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Abstract— We consider the problem of designing observers
to asymptotically estimate the state of a system whose non-
linear time-varying terms satisfy an incremental quadratic
inequality that is parameterized by a set of multiplier matrices.
Observer design is reduced to solving linear matrix inequal-
ities for the observer gain matrices. The proposed observers
guarantee exponential convergence of the state estimation
error to zero. In addition to considering a larger class of
nonlinearities than previously considered, this paper unifies
some earlier results in the literature. The results are illustrated
by application to a model of an underwater vehicle.

I. INTRODUCTION

A fundamental problem in system analysis and control
design is that of determining the state of a system from its
measured input and output. Many solutions to this problem
use an asymptotic observer (or state estimator) which pro-
duces an estimate of the system state that asymptotically
approaches the actual system state. Typical observers for
linear systems consist of a copy of the system dynamics
along with a linear correction term based on the output
error, that is, the difference between the measured output
and its estimate based on the estimated state [20], [9].

References [15], [16], [22], [4], [7], [6] consider systems
with globally Lipschitz nonlinearities and nonlinearities in
unbounded sectors. Reference [13] extends these results
to multivariable nonlinearities satisfying a monotonicity
condition, as well as relaxing the observer feasibility con-
ditions via a multiplier by exploiting the decoupled nature
of the multivariable nonlinearity. They present asymptotic
observers that consist of a copy of the system dynamics
and two correction terms based on the output error; one
term is the usual linear correction term while the other
term (called the nonlinear injection term) enters the copy
of the nonlinear element in the observer. Reference [24]
gives a general description of a nonlinear observer with
an “output injection” form, that is also analyzed by [3] in
an incremental stability framework. Additional results on
observers for nonlinear systems can also be found in [18],
[10], [23], [25].

In this paper, we consider systems whose state space
description consists of a linear time-invariant part and
nonlinear/time-varying parts. We characterize the state de-
pendent nonlinear/time-varying terms by a set of sym-
metric matrices which we call multiplier matrices. More
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specifically, this nonlinear term satisfies an incremental
quadratic constraint (δQC) that is parameterized by its
associated multiplier matrices; see inequality (3). The
nonlinearities considered here include many commonly
encountered nonlinearities including those considered in
[15], [16], [22], [4], [7], [6], [13]. Consequently, this paper
unifies earlier results by characterizing nonlinearities via
an incremental quadratic constraint. Beyond the unification
and generalization of previous observer results, we consider
two other general classes of nonlinearities described by
polytopic and conic parameterizations. These additional
characterizations can provide less conservative feasibility
results for globally Lipschitz multivariable nonlinearities
and multivariable nonlinearities in unbounded sectors by
further exploiting their structure. We also consider the case
of multiple nonlinearities with different characterizations for
each portion of the nonlinearity, and provide corresponding
multiplier matrices. For the systems under consideration, we
present observers whose structure is inspired by [7]. These
observers are characterized by two gain matrices: the gain
matrix L for the linear correction term and the gain matrix
Ln for the nonlinear injection term. Initially, we consider
Ln fixed and convert the problem of determining L into
that of solving linear matrix inequalities. Such inequalities
can be readily treated using, for example, the LMI toolbox
in MATLAB [14].

We also consider the problem of simultaneously comput-
ing L and Ln. By imposing a specific condition on the set of
multiplier matrices describing the nonlinearities, we convert
the problem of determining L and Ln into that of solving
linear matrix inequalities. All of these results are based on
the analysis of the state estimation error dynamics using
quadratic Lyapunov functions.

To illustrate our results, we apply the nonlinear observer
design technique to an underwater vehicle from [19].

Observer based output feedback controller design (such
as given in [7], [5], [21]) is out of the scope of this paper,
and it will be the subject of a separate paper [1].

II. SYSTEM DESCRIPTION AND INCREMENTAL

QUADRATIC INEQUALITIES

We consider nonlinear/time-varying systems described by

ẋ = Ax + Bpp(t, x, u) + B(t, u, y)

y = Cx + Dpp(t, x, u) + D(t, u, y) (1)

where x(t) ∈ IRn is the state, u(t) ∈ IRm is a known
input, y(t) ∈ IRl is the measured output and t ∈ IR is
the time variable. All the nonlinear/time-varying elements
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in the system are lumped into the terms B, D and p. We
suppose that p(t, x, u) ∈ IRlp and

p(t, x, u) = ψ(t, z) where z = Cqx + Dq(t, u, y) (2)

and ψ is a piecewise continuous function of t and a
continuous function of z ∈ IRlq . The matrices A,Bp, C,Dp

and Cq are constant and of appropriate dimensions.
Our characterization of ψ is based on a set M of sym-

metric matrices which we refer to as multiplier matrices.
Specifically, for all M ∈ M, the following incremental
quadratic constraint (δQC) holds for all t ∈ IR and z1, z2 ∈
IRlq :(

q(t, z2) − q(t, z1)
ψ(t, z2) − ψ(t, z1)

)T

M

(
q(t, z2) − q(t, z1)
ψ(t, z2) − ψ(t, z1)

)
≥ 0

(3)
where

q(t, z) = z + Dqpψ(t, z) . (4)

Basically, the constant matrix Dqp and M provide a char-
acterization of ψ in an incremental sense. When Dqp = 0,
the above inequality reduces to(

z2 − z1

ψ(t, z2) − ψ(t, z1)

)T

M

(
z2 − z1

ψ(t, z2) − ψ(t, z1)

)
≥ 0

(5)
Section V exhibits some of the nonlinearities under consid-
eration along with their multiplier matrices.

