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Abstract— An adaptive control method that tunes the res-
onant frequency of a lightly damped second order system to
its excitation frequency is investigated. The resonance tuning
is achieved by using proportional feedback around the second
order system and adaptively controlling the feedback gain us-
ing the error between the excitation and resonant frequencies.
This error is obtained by a phase detector. Assuming that
the parameters of the lightly damped second order system
are slowly time-varying, a nonlinear time-varying model that
accurately predicts the performance of the resonance tuning
system is developed. This developed model is subsequently lin-
earized to obtain a linear time-invariant model that facilitates
both analysis and design of the resonance tuning system. Based
on the developed linear time-invariant model, guidelines for
designing the resonance tuning system are also provided. The
results are illustrated by examples.

Index Terms— Resonant frequency tuning, phase detectors,
adaptive control.

I. INTRODUCTION

A wide variety of systems, such as ultrasonic motors,

piezoelectric transducers, induction heating loads, resonant

inverter loads, microelectromechanical gyroscopes, cavity

resonators and cyclotrons, can be modelled as lightly

damped second order systems (see [1], [2], and the ref-

erences therein). Such systems must be driven at their res-

onant frequencies in order to achieve optimal performance.

However, even if these systems are driven initially at their

resonant frequencies, their excitation or resonant frequen-

cies may vary with time due to environmental changes.

These changes may significantly impair their performance

and necessitate employment of adaptive resonance tuning

control systems that maintain lock between the driving and

resonant frequencies of such systems.

Two adaptive resonance tuning methods have been inves-

tigated in our previous work [1], [2]. The first method used

a phase locked loop to adaptively tune the excitation fre-

quency of a second order system to its resonant frequency,

while the second method used a phase detector to adaptively

tune the resonant frequency of a second order system to its

excitation frequency. This paper considers a third method

for resonance tuning in which the resonant frequency of

the system is changed using proportional feedback and the

feedback gain is adaptively adjusted to tune the resonant fre-

quency of the resulting closed loop system to its excitation

frequency. This resonance tuning method was introduced

in [3] for tuning the resonant frequency of the drive axis of

a vibrational gyroscope.

In [3], a multiplication type phase detector that consists

of an analog multiplier and a lowpass filter is used to obtain
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the error between the excitation frequency and resonant

frequency. In that work, however, the importance of the

lowpass filter on the overall performance of the system

was not recognized and it was completely ignored in the

analysis. Although the lowpass filter was included in some

simulations with an ad-hoc saturation element at its input to

prevent instability at high gains, no explanations are given

for how its parameters were chosen and why the instability

occurred. As it will be shown in this paper, the lowpass filter

plays a fundamental role in the resonance tuning system and

determines performance measures such as rise time, settling

time, steady-state error, overshoot, robustness and stability.

Hence, careful design of the lowpass filter can lead to better

resonance tuning performance.

Motivated by the above discussion, the adaptive res-

onance tuning method introduced in [3] is reconsidered

in this paper. However, unlike [3], which considers the

resonance tuning problem for a specific vibrational gyro-

scope, the present paper investigates the problem for a more

general generic lightly damped second order time-varying

system. Similar to [3], the resonant frequency of the system

is changed using a proportional feedback and the feedback

gain is adaptively adjusted to tune the resonant frequency of

the resulting closed loop system to its excitation frequency.

This adaptation is based on the error, measured by a phase

detector, between the resonant and driving frequencies. Two

types of phase detectors, a multiplication type and an exor

type, are considered.

The goal of this paper is to develop analysis and design

methods for the adaptive resonance tuning system described

above. For this purpose, assuming that the parameters

of the lightly damped second order system (including its

resonant frequency) and its driving frequency vary slowly

with time, a nonlinear time-varying model that accurately

predicts the performance of the adaptive resonance tuning

system is developed. This developed model is subsequently

linearized to obtain a more tractable linear time-invariant

model that still predicts the performance of the system very

accurately provided that the deviations from the nominal

operating point are small. Based on the developed linear

time-invariant model, guidelines for designing the adaptive

resonance tuning system are provided. The developed re-

sults are illustrated by examples including the vibrational

gyroscope example considered in [3].

The remainder of the paper is organized as follows. In

Section II, the model of the resonance tuning system is

presented. In Section III, the resonance tuning system is

analyzed. In Section IV, the design of the resonance tuning

system is considered. In Section V, the results are illustrated

by examples. In Section VI, conclusions are given.
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II. MODELLING

In this section, the model of the resonance tuning system

is presented. A brief overview of the phase detectors used

in the paper is also included.

