2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

FrA10.2

Adaptive Output-Feedback For Nonlinear Systems With No A
Priori Bounds on Parameters

P. Krishnamurthy and F. Khorrami

0-7803-9098-9/05/$25.00 ©2005 AACC

Abstract—1In a recent result [1], we proposed a dynamic
high-gain observer/controller architecture for nonlinear sys-
tems of the generalized output-feedback canonical form. The
design in [1] utilized the dual architecture of a high-gain
observer and controller and incorporated a single dynamic
scaling. The designed output-feedback controller was shown to
be robust to functional and parametric uncertainties coupled
with all states. However, a magnitude bound on the unknown
parameters was required. In this paper, we propose a time-
varying output-feedback controller that can handle time-
varying nonlinear parametric uncertainty coupled with all
states without requiring any a priori magnitude bounds on
the unknown parameters. This is achieved using a novel
time-varying dynamics of the high-gain scaling parameter.
The proposed observer/controller structure provides a globally
asymptotically stabilizing output-feedback solution for the
benchmark open problem proposed in our earlier work with
no magnitude bounds or sign information on the unknown
parameter being necessary.

I. INTRODUCTION

We consider systems of the uncertain generalized output-
feedback canonical form:

& = ¢i(t,z,u)+ duirn(@)zigr, i=1,...,n—1
Tn = ¢”(taxau) +/,L()($1)’U,
y = 2 (1
where © = [21,...,2,]T € R" is the state, y € R the

output, and u € R the input. ¢ ;41),72 = 1,...,n — 1,
and po are known continuous functions of their arguments.
¢;,i =1,...,n, are uncertain functions.

High gain as a technique for controller and observer
designs has been investigated extensively in the literature.
The well-known adaptive high-gain controller given in its
basic form by u = —ry, = y? is applicable to minimum-
phase systems with relative-degree one [2,3]. Static high-
gain scaling based observers [4,5] which introduce observer
gains r,...,r™ with a constant r provide semiglobal solu-
tions. The observer analysis utilizes scaled observer errors
% (or —“y) with e; being the estimation error of the
it" state. In [6], a high-gain observer and a backstepping
controller were designed for systems of form (1) with
¢(7),i+1) = 1,2 = 17...,’/’L — 1, and with (Z)’iai = 17...,71,,
being known functions of zi,...,z; incrementally linear
in unmeasured states in the sense that |¢;(x1,...,2;) —
(bi(l‘l, o, ... ,.i‘l)‘ < F(a:l) Zz.:2 |i‘7 — le with F(l‘l)
being a known function. The (fynamics of the high-gain
parameter r in [6] are given by a scalar differential Riccati
equation driven by y guaranteeing boundedness of r if y
remains bounded (which is not guaranteed by the dynamics

7 =y?).
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In [1], a dual high-gain observer and controller were de-
signed for systems including nonconstant functions ¢; ;1)
as long as they satisfied a cascading dominance assumption
closely linked to the Cascading Upper Diagonal Dom-
inance (CUDD) condition' introduced in [8]. The dual
high-gain design in [1] required the solution of a pair
of coupled Lyapunov equations which were shown to be
always solvable under a cascading dominance assumption
on the upper diagonal terms [9,1]. The control law designed
in [1] was of an algebraically simple structure requiring
no recursive computations and the associated Lyapunov
functions were quadratic (with a scaling). The dual high-
gain approach introduced in [1] appears to be very flexible
and is applicable to systems with appended Input-to-State
Stable (ISS) dynamics driven by all states’ [1], to both
state-feedback and output-feedback control of feedforward
systems [10,11], and also to state-feedback control of
nontriangular polynomially-bounded systems [12]. In [1],
the functions ¢;,2 = 1,...,n, were allowed to contain
functional and parametric uncertainties coupled with all
the states. It was seen that a complexity of bounds on
the uncertain terms ¢; does not result in complexity of
the Lyapunov function but is instead handled through the
dynamics of the high-gain scaling. However, [1] required a
magnitude bound on the uncertain parameters in the system.
In this paper, we relax this requirement and provide a global
output-feedback solution for systems of form (1) with ¢;
involving parametric uncertainty coupled with all system
states without any a priori bounds on unknown parameters.
The observer and controller designs are similar to [1] with
the essential novelty being in the design of the dynamics
of the high-gain scaling parameter. The basic idea is to
asymptotically guarantee sufficient gain to dominate the
unknown parameters while retaining closed-loop stability.
This is achieved using time-varying dynamics of the high-
gain scaling parameter. This provides a solution to the
benchmark open problem proposed in our earlier paper[13]