III. OBSERVERS

We propose the following observers to provide an esti-
mate x̂ of the state x of a system described in the previous
section:

˙̂x = Ax̂ + Bpp̂ + B(t, u, y) + L(ŷ − y) (6)

ŷ = Cx̂ + Dpp̂ + D(t, u, y)

where

p̂ = ψ(t, ẑ+Ln(ŷ−y)) and ẑ = Cqx̂+Dq(t, u, y) . (7)

Here, L is the gain for the linear output error term and Ln

is the gain for the nonlinear injection term. The nonlinear
injection term results in additional flexibility in the design.

In the observer description above, we have

p̂ = ψ(t, ẑ+Ln(Cx̂+Du−y) + LnDpp̂) . (8)

When LnDp �= 0, this is an implicit equation for p̂. So, we
assume that there is a continuous function φ such that for
all t and η, the equation

p̂ = ψ(t, η + LnDpp̂) (9)

is uniquely solved by p̂ = φ(t, η). Then, p̂ is uniquely given
by

p̂ = φ(t, ẑ+Ln(Cx̂+Du−y)) . (10)

Using (7), we obtain that

p̂ = ψ(t, z + (Cq + LnC)e + LnDp(p̂ − p))

= φ(t, z + (Cq + LnC)e − LnDpp) (11)

where e := x̂ − x is the state estimation error. The error
dynamics are described by

ė = (A + LC)e + (Bp + LDp)δp(t, e) (12)

where

δp(t, e)=φ (t, z(t)+(Cq+LnC)e−LnDpψ(t, z(t)))−ψ(t, z(t)).

It follows from (11) that δp satisfies

δp = ψ(t, z + (Cq + LnC)e + LnDpδp) − ψ(t, z) .

Let

δq(t, e) = (Cq+LnC)e + (Dqp + LnDp)δp(t, e) . (13)

Then, using (3) with z1 = z and z2 = z + (Cq + LnC)e +
LnDpδp we obtain that for all t and e,(

δq(t, e)
δp(t, e)

)T

M

(
δq(t, e)
δp(t, e)

)
≥ 0 for all M ∈ M .

(14)
The following result yields conditions for observer gain

matrices which result in exponentially decaying estimation
errors.

Theorem 1: Consider a system described by (1)-(2) and
satisfying (3) with a set M of matrices. Suppose that
there exist matrices P = PT > 0, L, Ln and M ∈ M
and a scalar α > 0 such that the matrix inequality (15)
(on the next page) is satisfied. Also suppose that there is
a continuous function φ such that p̂ = φ(t, η) uniquely
solves equation (9). Then, given any input u(·) and initial
condition x(t0) = x0 such that system (1) has a solution
for all t ≥ t0, the state estimation error e := x̂ − x
corresponding to observer (6) decays exponentially to zero
with rate α.

Proof: Introducing

Ac =A+LC, Bc =Bp+LDp, Cc =Cq+LnC, Dc =Dqp+LnDp,
(16)

inequality (15) simplifies to(
AT

cP +PAc+2αP PBc

BT
c P 0

)
+

(
Cc Dc

0 I

)T

M

(
Cc Dc

0 I

)
≤0.

(17)
Also, the error dynamics, given by (12), can be described

by
ė = Ace + Bcδp(t, e)

where, for all t, e, and M ∈ M, the term δp satisfies
inequality (14) with

δq(t, e) = Cce + Dcδp(t, e) ,

Pre- and post-multiplying both sides of inequality (17) by
[eT δpT ] and its transpose and using condition (14) we
obtain

eT P ė ≤ −αeT Pe

for all t, e. This shows that the error dynamics are quadrat-
ically stable about zero with rate α; (see [11], [2] and/or
[8] for a definition of quadratic stability). This implies that
the error decays exponentially to zero with rate α.
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(
PA+ATP +PLC+CTLTP +2αP PBp+PLDp

BT
pP +DT

pLTP 0

)
+

(
Cq+LnC Dqp+LnDp

0 I

)T

M

(
Cq+LnC Dqp+LnDp

0 I

)
≤ 0 (15)

(
PA + AT P + RC + CT RT + 2αP PBp + RDp

BT
p P + DT

p RT 0

)
+

(
Cc Dc

0 I

)T

M

(
Cc Dc

0 I

)
≤0 (18)

The following corollary yields an observer design proce-
dure for a given Ln.

Corollary 1: Consider a system described by (1)-(2) and
satisfying (3) with a set M of matrices. For a given matrix
Ln and scalar α > 0, suppose that there exist matrices
P = PT > 0, R and M ∈ M such that matrix inequality
(18) above holds where Cc and Dc are given in (16), and
let

L = P−1R . (19)

Also suppose that there is a continuous function φ such that
p̂ = φ(t, η) solves equation (9). Then, given any input u(·)
and initial condition x(t0) = x0 such that system (1) has
a solution for all t ≥ t0, the state estimation error for the
observer (6) decays exponentially to zero with a rate α.