A. Resonance Tuning System

Each one of the resonant systems listed above can be

modelled as a lightly damped second order system. The

dynamics of such a system are governed by the differential

equation

ÿ(t) + 2ζ(t)ωn(t)ẏ(t) + ω2
n(t)y(t) = kgω

2
n(t)u(t), (1)

where u(t) is the input, y(t) is the output, ωn(t) is the

resonant (natural) frequency, ζ(t) is the damping ratio and

kg is the input gain. The input to the system u(t) is assumed

to be in the form

u(t) = A(t) cos [ω0t + θ(t)] , (2)

where A(t) > 0 is the instantaneous amplitude, ω0 is the

nominal angular frequency and θ(t) is the instantaneous

phase of the input. It is further assumed that ωn(t), ζ(t),
A(t) and θ(t) are slowly time varying compared to the time

variation of ω0t.
In order to achieve optimal performance, this system

must be driven at its resonant frequency ωn(t). Since the

instantaneous frequency [4] of the input is

ωs(t) = ω0 + θ̇(t), (3)

the condition for the optimal performance is ωs(t) = ωn(t).
Although it is easy to achieve this condition nominally, both

ωs(t) and ωn(t) may drift in time due to environmental

changes and cause loss of performance. Two methods to

overcome this problem have been investigated in our earlier

work [1], [2]. A third method to overcome the same problem

is proposed in [3], where the lightly damped second order

system is placed inside a feedback loop as shown in Fig. 1

and the feedback gain is adaptively adjusted to bring the

resonant frequency of the closed-loop system shown inside

the dashed box to match the frequency of the input.

x(t) y(t)
u(t)

v1(t)

v2(t) v(t)

SYS

kf

+
−

PD

×

Fig. 1. Model of the resonance tuning system.

In this figure, SYS is the lightly damped second order

system, PD is the phase detector, kf is the feedback gain

and x(t) is the external input to the system. It follows from

this figure that

u(t) = x(t) − kfv(t)y(t), (4)

where v(t) is the error signal generated by the phase de-

tector. Thus, the differential equation governing the closed-

loop system inside the dashed box can be written as

ÿ(t) + 2ζ(t)ωn(t)ẏ(t)

+ [1 + kfkgv(t)]ω2
n(t)y(t) = kgω

2
n(t)x(t).

(5)

The resonant frequency of this system is

ωc(t) = ωn(t)
√

1 + kωv(t), (6)

where kω = kfkg . Hence, the goal of the resonance tuning

system is to keep ωc(t) as close to ωs(t) as possible through

v(t), despite disturbances due to environmental changes.

B. Phase Detectors

A phase detector compares the phases of two signals

applied to its inputs and generates an output signal whose

average value is related to the phase difference between

these input signals [5], [6]. There exist several types of

phase detectors with different characteristics. The phase

detectors considered in this paper are a multiplication

type analog phase detector and an exor type digital phase

detector. Below, these two types of phase detectors will be

reviewed briefly.

1) Multiplication Phase Detector: A multiplication type

phase detector uses an analog multiplier phase comparator

followed by a lowpass filter to extract the phase information

at its inputs as shown in Fig. 2. In this figure, the signals

v1(t) and v2(t) are the inputs, v(t) is the output, F (s)
is the transfer function of the lowpass filter and × is the

multiplication operation.

v1(t)

v2(t)

z(t)
v(t)F (s)×

Fig. 2. Model of the multiplication phase detector.

Assuming that v1(t) and v2(t) are in the forms

v1(t) = A1(t) cos [ω0t + θ1(t)] (7)

and

v2(t) = A2(t) cos [ω0t + θ2(t)] , (8)

where A1(t) > 0 and A2(t) > 0 are the instantaneous

amplitudes, θ1(t) and θ2(t) are the instantaneous phases

and ω0 is the nominal angular frequency, it follows that

z(t) =
A1(t)A2(t)

2
cos [θ2(t) − θ1(t)]

+
A1(t)A2(t)

2
cos [2ω0t + θ2(t) + θ1(t)].

(9)
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Assuming further that A1(t), A2(t), θ1(t) and θ2(t) vary

slowly with time compared to the time variation of ω0t (i.e.,

|Ȧ1(t)| � ω0, |Ȧ2(t)| � ω0, |θ̇1(t)| � ω0 and |θ̇2(t)| �
ω0) and that the lowpass filter completely removes the high

frequency term around 2ω0, the phase detector output v(t)
can be written as

v(t) = f(t) ∗ ϕm [θ2(t) − θ1(t)] , (10)

where

ϕm [θ(t)] =
A1(t)A2(t)

2
cos [θ(t)] , (11)

f(t) is the impulse response of the lowpass filter and ∗ is

the convolution operation.

This nonlinear equation describes the operation of the

multiplication type phase detector very accurately provided

that the assumptions made earlier are satisfied. Note that

the amplitudes of both input signals affect the output

of the phase detector. This must be accounted for when

designing the gains in the system. As will be shown next,

the amplitudes of the input signals do not affect the output

of the exor type phase detector.

2) Exor Phase Detector: An exor type phase detector

uses a digital exor phase comparator followed by a lowpass

filter to extract the phase information at its inputs as shown

in Fig. 3. In this figure, the signals v1(t) and v2(t) are

the inputs, v(t) is the output, F (s) is the transfer function

of the lowpass filter, ⊕ is the exor logic gate with logic

0 and 1 levels being −V and +V , respectively, and HLs

are hard limiters with limiting levels ±V that convert the

signals v1(t) and v2(t) at the input of phase detector into

the digital signals u1(t) and u2(t).

v1(t)

v2(t)

u1(t)

u2(t)

z(t)
v(t)F (s)

HL

HL

⊕

Fig. 3. Model of the exor phase detector.

