 > 0 being a constant matrix, ε is defined by

ε(t) := K−1
c sΣ(t) := Tr((Σ(t))−1)/Kc; t ∈ [0,∞) (10a)

or ε(t) := 1 (10b)

and Kc ≥ γ2Tr(Q0) is a constant. We will later treat Q̄ as a
function Q̄ : IRn×σ × IR × IR → IR(n+σ)×(n+σ), Q̄(Φ, u, sΣ).

Detailed analysis leads to Σ and Φ satisfy (13b), (13e), and Π
satisfies (13a) with proper initialization.

The matrix Σ will play the role of worst-case covariance matrix
of the parameter estimation error. The choice of Q̄ guarantees that
Σ is bounded from above and bounded from below away from 0
as depicted in the following Lemma, whose proof is given in [14].

Lemma 1: Consider the dynamic equation (13b) for the covari-
ance matrix Σ. Let Kc ≥ γ2Tr(Q0), Q0 > 0, and γ ≥ ζ−1. Then,
the matrix Σ is upper and lower bounded as follows: K−1

c Iσ ≤
Σ(t) ≤ Σ(0) = γ−2Q−1

0 ; γ2Tr(Q0) ≤ Tr
(
(Σ(t))−1

)
≤ Kc;

∀t ∈ [0, tf ], for either choice of ε(t) as in (10), whenever Σ is
defined on [0, tf ], and Φ and u are continuous on [0, tf ].

To avoid the inversion of Σ on-line, we define sΣ(t) :=
Tr

(
(Σ(t))−1

)
. It satisfies (13c). Then, ε(t) = K−1

c sΣ(t), which
does not require the inversion of Σ(t), when ε is defined by (10a).

Based on Lemma 1, we note that the quantity ζ−1 is the ultimate
lower bound on the achievable performance level for the adaptive
system, using the design method proposed in this paper.

Assumption 6: If the matrix A − ζ2LC is Hurwitz, then the
desired disturbance attenuation level γ ≥ ζ−1. In case γ = ζ−1,
choose β∆ ≥ 0 such that A − ζ2LC + β∆/2In is Hurwitz. If
the matrix A− ζ2LC is not Hurwitz, then the desired disturbance
attenuation level γ > ζ−1. 	

Assumption 7: The matrix Π0 is chosen as the unique positive
definite solution to the algebraic Riccati equation (13a). 	
Then, Π is constant, and the matrix Af of (13d) is Hurwitz.

To guarantee the boundness of estimated parameters without
persistently exciting signals, we introduce soft projection design
on the parameter estimate, which is based on the Assumption 4.

Define ρ := inf{P (θ̄) | θ̄ ∈ IRσ and bp0 + C̄1θ̄ = 0}. By
Assumption 4, we have 1 < ρ ≤ ∞. Fix any ρo ∈ (1, ρ), and
define the open set Θo := {θ̄ ∈ IRσ | P (θ̄) < ρo}. Our control
design will guarantee the estimate θ̌ lies in Θo, which immediately
implies b̌0 := bp0 + C̄1θ̌ ≥ c0 > 0. Moreover, the convexity of P
implies the following inequality ∂P

∂θ
(θ̌)(θ− θ̌) < 0, ∀θ̌ ∈ IRσ\Θ.

Add the term −Σ̄
[ (

Pr(θ̌)
)′

01×n

]′
to the right-hand-side of

the dynamics (8b), where

Pr(θ̌) :=

⎧⎨
⎩

exp
(

1
1−P (θ̌)

)
(ρo−P (θ̌))3

(
∂P
∂θ

(θ̌)
)′

∀θ̌ ∈ Θo\Θ

0σ×1 ∀θ̌ ∈ Θ

(11)

=: pr(θ̌)
(

∂P

∂θ
(θ̌)

)′

(12)

and Pr(θ̌) and pr(θ̌) are smooth functions on Θo.
Detailed equations for the estimator are

(A − ζ2LC + β∆/2In)Π + Π(A − ζ2LC + β∆/2In)′

−ΠC′(ζ2 − γ−2)CΠ + DD′ − ζ2LL′ + γ2∆1 = 0 (13a)