Remark 1: Note that, for a fixed α and Ln, inequality
(18) is an LMI (linear matrix inequality) in the variables P ,
R, and M . Using the LMI toolbox in MATLAB [14], the
feasibility of such an inequality can readily be determined
and a solution to a feasible inequality can be obtained.

Remark 2: If LnDp �= 0, we need to be able to solve
equation (9) for p̂ to implement the observer. This equation
defines an implicit relation for p̂ in terms of t and η; here
η = ẑ+Ln(Cx̂+Du−y). We provide a sufficient condition
in [1] wich guarantees that, for each t and η, equation (9)
has a solution p̂ = φ(t, η), where φ is continuous.

IV. SIMULTANEOUS DESIGN OF L AND Ln VIA LMIS

The previous section contains an observer design pro-
cedure where the observer gain L is designed for a fixed
Ln. However, the simultaneous design of L and Ln is not
addressed. To obtain tractable conditions that permit the
simultaneous design of L and Ln, we consider multiplier
matrices M that are parameterized by two matrices X
and Y of lower dimensions, and that satisfy the following
condition.

Condition 1: There exist a nonsingular matrix T and a
set N of matrix pairs (X,Y ) with Y ∈ IRmp×mp such that
X = XT > 0, Y = Y T ≥ 0, and the matrix

M = TT

(
X 0
0 −Y

)
T (20)

is in M. In addition, T22 + T21Dqp is nonsingular where

T =

(
T11 T12

T21 T22

)
(21)

and T22 ∈ IRmp×mp .

To demonstrate the significance of the above condition,
we introduce a transformation that transforms the nonlinear
term p to a new nonlinear term p̃.

A. A Transformation

Suppose Condition 1 holds and note that, with q = z +
Dqpp,

T

(
q
p

)
=

(
T11z + Γ12p
T21z + Γ22p

)
where Γ12 = T12+T11Dqp, and Γ22 = T22+T21Dqp . Now
introduce the transformed nonlinear term p̃ defined by

p̃ := T21z + Γ22p . (22)

Since by assumption Γ22 is nonsingular, we have

p = −Γ−1
22 T21z + Γ−1

22 p̃ ; (23)

hence T11z + Γ12p = z̃ + D̃qpp̃ where

z̃ = Σz , Σ = T11 − Γ12Γ
−1
22 T21 , D̃qp = Γ12Γ

−1
22 . (24)

We now show that that Σ is invertible. Note that(
T11 Γ12

T21 Γ22

)
=

(
T11 T12 + T11Dqp

T21 T22 + T21Dqp

)
=T

(
I Dqp

0 I

)
.

Since the two matrices on the righthandside of the second
equality are invertible, the matrix on the lefthandside of
the first equality is invertible. Since Γ22 is assumed to be
invertible, by using the matrix inversion lemma [17], the
first matrix above is invertible if and only if the following
Schur complement of the matrix is invertible:

T11 − Γ12Γ
−1
22 T21 = Σ .

This implies that Σ is invertible. Consequently, z = Σ−1z̃
and

p̃(t, x, u) = ψ̃(t, z̃) := T21Σ
−1z̃ + Γ22ψ(t,Σ−1z̃) . (25)

Letting
q̃(t, z̃) = z̃ + D̃qpψ̃(t, z̃)

we obtain that

T

(
q(t, z2) − q(t, z1)
ψ(t, z2) − ψ(t, z1)

)
=

(
q̃(t, z̃2)−q̃(t, z̃1)

ψ̃(t, z̃2) − ψ̃(t, z̃1)

)
.

Hence satisfaction of inequality (3) by ψ implies that the
transformed nonlinear function ψ̃ satisfies(

q̃(t, z̃2)−q̃(t, z̃1)

ψ̃(t, z̃2)−ψ̃(t, z̃1)

)T(
X 0
0 −Y

)(
q̃(t, z̃2)−q̃(t, z̃1)

ψ̃(t, z̃2)−ψ̃(t, z̃1)

)
≥0.

(26)
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Now, using the transformed term ψ̃, system (1) is described
by

ẋ = Ãx + B̃pψ̃(t, z̃) + B̃(t, u, y)

y = C̃x + D̃pψ̃(t, z̃) + D̃(t, u, y)

z̃ = C̃qx + D̃q(t, u, y) (27)

where ψ̃ satisfies (26),

Ã = A − B̃pT21Cq , B̃p = BpΓ−1

22
,

C̃ = C − D̃pT21Cq , D̃p = DpΓ−1

22
,

C̃q = ΣCq ,

(28)

and

B̃ = B − B̃pT21Dq D̃ = D − D̃pT21Dq D̃q = ΣDq .