j?l = T2
i‘Q = X3
T3 = u-+ Gox?:cg
y = m 2)

with u being the input, y the output, and 6y an uncertain
parameter of unknown sign and with no available magni-
tude bounds. System (2) is of a very simple form with
a single nonlinearity and a single unknown parameter. If
any of the components of fyx2x3 are dropped, a globally
asymptotically stabilizing output-feedback solution can be
obtained using available techniques. If 6 is known, [14]
and [9] provide controllers of dynamic orders 9 and 2,

It was shown in [7] that the cascading dominance assumption can be
removed using a multiple time-scaling technique utilizing non-successive
powers of 7 in the scaling. However, since the cascading dominance
required in the observer and controller contexts are dual (see Remark 2), it
was not possible to use a dual high-gain observer/controller in [7]. Instead,
a high-gain observer was coupled to a backstepping controller.

2Previous results required the ISS appended dynamics to have nonzero
gain only from the output y.
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respectively. If 22 is removed, the system is linear. If
xg is removed, the system is in standard output-feedback
canonical form [15,16]. If a magnitude bound on 6, is
available, a solution is provided by [1]. However, with 6,
completely unknown, no previous output-feedback control
design technique can globally asymptotically stabilize the
system and the technique in this paper provides the first
solution.

The required assumptions are listed in Section II. The
dual high-gain design of [1] which is applicable under the
assumption of known magnitude bounds on the unknown
parameters coupled with unmeasured states is summarized
in Section III. The modification of the dynamics of the high-
gain parameter to remove the requirement of knowledge of
magnitude bounds on unknown parameters and the closed-
loop stability analysis are contained in Section IV. Exten-
sion of the design to systems with ISS appended dynamics
and inverse dynamics is briefly outlined in Section V. The
design for system (2) is illustrated in Section VI.

II. ASSUMPTIONS
Assumption Al: Observability and controllability of sys-
tem (1), i.e., for all z; € R,
|¢(i,i+1)(x1)‘ > 0'>0, 1<:1<n-1
lo(z1)| = o >0. (©)
Assumption A2: Nonnegative continuous functions I'g(z1)

and T';(x;) are known such that for all ¢ € R, z € R",
and u € R,

Git,z,u)| < T(a) Y layl, 1<i<n @
j=1
[(z1) = To(z1)+ 0T (z1) ®

where 6 is an unknown positive parameter (with no known
magnitude bounds). Furthermore, a nonnegative continuous

function T'; (1) exists such that® for all z; € R
Ti(z1) < Ta(x)|z (6)
Assumption A3: Positive constants p; and p. exist such
that for all ;1 € R
[y (@) = Biloa—rp(@),i=3,...,n =1 (7)
|Pi+n (@)l < plda-1p(@)],i=3,...,n—1. (8)

Remark 1: For simplicity, it is assumed that the same
function I' serves in the bounding of all ¢;’s in (4). To
remove possible conservativeness, a different I" can be
utilized for the bound of each ¢; yielding a design along
the same lines as presented here. I' can be taken to be a
function of both x; and the time ¢ as long as it is bounded
uniformly in time as a function of x;. Also, the unknown
parameter € in (5) is taken as a lumped characterization of
the parametric uncertainty in the entire system. Note that
the uncertain parameters in the system can be several, time-
varying, and nonlinearly parametrized as long as a bound of
the form given in (4) and (5) can be obtained. Furthermore,
uncertain parameters with known magnitude bounds can be
incorporated into I'y.