Σ̇=(ε − 1)Σ (C̄1u + CΦ)′ (γ2ζ2 − 1) (C̄1u + CΦ)Σ;

Σ(0) = γ−2Q−1
0 (13b)

ṡΣ =(γ2ζ2 −1) (1−ε) (C̄1u+CΦ) (C̄1u+CΦ)′;

sΣ(0)=γ2Tr(Q0); (13c)

Af=A − ζ2LC − ΠC′ (ζ2 − γ−2)C (13d)

Φ̇=AfΦ + yĀ211 + u (Ā212 − ζ2LC̄1 − ΠC′ (ζ2 − γ−2)C̄1);

Φ(0) = Φ0 (13e)
˙̌θ=−ΣPr(θ̌) −

[
Σ ΣΦ′

]
Q̄ξc − (ΣC̄′

1u + ΣΦ′C′) (yd

−bp0u − C̄1θ̌u − Cx̌) + γ2ζ2 (ΣC̄′
1u + ΣΦ′C′) (y

−bp0u − C̄1θ̌u − Cx̌); θ̌(0) = θ̌0 (13f)
˙̌x=−ΦΣPr(θ̌) + Ax̌ + (yĀ211 + uĀ212)θ̌ + Bu

−
[

ΦΣ γ−2Π + ΦΣΦ′
]
Q̄ξc + ζ2 (γ2 (ΦΣC̄′

1u

+γ−2ΠC′ + ΦΣΦ′C′) + L) (y − bp0u − C̄1θ̌u − Cx̌)

−(ΦΣC̄′
1u + γ−2ΠC′ + ΦΣΦ′C′)

·(yd − bp0u − C̄1θ̌u − Cx̌); x̌(0) = x̌0 (13g)

To simplify the controller structure, the dynamics for Φ can
be implemented with 3n integrators instead of the σn integrators.
First, we observe that the pair (Af , C) is observable. Then we
introduce the matrix Mf :=

[
An−1

f pn · · · Afpn pn

]
,

where pn is an n-dimensional vector such that the pair (Af , pn)
is controllable, which implies that Mf is invertible. Then the
following 3n-dimensional prefiltering system for y and u generates
Φ online: η̇ = Afη + pny, η(0) = η0 ∈ IRn, λ̇ = Afλ + pnu,
λ(0) = λ0 ∈ IRn, λ̇o = Afλo, λo(0) = pn,

Φ =
[

An−1
f η · · · Afη η

]
M−1

f Ā211

+
[

An−1
f λo · · · Afλo λo

]
M−1

f Φo0

+
[

An−1
f λ · · · Afλ λ

]
M−1

f (Ā212 − ζ2LC̄1

−ΠC′ (ζ2 − γ−2)C̄1); Φo0 ∈ IRn×σ (14)

where η0, λ0, and Φo0 are such that (14) holds at t = 0.
Associated with the above identifier, introduce the value func-

tion, W : IRn+σ × IRn+σ × S+(n+σ) → IR,

W (ξ, ξ̌, Σ̄) = |θ − θ̌|2Σ−1 + γ2|x − x̌ − Φ(θ − θ̌)|2Π−1 (15)

whose time derivative along the system dynamics is given by

Ẇ (ξ, ξ̌, Σ̄, sΣ, yd, ξ̂, u, w) = −|Cx + C̄1θu − (yd − bp0u)|2

+|Cx̌ + C̄1θ̌u − (yd − bp0u)|2 − |ξ − ξ̂|2Q̄ + |ξ̌ − ξ̂|2Q̄

+γ2|w|2 − γ2|w − w∗|
2 − γ2ζ2|y − bp0u − Cx̌ − C̄1θ̌u|2

+2(θ − θ̌)′Pr(θ̌) (16)

which holds as long as Σ > 0, θ̌ ∈ Θo. We note that the last term
in Ẇ is nonpositive, zero on the set Θ and approaches −∞ as
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θ̌ approaches the boundary of the set Θo, which guarantees the
boundness of θ̌.