B. Observer Based on the Transformed System

Inspired by the previous section, we propose the fol-
lowing observers for a system described by (1)-(2); these
observers are based on the transformed system (27) and are
described by

˙̂x = Ãx̂ + B̃pp̂ + B̃(t, u, y) + L(ŷ − y) (29)

ŷ = C̃x̂ + D̃pp̂ + D̃(t, u, y)

p̂ = ψ̃(t, ẑ+Ln(ŷ−y))

ẑ = C̃qx̂ + D̃q(t, u, y)

In the observer description we have,

p̂ = ψ̃(t, ẑ+Ln(C̃x̂+D̃u−y) + LnD̃pp̂) .

So, when LnD̃p �= 0, we assume that there is a continuous
function φ̃ such that for all t and η, the equation

p̂ = ψ̃(t, η + LnD̃pp̂) (30)

is uniquely solved by p̂ = φ̃(t, η). Then,

p̂ = φ̃(t, ẑ+Ln(C̃x̂+D̃u−y)) . (31)

Now, we can present the main result of this section, which
is a corollary to Theorem 1.

Corollary 2: Consider a system described by (1)-(2) and
satisfying (3) with a set M of matrices that satisfy Condi-
tion 1. Suppose that, for some scalar α > 0, there exist
matrices P = PT > 0, R1, R2 and (X, Y ) ∈ N such that
matrix inequality (32) (on the next page) is satisfied, and
let

L = P−1R1 , Ln = X−1R2 . (33)

Also suppose that there is a continuous function φ̃ such that
p̂ = φ̃(t, η) solves equation (30). Then, given any input u(·)
and initial condition x(t0) = x0 such that system (1) has
a well defined solution for all t ≥ t0, the state estimation
error, e := x̂ − x, decays exponentially to zero with a rate
of α.

Proof: Substitute (33) into inequality (32) and apply
a Schur complement result ([8]) to obtain(

PÃ+ÃTP +PLC̃+C̃T LT P +2αP PB̃p+PLD̃p

B̃T
p P +D̃T

p LT P 0

)
+

(
C̃c D̃c

0 I

)T(
X 0
0 −Y

)(
C̃c D̃c

0 I

)
≤ 0.

where C̃c := C̃q+LnC̃ and D̃c := D̃qp+LnD̃p. The result
now follows by applying Theorem 1 to the transformed
system.

Remark 3: Note that, for a fixed α, inequality (32) is an
LMI (linear matrix inequality) in the variables P,R1, R2, X
and Y .

V. EXAMPLES OF NONLINEARITIES SATISFYING AN

INCREMENTAL QUADRATIC CONSTRAINT

In this section, we discuss some typical nonlinearities
satisfying the incremental quadratic constraint (3). We also
present additional conditions under which these nonlin-
earities satisfy Condition 1. The first two classes include
globally Lipschitz nonlinearities, monotonic nonlinearities,
and nonlinearities in bounded and unbounded sectors, which
are also studied in [7], [5], and [6]. Then, we consider
nonlinearities which can be parameterized by sets of ma-
trices; in particular we consider polytopic and conic sets.
These parameterizations are useful for fully exploiting the
structure of a nonlinear term.

A. Incrementally Sector Bounded Nonlinearities

Here we consider nonlinearities that, for all t, and z1, z2,
satisfy

(δψ−K1δq)
T X(K2δq− δψ) ≥ 0 for all X ∈ X , (34)

where

δψ :=ψ(t, z2)−ψ(t, z1), δq :=δz+Dqpδψ, δz :=z2−z1, (35)

while X is a set of symmetric positive definite matrices and
K1, K2 are fixed matrices. Here, without loss of generality,
we assume that the set X is invariant under multiplication
by a positive number. It readily follows from (34) that a
set M of multiplier matrices for the nonlinearities under
consideration is given by

M=

{(
−KT

1XK2 − KT
2XK1 (K1+K2)

TX
X(K1+K2) −2X

)
: X ∈ X

}
.

To satisfy Condition 1, suppose that there exists a positive
scalar σ such that S1 − σS2 is nonsingular where S1 :=
K2Dqp − I and S2 := I − K1Dqp . One can verify by
substitution that the following equality holds

2

(
−KT

1XK2−KT
2XK1 (K1 + K2)

T X
X(K1+K2) −2X

)
=T

T

(
X 0
0 −σ−1X

)
T,

where

T =

( 1√
σ
K2 −

√
σK1 − 1√

σ
I +

√
σI

K2 + σK1 −I − σI

)
.

Here Γ22 = S1 − σS2 is nonsingular. Therefore, Condition
1 is satisfied with the matrix T defined above and

N =
{

(X , σ−1X ) : X ∈ X}
.

When q and p are scalars, one can always choose a
positive scalar σ such that S1 − σS2 is nonzero. To prove
this claim, note that if S1 − σS2 is zero for all σ > 0
then, S1 = S2 = 0. In this case, K1 = K2 = 1/Dqp and
δψ = Kδq where K := K1 = K2. Using δq = δz+Dqpδψ
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⎛
⎝ ÃT P + PÃ + R1C̃ + C̃T RT

1 + 2αP PB̃p + R1D̃p C̃T
q X + C̃T RT

2

B̃T
p P + D̃T

p RT
1 −Y D̃T

qpX + D̃T
p RT

2

XC̃q + R2C̃ XD̃qp + R2D̃p −X

⎞
⎠ ≤ 0 . (32)

and δψ = Kδq, we have δz = (1 − DqpK)δq = 0 .
However, δz should be arbitrary; hence we cannot have
S1 = S2 = 0. Consequently, Condition 1 is always satisfied
by M in the scalar case.