Remark 2: Assumption A3 requires ratios of the “upper-
diagonal” terms ¢(; ;11) to be bounded. The condition (7)

3The assumption (6) essentially requires that T'; should vanish at the
origin and be O[s] around s = 0.

requires the upper-diagonal terms closer to the input to
be larger while condition (8) requires the upper-diagonal
terms closer to the output to be larger. The conditions (7)
and (8) constitute the cascading dominance assumptions [8]
in the observer context and controller context, respectively,
and are related to uniform solvability of coupled Lyapunov
equations [9,1] which are instrumental in the design of
observer and controller gains in a dual dynamic high-gain
design. Using Theorems Al and A2 in [1], Assumptions
Al and A3 are necessary and sufficient for existence
of fqnctlon.s.gz(xlg,: o gn(@1), k2 (@1), .. Ky (1), sym-
metric positive-definite matrices P, and P,., and positive

constants v,, Vo, Vo, V,, Ve, Ve, and v, to satisty for all

Zo»

r1 €ER
PyAo(w1) + AL (21) Po < —Vol — Do|¢y2,3)(21)|CTC
v, I < Py(D, — %I) + (Do — %I)Po < Vol 9
and
PcAc(-Tl) + AZ(wl)Pc < _Vc|¢(2,3) ($1)|I
v I < Po( c—%f)+(Dc— %I)Pc <ved (10)
where
C =11,0,...,0] (11)
Do = D. = diag(1,2,...,n — 1), (12)
[ —g2 ¢(2,3) 0 0
—93 ¢(3,4) 0
A, = : ’ (13)
—gn-—1 (b(n—l,n)
—gn 0 0
[ 0 &3 0 0
0 0 D(3,4) 0
Ao= | . (14)
0 ¢(n71,n)
—k2  —k3 . —kn
Furthermore, by Theorem Al in [1], g2(1),...,gn(21) can

be picked to be linear constant-coefficient combinations of
b2,3)(T1), -+, O(n—1,n)(21). Hence, using Assumption A3,
a positive constant G exists such that

Y gHa) < Glops (@)l (15)
1=2

III. DUAL HIGH-GAIN DESIGN [1] ASSUMING KNOWN
MAGNITUDE BOUNDS ON UNKNOWN PARAMETERS
COUPLED WITH UNMEASURED STATES

In this section, the dual high-gain observer/controller
structure of [1] is summarized. This design is applicable
under the assumption that known magnitude bounds are
available for unknown parameters coupled with unmeasured
states. This is equivalent to replacing Assumption A2 with
the requirement that |¢;| < T'(z1)[0]z1] + 27, |24]] with
f being an unknown nonnegative constant.

A. Observer Design

A reduced-order observer for the system (1) is given by*,
1=2,...,n,
& = GG,iv1) (1) [Tir + Tifi+1($1)] + ti—n(x1)u

—(i = 1" 2 filwr) = v gi(a) [B2 + 7 fa(1)] - (16)

where r is the dynamic high-gain scaling parameter and

“4For simplicity of notation, we introduce the dummy variables &, 11 =
fn+1 =0and p; =0 for ¢ < 0.
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fi xl) are design functions of x; of the form f;(z1) =

Jo 9i(s)/ b 2)(s)ds, 2 < i < n with go,..., g, being
functions chosen as in Remark 2. The observer errors €;
and the scaled observer errors ¢; are defined as, 2 < i < n,

€i
i1’

e, = I;+ Tiilfi($1) —Ti; € = (17

The dynamics of the scaled observer error vector ¢ =

[€2,...,€n]T are given by
¢ = rdhee— 2D06+6 (18)
where
S = [Dy..., D)7, Ei:—fjl +gi¢j:2), (19)

and D, and A, are defined in (12) and (13), respectively.