Then the cost function (7) can be equivalently written as,
assuming Σ(t) > 0 and θ̌(t) ∈ Θo, ∀t ∈ [0, tf ],

Jγtf
=

∫ tf

0

(
(Cx̌(τ ) + bp0u(τ ) + C̄1θ̌(τ )u(τ )− yd(τ ))2

−γ2ζ2 (y(τ ) − Cx̌(τ ) − bp0u(τ ) − C̄1θ̌(τ )u(τ ))2

+|ξc(τ )|2Q̄(Φ(τ),u(τ),sΣ(τ)) + 2(θ − θ̌(τ ))′Pr(θ̌(τ ))

−γ2|w(τ ) − w∗(ξ(τ ), ξ̌(τ ), Σ̄(τ ), u(τ ), w(τ ))|2
)

dτ

−|ξ(tf ) − ξ̌(tf )|2(Σ̄(tf ))−1 (17)

This completes the estimation design step.
Now, we present the control design step. Based on the inequality

(6), the controller design is to guarantee that the following
supremum is less than or equal to zero

sup
(x0,θ,ẁ[0,∞),yd[0,∞))∈Ẁ

Jγtf
≤ sup

y[0,∞)∈C,yd[0,∞)∈C

{∫ tf

0

(
(Cx̌(τ )

+(bp0 + C̄1θ̌(τ ))u(τ )− yd(τ ))2 + |ξc(τ )|2Q̄(Φ(τ),u(τ),sΣ(τ))

−γ2ζ2 (y(τ ) − Cx̌(τ ) − (bp0 + C̄1θ̌(τ ))u(τ ))2
)

dτ
}

(18)

By inequality (18), we observe that the cost function is ex-
pressed in terms of signals that we can measure or construct. This
is then a nonlinear H∞-optimal control problem under full infor-
mation measurements. Instead of considering y as the maximizing
variable, we can equivalently deal with the transformed variable:
v := ζ (y − Cx̌ − (bp0 + C̄1θ̌)u).

Set the control input u and the worst-case estimate ξ̂ as

u := µ̄(θ̌, x̌, yd) =
yd − Cx̌

C̄1θ̌ + bp0

; and ξ̂ = ξ̌ (19)

where µ̄ : Θo × IRn × IR → IR is smooth. The value function for
the closed-loop system is simply W , whose time derivative along
solutions of the dynamics for ξ, ξ̌, and Σ̄ is

Ẇ = −(Cx + C̄1θu + bp0u − yd)
2 − |ξ − ξ̂|2Q̄ + γ2|w|2

−γ2|w − wopt(ξ, ξ̌, yd, Σ̄)|2 + 2(θ − θ̌)′Pr(θ̌) (20)

where the worst-case disturbance with respect to the value function
W is given by, wopt : IRn+σ × IRn+σ × IR × S+(n+σ) → IRq,

wopt(ξ, ξ̌, yd, Σ̄) = −ζ2E′
[

µ̄(θ̌, x̌, yd)C̄1 C
]
(ξ − ξ̌)

+γ−2 (Iq − ζ2E′E)D̄′Σ̄−1 (ξ − ξ̌)(21)

which holds as long as Σ > 0 and θ̌ ∈ Θo. Clearly, the closed-
loop system is dissipative with storage function W and supply rate
−(Cx + C̄1θu + bp0u − yd)

2 + γ2|w|2.
This completes the control design step. We will turn to present

the main results in the next section.

V. MAIN RESULT

With the estimation and control design of the previous sec-
tion, the state of the closed-loop system is given by X :=[

θ′ x′ ←−
Σ

′
sΣ θ̌′ x̌′ −→

Φ
′ ]′

, which belongs to the
open set D := {X | Σ > 0, sΣ > 0, θ̌ ∈ Θo}

The dynamics for X are, with x(0) = x0,

Ẋ = F (X, yd) + G(X, yd)w = F (X, yd) + G(X, yd)M̀ẁ (22)

where F and G are smooth mappings of D × IR; and the initial
condition X0 ∈ D0 := {X0 ∈ D | θ ∈ Θ, θ̌0 ∈ Θ, Σ(0) =

γ−2Q−1
0 > 0, sΣ(0) = γ2Tr(Q0) ≤ Kc}. Since (20) holds,

by Lemma 7 in [14], the value function W satisfies a Hamilton-
Jacobi-Isaacs equation.