As a specific example of a nonlinearity under consid-
eration, consider a globally Lipschitz nonlinearity which
satisfies ‖δψ‖ ≤ γ‖δq‖ for some γ > 0. In this case,
inequality (34) holds with K1 = −γI , K2 = γI , and
X = {λI : λ > 0}.

B. Incrementally Positive Real Nonlinearities

This class of nonlinearities is described by a set X of
symmetric positive definite matrices X such that for all t
and z1, z2,

δqT Xδψ ≥ 0 for all X ∈ X , (36)

where δq and δψ are as defined in (35). It is clear from (36)
that, without loss of generality, we can assume that the set X
of matrices is invariant under multiplication by a positive
scalar. Note that nondecreasing nonlinearities satisfy (36)
with X = {λI : λ > 0}. It readily follows from (36) that
a set M of multiplier matrices for the nonlinearities under
consideration is given by

M =

{(
0 X
X 0

)
: X ∈ X

}
.

To satisfy Condition 1 choose any scalar σ > 0 such that
Dqp − σI is nonsingular. Then, we can readily show that

2

(
0 X
X 0

)
=

(
1√
σ
I
√

σI

I −σI

)T(
X 0
0 −σ−1X

)(
1√
σ
I
√

σI

I −σI

)
.

Consequently, if we let

T =

(
1√
σ
I

√
σI

I −σI

)
, N =

{
( X , σ

−1
X ) : X ∈ X}

,

then Γ22 = Dqp−σI is nonsingular and Condition 1 holds.

C. Nonlinearities with Matrix Parameterizations

In this section, we consider nonlinear uncertain terms
that are characterized by some known set Ω of matrices.
Specifically, we assume that there is a known set Ω of real
lp × lq matrices with the following property. For each t, z1

and z2, there is a matrix in Θ ∈ Ω such that

δψ = Θδq (37)

where δψ and δq are defined in (35).
For example, suppose that

ψ(t, z) = g(t, q) with q = z + Dqpψ(t, z) (38)

where g is a function which is continuously differentiable
with respect to its second argument, and for each t and q

the derivative ∂g
∂q

(t, q) lies in some known closed convex
set Ω, that is,

∂g

∂q
(t, q) ∈ Ω for all t and q . (39)

Then, it follows from Lemma 3.5.1 in [12] that for each t,
q and q̃, there exists a matrix Θ ∈ Ω such that

g(t, q) − g(t, q̃) = Θ(q − q̃) .

It now follows that for every t, z1 and z2, there is a matrix
Θ in Ω such that (37) holds.

Since δψ = Θδq for some Θ in Ω, it follows that a
symmetric matrix M satisfies the multiplier condition (3) if(

I
Θ

)T

M

(
I
Θ

)
≥ 0 for all Θ ∈ Ω .

Let

M =

(
M11 M12

MT
12 M22

)

where partitioning is in accordance with (δq, δψ). Then the
above inequalities can be expressed as

M11 + M12Θ + ΘT MT
12 + ΘT M22Θ ≥ 0 for all Θ ∈ Ω.

We restrict consideration to those matrices M that satisfy
M22 ≤ 0. When Dqp + LnDp = 0 this leads to no loss of
generality; this is a consequence of inequality (15). With
M22 ≤ 0, the above inequalities are equivalent to:(

M11+ΘT MT
12+M12Θ ΘTM22

M22Θ −M22

)
≥0, ∀Θ ∈ Ω . (40)

Thus any symmetric matrix M that satisfies (40) is a
multiplier matrix.

1) Polytopic case: Here we consider the case in which

Ω = Co {Θ1 , . . . ,Θν} ,

that is, Ω is the set of matrices Θ that are given by
Θ =

∑ν
k=1 λkΘk where λk ≥ 0, k = 1, . . . , ν , and∑ν

k=1 λk = 1. In this case, condition (40) is satisfied if
and only if, for k = 1, · · · , ν,(

M11 + ΘT
k MT

12 + M12Θk ΘT
k M22

M22Θk −M22

)
≥0 . (41)

Since M22 ≤ 0, the above inequalities are equivalent to
M22 ≤ 0 and

M11+M12Θk+ΘT
k MT

12+ΘT
k M22Θk≥0 for k = 1, 2 · · · , ν.

Thus, the set M of symmetric matrices M that satisfy(
I

Θk

)T

M

(
I

Θk

)
≥0, for k=1,. . .,ν, and M22 ≤ 0 , (42)

is a set of multipliers matrices.
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To obtain a set of multiplier matrices satisfying Condition
1, choose any nonsingular matrix T and consider multiplier
matrices of the form given in (20) where XT = X > 0
and Y T = Y ≥ 0. A matrix M of this structure satisfies
inequalities (42) if and only if X and Y satisfy(

I
Θk

)T

TT

(
X 0
0 −Y

)
T

(
I

Θk

)
≥ 0, for k=1,. . .,ν

TT
12XT12−TT

22YT22 ≤ 0 . (43)

Then, provided T22 + T21Dqp is invertible, Condition 1 is
satisfied with

N =
{
(X,Y ) : XT=X >0 and Y T=Y ≥ 0 satisfy (43)

}
.