B. Controller Design
The control law is given by

,r,n

u = _— ki (Il )7’]7; (20)
Ho =2
where the controller gain functions ks, ...,
as in Remark 2 and

k,, are chosen

n = Ea+rfa(e1)+¢(x1,6)

&+ iflf”.a( ) (21)
mi o= R0 o3 p
C(z1,0) = (1+ 0)a1Ca(21) 2)

with ¢; being a design freedom and fa parameter estimator.
The signals 7;,7 = 2,...,n, are scaled observer estimates
of the states z; with an additional design freedom ¢ incor-

porated into 75. The dynamics of 7 = [02,...,7,]7
Ho= rAm — ;Dcn +® —rGes+ H(na — €2) + Z (23)
with D, and A, defined in (12) and (14), respectively, and
d = [0y,..., 0,7, B = giﬂ (24)
b@1,2)
G = nga"'agniT (25)
~ T
H = [(1+0){Cix1+<1}¢(1,2)507 70:| (26)
1] N
== [ecm F+ 0){(1:1’1 n gl}{m
T
—(1+ é)§1x1¢<1,2)},0, . .,0] @27

where (1 (z1) denotes the partial derivative evaluated at z;
of (7 with respect to its argument.

C. Dynamics of the High-Gain Scaling Parameter

The dynamics of the high-gain scaling parameter r can
be picked to be of the form
a(r —1) + by(z1,0)] (28)
with a and b being positive constants and  a continuous
positive function. At r = 1, the derivative 7 is positive.
Hence, initializing 7 to be greater than 1, r(¢) governed by
(28) remains greater than 1 for all time ¢. This ensures that
the scaling in (17) and (21) is well-defined.

r o= r[-

IV. DUAL HIGH-GAIN DESIGN GLOBAL IN UNKNOWN
PARAMETERS

The design in Section III is applicable as long as mag-
nitude bounds are available for the unknown parameters
which appear coupled with unmeasured states. This require-
ment is relaxed in this section by generalizing the dynamics
of the high-gain scaling parameter to be of the form

i o= r[—a(r —1) +by(z11,0,t)] ; 7(0) >1 (29
with a and b being positive constants and y being a positive
function. xz1; denotes the restriction of the time function
x1(7) to the time interval [0, ¢].

The closed-loop stability is analyzed using the Lyapunov
function

1
V = cre Poe+rn Pop+ §$i (30
where c is a positive constant satisfying
> —22,. (PG 31
Vole

Differentiating (30),
V < crie (P A, —|—AT )e—cre (PODO+DOPO)€
12creT P,® 4 crel Pye + 12 n (PCAC + AZPC)n
—in" (P.De 4 DeP.)n + 2rn" Po® — 2r°n" P.Ges
+2r77TPCH(772 —€)+ 27“77TPCE + fnTPCn
+2z1{$1 + b2 [—C +rn2 — real}. (32)
The dynamics of the adaptation parameter 6 will be de-

signed such that 6(t) is positive for all time ¢. Using
Assumption A2 and the property that r(¢) > 1,

5 i i |z1] + [¢(21,0)] |gz\F|$1|
o;| <T E i+ g €|+
| i [ |77Ji i J| r |¢(1 2)|

Jj=2 Jj=2

1 J—
iy 2T A G 3y ||z
[®] <l (lnl+lel] + =~ [1+<1+e>|<1|}|x1\+%

2CTETP0§ § 3CTAmaz(PO)nF |:|€i2 + ini2:|
. 2
1 N (Po)nl? [1+ (L4 B)|r]| el +

G 9y o

%22y L2y (p) 0 2 (g
Similarl 4 Vo (1,2)
imilarly,
P < 32 (pogr 0ol
Ve t2)
Ve
+1|¢<2,3)i7“2|77|2 (34)

Ve ~
—2T217TPCG€2 < ZT2|¢(2’3) | |n|2+cr21/o|¢(2,3) \eg (35)

QTUTPCH('rD - 52) < 3T>\max(Pc)(1 + é)'(ixl + Cl' X
x b2 |[Inf* + lef”] (36)

2
27'77TPCE < 3TA12fnaac(PC) |:0 <12
+(140)* (¢l + C1)2§12¢?1,2)
+(140)% (¢l + C1)2F2] In|?+a7 (37)