∂W

∂X
(X)F (X, yd) +

1

4γ2

∂W

∂X
(X)G(X, yd)(G(X, yd))

′

·
(

∂W

∂X
(X)

)′

+ Q(X, yd) = 0; ∀X ∈ D, ∀yd ∈ IR

where Q : D × IR → IR is smooth and given by

Q(X, yd) = |Cx + (bp0 + C̄1θ)µ(θ̌, x̌, yd) − yd|
2

+
∣∣ξ − ξ̌

∣∣2
Q̄(Φ,µ(θ̌,x̌,yd),sΣ)

−2 (θ − θ̌)′Pr(θ̌)

The closed-loop adaptive system possesses a strong robustness
property, which will be stated precisely in the following theorem.

Theorem 1: Consider the robust adaptive control problem for-
mulated in Section III with Assumptions 1–7 holding. The robust
adaptive controller µ defined by (19), with the optimal choice (19)
for ξ̂, achieves the following strong robustness properties.

1) Given cw ≥ 0, and cd ≥ 0, there exists a constant cc ≥ 0
and a compact set Θc ⊂ Θo, such that for any uncertainty
(x0, θ, ẁ[0,∞), yd[0,∞)) ∈ Ẁ with |x0| ≤ cw , |yd(t)| ≤ cd,
|ẁ(t)| ≤ cw , ∀t ∈ [0,∞), all closed-loop state variables x,
x̌, θ̌, Σ, sΣ, and Φ are bounded as follows, ∀t ∈ [0,∞),
|x(t)| ≤ cc; |x̌(t)| ≤ cc; θ̌(t) ∈ Θc; |

−−→
Φ(t)| ≤ cc; K−1

c Iσ ≤
Σ(t) ≤ γ−2Q−1

0 ; γ2Tr(Q0) ≤ sΣ(t) ≤ Kc. Therefore,
there is a compact set S ⊆ D such that X(t) ∈ S ∀t ∈
[0,∞). Hence, there exists a constant cu ≥ 0 such that
|u(t)| ≤ cu, |ξ̂(t)| ≤ cu, |η(t)| ≤ cu, |λ(t)| ≤ cu, and
|λo(t)| ≤ cu.

2) The controller µ ∈ Mu achieves disturbance attenuation
level γ for any uncertainty (x0, θ, ẁ[0,∞), yd[0,∞)) ∈ Ẁ .

3) For any uncertainty (x0, θ, ẁ[0,∞), yd[0,∞)) ∈ Ẁ with
ẁ[0,∞) ∈ L2 ∩ L∞, yd[0,∞) ∈ L∞, and yd[0,∞) being
uniformly continuous, we have

lim
t→+∞

(Cx(t) + (C̄1θ + bp0)u(t) − yd(t)) = 0

VI. EXAMPLE

In this section, we present one example to illustrate the main
results of this paper. The design was carried out using MATLAB
symbolic computation tools, and the closed-loop system was
simulated using SIMULINK.

Consider the following circuit problem in Figure 1(a), where
vi is the input voltage source; vo is the measured output; ve

is an unknown sinusoidal voltage source; vw is an unmeasured
exogenous voltage source; b0 is the ratio of vt to vi. The objective
is to achieve asymptotic tracking of vo − vw to the reference
trajectory yd.

Using the robust adaptive control design method formulated in
this paper, we present the following simulation results, in Figure
1(b)-(d), to illustrate the regulatory behaviour of the adaptive
controller. We observe that the parameter estimates converge to
their true values, and the tracking error converges to 0. The
transient of the system is well-behaved, and the control magnitude
is upper bounded by 2.2. The effect of ve is asymptotically
cancelled at the output.