Once T is chosen, (43) is a set of linear matrix inequalities
in X and Y . However, the choice of T to yield a large
subset of multipliers in some sense is not clear. Therefore,
T is treated as a design parameter at this point. For example,
the simple choice of T = I satisfies Condition 1 with N
defined by

N = {(X,Y ) : XT=X >0 and Y T=Y ≥0 satisfy (44)}
where

X − ΘT
k Y Θk ≥ 0 for k = 1, . . . , ν . (44)

As an example of a nonlinearity treated in this section,
consider

ψ(t, z) =
(

sin z1 sin z2

)T
.

Here ψ(t, z) = g(t, q) where q = z,

g(t, q) =

(
sin q1

sin q2

)
and

∂g

∂q
(t, q)=

(
cos q1 0

0 cos q2

)
.

Hence Ω is the polytope defined by the four matrices

Θ1 =

(
1 0
0 0

)
, Θ2 =

( −1 0
0 0

)
, Θ3 =

(
0 0
0 1

)
, Θ4 =

(
0 0
0 −1

)
.

As another example, consider

ψ(t, z) = sin z1 sin z2

Here ψ(t, z) = g(t, q) where q = z,

g(t, q)=sin q1 sin q2 and
∂g

∂q
(t, q)=

(
cosq1sinq2 sinq1cosq2

)
.

Hence Ω is the polytope defined by the four matrices

Θ1 =
(

1 1
)
, Θ2 =

( −1 1
)
, Θ3 =

(
1 −1

)
, Θ4 =

( −1 −1
)
.

2) Conic Case: In this case, Ω is a closed convex set
defined by

Ω = Cone {Θ1 , . . . ,Θν} ,

that is, Ω is the set of matrices Θ that satisfy Θ =∑ν
k=1 λkΘk where λk ≥ 0, k = 1, . . . , ν.
As in the previous section, we only consider multiplier

matrices with M22 ≤ 0. In this case, condition (40) is
satisfied if and only if(

M11+ΘTMT
12+M12Θ ΘTM22

M22Θ −M22

)
≥0, ∀Θ∈Cone{Θ1,. . ., Θν}.

(45)

Consider any matrix Θk. For any λ ≥ 0, the matrix λΘk

is also in Cone{Θ1, . . . ,Θν}; hence(
M11 + λΘT

k MT
12 + λM12Θk λΘT

k M22

λM22Θk −M22

)
≥ 0 .

Considering λ = 0, we obtain that(
M11 0
0 −M22

)
≥ 0 ,

that is, M11 ≥ 0 and M22 ≤ 0. Considering λ > 0, we
obtain(

λ−1M11 + ΘT
k MT

12 + M12Θk ΘT
k M22

M22Θk −λ−1M22

)
≥ 0 .

Since λ can be arbitrary large, we must have(
ΘT

k MT
12 + M12Θk ΘT

k M22

M22Θk 0

)
≥ 0 .

Hence, satisfaction of (45) implies that

M11 ≥ 0 , M22 ≤ 0
M12Θk + ΘT

k MT
12 ≥ 0

M22Θk = 0
for k = 1, · · · , ν. (46)

Clearly, satisfaction of condition (46) implies (45). Thus
any symmetric matrix M which satisfies (46) is a multiplier
matrix for this case.

To obtain a set of multiplier matrices satisfying Condition
1, one could choose any nonsingular matrix T and consider
multiplier matrices of the form given in (20). Once T is
chosen, (46) defines a set of linear matrix inequalities in X
and Y . However, the choice of T to yield a large subset
of multipliers in some sense is not clear. Therefore, T is
treated as a design parameter at this point. For example, the
following is a simple choice

T =

(
I F

FT −I

)

where F is a full rank matrix of appropriate dimensions
satisfying FFT = I or FT F = I as appropriate. With
this choice,

M11 = X − FY FT

M12 = XF + FY
M22 = FT XF − Y .

Consider the case FFT = I and let Y = FT XF . Then
M22 = 0, M11 = 0, and M12 = 2XF . Hence, Condition
1 is satisfied with

N =
{

(X, F
T
XF ) : X

T=X > 0 and (47) is satisfied
}

,

where
ΘT

k F
T
X + XFΘk ≥ 0, for k = 1,. . ., ν. (47)

Consider now the case FT F = I and let Y = FT XF .
Then M22 = 0, M11 = X − FFT XFFT , and M12 =
(I + FFT )XF . Hence, Condition 1 is satisfied with

N=
{

(X, F
T
XF ) : X

T=X >0, X−FF
T
XFF

T≥0, (48) holds
}

,

(I+FF
T )XFΘk+ΘT

kF
T
X(I+FF

T )≥0, for k = 1,. . . ,ν . (48)
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As an example of a nonlinearity treated in this section,
consider

ψ(t, z) =
(

z3 z5
)T

.