Fa:f (38)
ClVo
|¢(2 3)i|77| + — 2|6|2

4
1 ¢<1 2)
Ve [p2.3)] 3)\

T101

T1¢(1,2)[rM2 — rea)

\/\ IN

—¢%1,2)a:%. (39)
Clo
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Using (9) and (10),
ET(POAO + AOTPO)E —1/0|e\2 — ﬁo\¢(2’3)|eg
n" (P.Ac+ Ag Po)n —ve|daz)lInl*.
Using (33) - (40), (32) reduces to
Vo< =S = Frfbe Il - w160,
+lgr(21) + 0" g2(a1)]2}

—cre [PO(DD - 11) + (D, — %I)Po} €

2

T 1 1

—in [Pc(Dcl— 1)+ (D - 51)136}77
+rlwi (21,0, 0) + 0 wa(z1,0){|e|* + [n|*} 1)

where 0* = 0 + 62 and

<
< (40)

1 b2 1 .
T1) =24+ — 2+ —
q1(z1) Ve o) a0
2
L2, (pyra e
Vo (1,2)
8 —
+2G N2, (P2 'd’ff““’)‘ +T (42)
Ve (1,2)
8 bt
Q2($1) = _CGQAfnaI(PO)F?@
Vo (1,2)
8 .
F -GN e (P)TE 'd);“)‘ +Ty 43)

Ve (1,2)

w1(21,0,0) = 3Amas(Pe)(1+ 0)[¢har + Cillé)]
+3N2 (P [6 G2 (140)* (Gl 412
+3cAmaz(Po)nlo
+2¢° Nopae (Po)nT3[1 + (1 + 6)[G1[]?

+6A 70z (Pe) (14 0)*(Ca1 + ¢1)°T5 (44)
wg(m,é) = 3¢cAmaz(Po)nl'1
+26* X000 (Po)nlT 1 + (1 + 0)[¢1]]?
F6X e (P) (1 +0)* (Gl + Q)T 49)

Remark 3: By examining the inequalities (33), (34), and
(38), it is seen that the terms in go(x1) and the last three
terms in ¢;(x;)arise from overbounding |¢1| by [To +
OT'1]|x1|. In the particular case in which ¢; is known to
be free of uncertain parameters, g2 reduces to zero and the
adaptation parameter 6 is not required. In the case that go
is nonzero, the dynamics of the adaptation parameter are
designed as (49).

Using (9), (10), and (29),

e [PO(DD— %I)—l—(Do— %I)Po} e > {r(atby)v,—ar’v,}|e?
in" [PuDe= 5D+ (D=5 DP.n = {r(atbnv—arv ol

(46)

Picking b to be an arbitrary positive constant, choose a > 0
small enough to ensure that

max(—% + acv,, —% +av.) = -—-a* <0, (47

and choose (7 (z1) such that
—Ci(z1)pa2 (@) + q(zr) + @2(z1) < —Ci(w1) (48)
with (§ being a positive function of x; bounded below by

a positive constant ¢ ’1‘ The parameter estimator dynamics
are chosen as

g(z1)z? 5 6(0) > 0. (49)

Note that the parameter estimate 6(¢) with dynamics (49)
is a monotonically nondecreasing function of time. A new
Lyapunov function is defined including a quadratic of the

parameter estimation error (6 — 6*) as
vV = v+%(é—9*)2. (50)
Differentiating (50) and using (41), (46), (47), and (48),
Vo< =l + Inf] - 2ici (@)
+rfwi(1,0,0) + 0wz (1, 0)]{]e[* + Inl*}
—r(a+by)ev,le® + vlnl’]-

Picking the design function ~y to be of the form
1

é =

(51

Yy(w1e,0,t) = m[71($179)+’72($1t79,t)]
n(z1,0) = wi(w1,0,q(z1)z)
Yo(16,0,t) = [14+t+0+ sup 2i(n)|wa(z1,0), (52)