VII. CONCLUSIONS

In this paper, we studied the adaptive control design for tracking
and disturbance attenuation for SISO linear systems with zero
relative degree under noisy output measurements. We assume that
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Fig. 1. Circuit and system response under yd(t) =
√

|sin(3t)| and
ẁ(t) = 0.
(a) Diagram of Circuit (b) Tracking error; (c) Control input;
(d) Parameter estimates.

the linear system has a known upper bound of the dynamic order,
is observable, has a strictly minimum phase transfer function with
known relative degree 0. We allow the system to be uncontrollable,
as long as the uncontrollable part is stable in the sense of Lyapunov
and those uncontrollable modes on the jω-axis are uncontrollable
from the disturbance input. Under these assumptions, the system
may be transformed into the design model, which is linear in all
of the unknown quantities. The objectives of the control design
are to make the noiseless output of the system to asymptotically
track the reference trajectory, and guarantee the boundedness
of all closed-loop signals, while rejecting the uncertainties in
the system. We use H∞-optimal control formulation and game
theoretic approach to derive the robust adaptive controller. We
treat the unknown parameter vector as part of the expanded state
vector, and formulate this adaptive control problem as a nonlinear
H∞-optimal control problem with imperfect state measurements.
For the design model, we assume that the measurement channel is
noisy, such that the estimation step is a nonsingular optimization
problem. We further assume that the unknown parameter vector
belongs to a convex compact set characterized by a known smooth
nonnegative radially unbounded and strictly convex function P (θ̄).
Furthermore, for any parameter vector belonging to the set, the
corresponding high frequency gain is never zero. Then, the cost-
to-come function analysis is applied to derive the worst-case
identifier and state estimator, which have a finite-dimensional
structure. Using a priori information on the parameter vector,
a smooth soft projection algorithm is applied in the estimation
step, which relieves the persistency of excitation condition for the
closed-loop system. Then, the closed-loop system is robust with
or without the persistently exciting signals. After the estimation
step is completed, the original problem becomes a nonlinear H∞-
optimal control problem under full-information measurements.
Then, the controller can be obtained directly from the cost function
in one step. The controller then achieve the desired disturbance
attenuation level, with the ultimate lower bound of the attenuation
level being the noise intensity in the measurement channel. It
guarantees the boundedness of all closed-loop signals and achieves

asymptotic tracking of uniformly continuous bounded reference
trajectories when the disturbance is of finite energy and bounded.
Because of the assumptions we made on the unknown system,
the adaptive controller can asymptotically cancel out the effect of
exogenous sinusoidal inputs with unknown magnitudes, phases,
and frequencies, as long as we extend our system model to
incorporate the knowledge of the existence of such sinusoidal
inputs. This property of our adaptive controller has significant
impact on active noise cancellation applications. This feature is
illustrated by a numerical example, which corroborates all of our
theoretical findings.

Future research directions that are of interest are described as
follows. One direction lies in the generalization of the results to
nonlinear systems. Another fruitful direction lies in the extension
of the results to multiple-input and multiple-output systems. The
class of MIMO systems under study involves two subsystems, S1

and S2, interconnected to each other, where the connection is
serial with feedback. Preliminary results have been obtained for
this class of MIMO systems.

REFERENCES

[1] G. C. Goodwin and K. S. Sin, Adaptive Filtering, Prediction and
Control. Englewood Cliffs: Prentice-Hall, 1984.

[2] G. C. Goodwin and D. Q. Mayne, “A parameter estimation perspec-
tive of continuous time adaptive control,” Automatica, vol. 23, pp.
57–70, 1987.

[3] P. R. Kumar, “A survey of some results in stochastic adaptive control,”
SIAM Journal on Control and Optimization, vol. 23, no. 3, pp. 329–
380, 1985.

[4] C. E. Rohrs, L. Valavani, M. Athans, and G. Stein, “Robustness
of continuous-time adaptive control algorithms in the presence of
unmodeled dynamics,” IEEE Transactions on Automatic Control,
vol. 30, pp. 881–889, 1985.

[5] P. A. Ioannou and J. Sun, Robust Adaptive Control. Upper Saddle
River, NJ: Prentice Hall, 1996.

[6] A. Isidori, Nonlinear Control Systems, 3rd ed. London: Springer-
Verlag, 1995.

[7] I. Kanellakopoulos, P. V. Kokotović, and A. S. Morse, “Systematic
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Adaptive Control Design. New York, NY: Wiley, 1995.

[9] X. Ye, “Adaptive nonlinear output-feedback control with unknown
high-frequency gain sign,” IEEE Transactions on Automatic Control,
vol. 46, no. 1, pp. 112–115, January 2001.
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