Here ψ(t, z) = g(t, q) where q = z,

g(t, q) =
(

q3 q5
)T

and
∂g

∂q
(t, q)=

(
3q2 5q4

)T
.

Hence Ω is the cone defined by the two matrices

Θ1 =
(

1 0
)T

, Θ2 =
(

0 1
)T

.

As another example, consider

ψ(t, z) = e(z1+z3

2
)

Here ψ(t, z) = g(t, q) where q = z,

g(t, q)=e(q1+q3

2
) and

∂g

∂q
(t, q)=

(
e(q1+q3

2
) 3q2

2e(q1+q3

2
)
)
.

Hence Ω is the cone defined by the two matrices

Θ1 =
(

1 0
)

, Θ2 =
(

0 1
)

.

D. Multiple Nonlinearities

In this subsection, we consider multiple nonlinearities
that may have different characterizations for each nonlin-
earity, that is

p(t, x, u) =
(

p1(t, x, u), . . . , pµ(t, x, u)
)

,

where pk(t, x, u) = ψk(t, zk) with zk = Cq,kx +
Dq,k(t, u, y) for k = 1, . . . , µ. For each k, there is a
set Mk of multiplier matrices such that for all Mk ∈ Mk

and all t, zk, z̃k, we have(
qk(t, zk)−qk(t, z̃k)
ψk(t, zk)−ψk(t, z̃k)

)T

Mk

(
qk(t, zk)−qk(t, z̃k)
ψk(t, zk)−ψk(t, z̃k)

)
≥0

(49)
where

qk(t, zk) = zk + Dqp,kψk(t, zk) . (50)

The results of this section also contain the feasibility relax-
ations obtained for strictly positive real conditions for multi-
variable monotone nonlinearities presented in [13]. If we de-
fine z = (z1, . . . , zµ) , ψ(t, z) = (ψ1(t, z1), . . . , ψµ(t, zµ))
and q = (q1, . . . , qµ) , we can easily show that the nonlin-
earity p(t, x, u) = ψ(t, z) where z = Cqx + Dq(t, u, y)

Cq = diag(Cq,1, . . . , Cq,µ) , Dq = (Dq,1, . . . , Dq,µ) ,

satisfies (3) with M, where for each M ∈ M we have

Mij =diag(M1,ij ,. . ., Mµ,ij); i, j =1, 2,

(
Mk,11 Mk,12

MT
k,12 Mk,22

)
=Mk.

Note that, for any set of matrices Q1, . . . , Qµ,
diag(Q1, . . . , Qµ) is a matrix of appropriate dimensions
with matrices Q1, . . . , Qµ on the diagonal, and with zero
off-diagonal blocks.

Now, suppose that Condition 1 is satisfied by a set Mk of
multiplier matrices by each component pk of p with some
Tk and set of pairs (Xk, Yk) ∈ Nk, k = 1, . . . , µ. Then

Condition 1 is also satisfied with matrix pairs (X,Y ) ∈ N
and transformation T where

X = diag(X1, . . . , Xµ) , Y = diag(Y1, . . . , Yµ) ,

and

Tij =diag(T1,ij ,. . ., Tµ,ij); i, j = 1, 2,
(

Tk,11 Tk,12

Tk,21 Tk,22

)
=Tk.

VI. AN EXAMPLE: UNDERWATER VEHICLE

In this section we consider a simple model of an under-
water vehicle with thruster dynamics. This example is taken
from [19] where a similar objective of designing observers
is considered in a different framework. The simplified
dynamics of the vehicle is given by

φ̈1 = −3φ̇1|φ̇1| + u

φ̈2 = φ̇1|φ̇1| − 10φ̇2|φ̇2| ,
where φ1 is propeller angle, φ2 is vehicle position and
u is the torque input to the propeller. It is assumed that
we can only measure φ1 and φ2; the angular velocity φ̇1

of the propeller and the speed φ̇2 of the vehicle will be
estimated using an observer. In this model, φ̇1|φ̇1| represents
the propeller thrust and 10φ̇2|φ̇2| represents the hydraulic
drag on the vehicle.

Introducing the state x = (φ1, φ̇1, φ2, φ̇2), and the
output y = (φ1, φ2), and letting p = (φ̇1|φ̇1|, φ̇2|φ̇2|), we
can write this system in state space form (1) with

A=

(
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)
, Bp =

(
0 0−3 0
0 0
1 −10

)

C =
(

1 0 0 0
0 0 1 0

)
, Dp =

(
0 0
0 0

)
.

B(t, u, y) = (0, u, 0, 0) and D = 0. With z = (x2, x4),
the nonlinear term is described by (2) where

ψ(t, z)=

(
z1|z1|
z2|z2|

)
, Cq =

(
0 1 0 0
0 0 0 1

)
, Dq =0 .