T€[0,t]
(51) reduces to

V o< {=a"r? +rA(z, 0,0} +n|*] — 23¢ (1) (53)
where

Az, 0,t)

Ao(z1,0,t)

Ao(l‘lt79, t)wg(ml,ﬁ) (54)
(0" —[1+t+0(t)+ sTp]xf(T)Hn (55)
T€[0,t

Closed-loop stability is proved through a sequence of
facts below. Local existence and uniqueness of solutions
is guaranteed by the assumptions on the functions ¢; and
®(i,i+1)- Let the maximal interval of existence of solutions
be [0,t7). Theorem 1 utilizes Facts 1-6 to infer that ¢y = oo
(i.e., unique solution exists for all time) and that in the
limit as ¢ — oo, the states z1,...,x,, the observer errors
ea,...,€en, and the control input w converge to zero.

Fact 1: A class K function A exists such that

Az, 0,t) < (1+8)A(z1 +0) (56)

A
where |z1;| = SUDP €[04 |21 (7))
Proof of Fact 1: Using (54) and (55), (56) is satisfied with
A(s) = [140"+s+5%] sup wa(sy,s). (57)

[s1]<s .
Note that for every given z;, the function ws(z1,0) is
monotonically nondecreasing in its second argument.

Fact 2: If a positive constant M exists such that for some
time T € [0, %], the inequality (|z17|+6(T)) < M holds,
then

V(t) < V(0)e* OTTAONE vy [0, T) (58)

with a; being a positive constant independent of 7" and M.
Furthermore, sup;¢(o ) 7(t) < oo.

Proof of Fact 2: Using (53) and Fact 1,

Vo< r(L4 Az + 0)[[ef* + nf’]
< a1+ T)AM)V Vte(o,T) (59)
with
o = L (60)
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Using the Comparison Lemma, (59) yields (58). By the dy-

namics (29), boundedness of 7(t) follows from boundedness

of 14 and 6(t) for any finite time ¢.

Fact 3: A positive constant M exists such that if

[|[Z1t0| +0(t0)] > Mo

for some time ty < ty, then A(zyy, é, t) < 0 for all times

t € [to, tg).

Proof of Fact 3: Letting My = 2max(v/6*,6%),
0" —[1+t4+0(t)+ sup zi(r)] < 0 (62)
" T€[0,t] "

if [|x14,|+6(to)] > Mo and t > t¢. Note that [|z1|+0(t)] is

a monotonically nondecreasing function of ¢ for ¢ € [0,%y).

Since wy is nonnegative for all arguments, the statement of
Fact 3 follows from (62).

Fact 4: If for some time 7' € [0, ¢f), the inequality [|z7|+

6(T)] > My holds, then
V() <

(61)

—asV (L) Vt € [T, ts) (63)

with ay being a positive constant independent of 7.

Proof of Fact 4: Using (53) and Fact 3, for all ¢ € [T, ts),
Vo< —a e+ nff) - 23 64)

and (63) follows with

min (QCf ,

a* a*

Doman(B) Amam(Pg)) . (65)

a2 =

Fact 5: If t; = oo, then lim;_,o, V(¢) = 0.

Proof of Fact 5: If t > 0*, then A(mlt,é,t) < 0. Hence,
for t € [0*, 00),

V(t) < —a2V (t) (66)

with ao given by (65). Applying Barbalat’s Lemma, the
statement of Fact 5 follows.

Fact 6: If ¢y = oo and positive constants M7, My, and M3
exist such that for all time ¢ € [0, c0),
|z1(t)] < Mye M2 | 6 < M, (67)
then R
lim ~2(z1¢,6,t) = 0. (68)
Proof of Fact 6 Using Assumption A2 and (45), the
inequality wo(x1,0) < Wa(x1,0)|z1]| is satisfied with

Wa(x1,0) = [3c)\maz(Po)nf1

12602, 10 (Po)nTs 21 |[1 + (1 + 0)| 1))

670z (Pe) (L +0)° (¢l + G1) T | || (69)
Using (67),
72(:51,5,@, t) < (1+t+M3+M12) sup EQ(Sl,M3)M167A12t

[s1]<My
and (68) follows.

Theorem 1: Under Assumptions A1-A3, the designed dy-
namic controller guarantees global uniform boundedness of
all closed-loop signals. Furthermore, the states z1,..., %y,
the observer errors es,...,e,, and the control input u
asymptotically converge to zero as t — oc.

Proof of Theorem 1: With the maximal interval of existence
of solutions being [0,ty), consider the two cases:

Case AL: supyco,) (21| + 0) < 0o
Case A2: supycio,)([z1¢] +0) = oc.

Under Case Al, if ty < oo, using Fact 2,
SUPsefo,t;) V(¢) < oo and supycpo,,)r(t) < oo so that
all closed-loop signals are uniformly bounded on [0,%y).
Hence, solutions exist beyond time ¢y contradicting the
assumption that [0, ¢s) is the maximal interval of existence
of solutions. Therefore, ¢y = oco. Under Case A2, a time
T < t; exists such that [z17 + O(T)] > M. Using
Fact 4, V(t) is a monotonically nonincreasing function
of time on [T, tf). Hence, using Fact 2, all closed-loop
signals are uniformly bounded on [0,¢f) and if ¢y < oo,
solutions exist beyond time ¢;. By contradiction, ¢ty = oo.
By consideration of the Cases Al and .42, it follows that
ty = oo, i.e., unique solution exists for all time. Using
Fact 5, lim; .o, V(t) = 0. Hence, the states x; and 0 are
uniformly bounded on [0, 00). Consider the two cases:
Case BI: lim; .o 0(t) > 6"
Case B2: lim;_,, 0(t) < 6*.

Under Case B1, using the fact that 0 > 0, we have (0(t)—

6*)0(t) > 0 for all ¢ bigger than some finite time T}. Since

V=V—-(0-6, (70)
it follows using (63) that V(t) < —auV(t) for all t >
max(Tp,0*) so that V(t) goes to zero exponentially as
t — oo. Under Case B2, using (6) and (43) , it is
seen that (6 — 0%)quz?| < 0*Gy(x1)z3 with G, being a
continuous nonnegative function. Since, as proved above,
lim; .o V(t) = 0, it follows from (70) that V () converges
to zero exponentially. Thus, in both Cases Bl and 52,
x1 converges exponentially to zero as ¢ — oo. Using
Fact 6, limt_,oo:yg(xlt,ﬁ,t) = 0. By uniform bounded-
ness of x; and 6, uniform boundedness of v(x1¢,6,t) on
t € [0,00) follows. Hence, r(t) is uniformly bounded
on [0,00). Using (66) and uniform boundedness of r(t),
all closed-loop signals are seen to be uniformly bounded
on [0,00). Furthermore, using Fact 5, V() and hence
(z1,M2, -+, M, €2, ..., €,) converge asymptotically to zero
as t — oo. Using the uniform boundedness of r and the
properties that ((0,60) = 0 and f;(0) = 0,5 = 2,...,n,
it follows that the states zi,...,x,, the observer errors
€, ..., en, and the observer estimates s, ..., I, converge
asymptotically to zero. Using (20), the control input u also
converges asymptotically to zero. ¢

V. EXTENSION TO SYSTEMS WITH APPENDED ISS
DYNAMICS AND INVERSE DYNAMICS
By combining the high-gain scaling dynamics design
technique in this paper with the technique for handling ISS
appended dynamics driven by all states in [1], the %)roposed
results can be extended to the more general class of systems

Z = q(zzt),i=1,...,n

i = $i(t, 2, 3,u) + ity (T1)Tiva
+i(z,z,t) , i=1,...,8—1

i = ¢i(t,z,m,u) + P ip1) (1) Tipr + pios(21)u
+¢i(z,z,t) , i=s,...,n

y = m a1
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where z; € R"# are the (unmeasurable) states of ap-
pended Input-to-State Stable (ISS) dynamics[17] and z =