Note that the nonlinear function given by f(ν) = ν|ν| is a
nondecreasing function. Considering Dqp = 0, the nonlin-
ear term here is an incrementally positive real nonlinearity
satisfying (36) with X being the set of matrices X of the
form

X =

(
λ1 0
0 λ2

)

where λ1 and λ2 are any positive scalars.
Therefore, we can design an observer using the results

in Corollary 2. This is done by using the LMI toolbox in
MATLAB [14]. The observer gains obtained for α = 4 are

L=

⎛
⎝ −9.4678 −0.0134

−21.6510 0.3072
−0.0039 −19.0395
−0.2699 −211.0569

⎞
⎠, Ln=

(
−4.4758 0.0189
−0.3196 −13.0741

)
.

A two second simulation was carried out with initial
state x(0) = (0, 0, 0, 5), initial state estimate, x̂(0) =
(0, 4, 0, −10), and control input

u(t) =

{
5 for 0 ≤ t < 1

−10 for 1 ≤ t < 2 .
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Fig. 1. Estimating the state of an underwater vehicle

In these simulations, dotted lines represent the state esti-
mate, which converged to the vehicle state in less than 0.5
seconds.

VII. CONCLUSIONS

We considered the problem of state estimation for sys-
tems whose nonlinear time-varying terms satisfy an in-
cremental quadratic constraint which is parameterized by
a set of multiplier matrices. We also demonstrate that
many common nonlinear/time-varying terms satisfy such
an inequality. We present observers which guarantee that
the resulting state estimation error exponentially converges
to zero. Observer design involves solving linear matrix in-
equalities (LMIs) for the observer gain matrices. The results
of this paper will be useful in obtaining observer based
output feedback controllers for systems with nonlinear/time-
varying terms satisfying an incremental quadratic inequality.
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[2] A. B. Açıkmeşe and M. Corless. Stability analysis with quadratic
Lyapunov functions: A necessary and sufficient multiplier condition.
Proceedings of Allerton Conference on Communication, Control, and
Computing, 2003.

[3] D. Angeli. A Lyapunov approach to incremental stability properties.
IEEE Transactions on Automatic Control, 47(3):410–421, 2002.

[4] M. Arcak and P. Kokotovic. Nonlinear observers: A circle criterion
design. Proceedings of 38th IEEE Conference on Decision and
Control, pages 4872–4876, 1999.

[5] M. Arcak and P. Kokotovic. Feasibility conditions for circle criterion
designs. System and Control Letters, 42:405–412, 2001.

[6] M. Arcak and P. Kokotovic. Nonlinear observers: A circle criterion
design and robustness analysis. Automatica, 37(12):1923–1930,
2001.

[7] M. Arcak and P. Kokotovic. Observer-based control of systems
with slope-restricted nonlinearities. IEEE Transactions on Automatic
Control, AC-46(7):1146–1150, 2001.

[8] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix
Inequalities in System and Control Theory. SIAM, 1994.

[9] C. Chen. Linear System Theory and Design, Third Edition. Oxford
Press, 1999.

[10] B.L. Walcott M.J. Corless and S.H. Zak. Comparative study of non-
linear state-observation techniques. International Journal of Control,
45:2109–2132, 1987.

[11] M. Corless. Robust stability analysis and controller design with
quadratic Lyapunov functions. Variable Structure and Lyapunov
Control, A. Zinober, ed., Springer-Verlag, 1993.

[12] L.P. D’Alto. Incremental quadratic stability. Master’s thesis, Purdue
University, 2004.

[13] X. Fan and M. Arcak. Observer design for systems with multivariable
monotone nonlinearities. System and Control Letters, 50(4):319–330,
2003.

[14] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali. The LMI
Control Toolbox. The MathWorks, 1995.

[15] J. P. Gauthier, H. Hammouri, and S. Othman. A simple observer for
nonlinear systems: Applications to bioreactors. IEEE Transactions
on Automatic Control, 37(6):875–880, 1992.

[16] J.K. Hedrick and S. Raghavan. Observer design for a class of
nonlinear systems. International Journal of Control, 59(2):515–528,
1994.

[17] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge
University Press, 1985.

[18] A.J. Krener and A. Isidori. Linearization by output injection and
nonlinear observers. Systems and Control Letters, 3(1):47–52, 1983.

[19] W. Lohmiller and J. E. Slotine. On contraction analysis for non-linear
systems. Automatica, 34(6):683–696, 1998.

[20] D.G. Luenberger. Observing the states of a linear system. IEEE
Transactions on Military Electronics, 8:74–80, 1964.

[21] L. Praly and M. Arcak. A relaxed condition for stability of nonlinear
observer-based controllers. Accepted for publication, System and
Control Letters, 2004.

[22] R. Rajamani. Observers for Lipschitz nonlinear systems. IEEE
Transactions on Automatic Control, 43(3):397–401, 1998.

[23] J.J.E. Slotine, J.K. Hedrick, and E.A. Misawa. On sliding observers
for nonlinear-systems. Journal of Dynamic Systems Measurements
and Control, 109(3):245–252, 1987.

[24] E. D. Sontag and Y. Wang. Output-to-state stability and detectability
for nonlinear systems. System and Control Letters, 29:279–290, 1997.

[25] M. Zeitz. The extended Luenberger observer for nonlinear systems.
Systems and Control Letters, 9:149–156, 1987.

3629


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /ArialNarrow-Italic
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-Oblique
    /Times-Roman
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