[2F,...,2LT. s is the relative degree of the system and
[Ts41y---, Jrn]T is the state of the inverse dynamics. The

appended dynamics are driven by all the system states
with a triangular structure of ISS interconnections, i.e., z;
is allowed to have nonzero nonlinear gains from states
Z1,...,%;. The uncertain functions ¢; are required to be
bounded by the product of an uncertain parameter 6, a
nonlinear function I'(z1), and a linear combination of
|x1], ..., |zi], |22], - - -, |2i|, and a nonlinear function of |z1].
The inverse dynamics subsystem is assumed to be ISS
with nonzero nonlinear gains from zi,...,2g, 21,. .., Zs-
While previous techniques [18] required ISS dynamics and
inverse dynamics to be driven only by xi, [1] provided
a method using the dynamic high-gain scaling approach
to handle ISS appended dynamics and inverse dynamics
driven by all the system states. The design in [1] utilized
dynamics of the high-gain scaling parameter of the form
7 = MR(z1,0,0) — r)Q(r,21,0,0) with R, X\, and Q
being suitably chosen functions. The Lyapunov function
in [1] incorporates appropriately scaled versions of the
ISS Lyapunov functions of the inverse dynamics and the
appended dynamics. By using the techniques in [1] and
the time-varying design of the high-gain scaling dynamics
in this paper, the proposed controller can be extended to
obtain global output-feedback results for (71). The details
are omitted here for brevity.

VI. AN ILLUSTRATIVE EXAMPLE
The system (2) belongs to the class of systems (1) with
n =3, ¢ = ¢y = 0, ¢p3 = Opxixs, and P(19) =
$2,3) = po = 1. It is easily seen that Assumptions Al-
A3 are satisfied with 0 = 1, Ty = 0, I'1(z;) = 2%, and

6 = |0p|. The inequalities (9) and (10) are satisfied with
92 =2,93=1,ka =1,k3 =2, and
1 -1 2 1
Po:|:_1 2 :|,Pc:|:1 1:| (72)
In this case, v, = 0.5, U, = 0.8, v, = 1, v, = 0.2984,

Vo = 6.7016, v, = 0.4384, and v, = 4.5616. A reduced-
order observer is constructed for this system as

T2 = d3+71°gsx1 — rga(F2 + rg2x1) — Fg2m

—7"293(562 +rgez1) — 2r7g3w1 + u. (73)
Potrgaz+ p3trigzey s

Define 72 = w and 73 = % with (; =

3.1. By Remark 3, the parameter estimator 6 is not needed
since ¢1 = 0. The control law for v and the dynamics of
the high-gain scaling parameter are picked as

I3 =

u = 1r°(=kanz — kan) (74)
7 = r[—0.03(r — 1) + y(x1¢, )] (75)
Y(x1e,t) = 14814 3070z5[1 + ¢+ sup z7(7)]. (76)

T€[0,t]
The dynamic controller given by (73), (74), and (75)
guarantees global uniform boundedness of all closed-loop
signals and all the closed-loop states (except ) go to zero
asymptotically as ¢ — oo.

VII. CONCLUSION

We have proposed a global high-gain scaling based
observer/controller for systems in uncertain generalized
output-feedback canonical form. Time-varying nonlinear
parametric uncertainty is allowed to occur throughout the

system coupled with any state in the system dynamics.
No magnitude bounds on unknown parameters are neces-
sary. The design utilizes the dual architecture of a high-
gain observer and controller. We have introduced a new
time-varying dynamics of the high-gain scaling parameter.
The design is essentially based on asymptotically provid-
ing sufficient gain to dominate the unknown parameter
while retaining closed-loop stability. The proposed ob-
server/controller structure provides a globally asymptoti-
cally stabilizing feedback for the benchmark open problem
(2) proposed in our earlier work [13] with no magnitude
bounds or sign information on the parameter. It remains
a topic of further research to ascertain whether a global
output-feedback controller for (2) can be designed without
requiring time-varying scaling dynamics.
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