Assuming that the inputs v1(t) and v2(t) are as before,

the signals u1(t) and u2(t) can be expressed as

u1(t) = V sgn (cos [ω0t + θ1(t)]) (12)

and

u2(t) = V sgn (cos [ω0t + θ2(t)]) . (13)

Thus, it follows that

z(t) = u1(t) ⊕ u2(t). (14)

Similar to the previous case, assuming that both θ1(t) and

θ2(t) vary slowly with time compared to the time variation

of ω0t (i.e., |θ̇1(t)| � ω0 and |θ̇2(t)| � ω0), the signal z(t)
can be expressed as

z(t) = ϕe [θ2(t) − θ1(t)] + r(t), (15)

where ϕe [θ(t)] as a function of θ(t) = θ2(t) − θ1(t)
is as shown in Fig. 4 and the term r(t) includes the

high frequency components that occur around 2ω0, 4ω0,

and so on. Assuming further that the lowpass filter F (s)
completely removes the high frequency term r(t), the output

of the phase detector v(t) is given by

v(t) = f(t) ∗ ϕe [θ2(t) − θ1(t)] , (16)

where f(t) is the impulse response of the lowpass filter

and ∗ is the convolution operation.

ϕe(θ)

θ

+V

−V

−2π −π 0 +π +2π

Fig. 4. Exor phase comparator characteristic.

Like the previous case, this nonlinear equation governs

the operation of the phase detector very accurately provided

that the assumptions stated above are satisfied. Moreover,

note that the output of phase detector v(t) is also a slowly

time-varying signal.

III. ANALYSIS

In this section, the system shown in Fig. 1 is considered

and an analysis method for the resonance tuning system is

developed. The approach is very similar to the one used in

our earlier work [1], [2].

A. Analysis with Multiplication Phase Detector

Consider the resonance tuning system shown in Fig. 1

and assume that the phase detector is a multiplication type.

Assume further that the input x(t) is in the form

x(t) = A1(t) cos [ω0t + θ1(t)] , (17)

where A1(t) > 0 is the instantaneous amplitude, ω0 is the

nominal angular frequency and θ1(t) is the instantaneous

phase of the input x(t). The amplitude A1(t) and the phase

θ1(t) are assumed to be slowly time-varying parameters.

The instantaneous frequency of the input is

ωs(t) = ω0 + θ̇1(t). (18)

The output y(t) satisfies the differential equation (5).

As this equation is time varying, it is impossible to find

y(t) analytically. However, since it is assumed that the

parameters ωn(t), ζ(t), A1(t) and θ1(t) vary slowly with

time compared to the excitation frequency, y(t) can be

approximated using the frozen-time approach. For a frozen

time t, the transfer function from x(t) to y(t) is

G(s) =
kgω

2
n(t)

s2 + 2ζ(t)ωn(t)s + ω2
c (t)

(19)
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and the output y(t) can be approximated using its steady-

state part as

y(t) = A2(t) cos [ω0t + θ2(t)] , (20)

where A2(t) = |G[jωs(t)]|A1(t) and θ2(t) = θ1(t) +
∠G[jωs(t)]. It then follows that

θ2(t) − θ1(t) = ∠G[jωs(t)]. (21)

Using this in (11) yields

v(t) = f(t) ∗ ϕm (∠G[jωs(t)]) . (22)

Thus, the output of the phase detector becomes

v(t) = f(t) ∗ A2
1(t)
2

|G[jωs(t)]| cos (∠G[jωs(t)]) . (23)

Since

|G[jωs(t)]| cos (∠G[jωs(t)]) = Re{G[jωs(t)]}, (24)

the phase detector output can be rewritten as

v(t) = f(t)

∗ A2
1(t)kgω

2
n(t)

[
ω2

c (t) − ω2
s(t)

]
2

(
[ω2

c (t) − ω2
s(t)]2 + [2ζ(t)ωn(t)ωs(t)]

2
) .

(25)

Next, solving (6) for v(t) and substituting into (25), it

follows that

ω2
c (t) − ω2

n(t)
ω2

n(t)
= f(t)

∗ kωkgA
2
1(t)ω

2
n(t)

[
ω2

c (t) − ω2
s(t)

]
2

(
[ω2

c (t) − ω2
s(t)]2 + [2ζ(t)ωn(t)ωs(t)]

2
) ,

(26)

which describes the dynamics of the resonance tuning

system with a multiplication type phase detector.

Equation (26) is a nonlinear model of the resonance

tuning system. Although simulations show that it represents

the actual resonance tuning system very accurately, the

nonlinear nature of this equation reduces its value from

a design perspective. Therefore, this equation is linearized

about the nominal angular frequency ω0. For this purpose,

let ωs(t) = ω0 + δωs(t), ωc(t) = ω0 + δωc(t) and

ωn(t) = ω0 + δωn(t). Assume further that ζ(t) and A1(t)
are equal to their respective nominal values ζ0 and A0.

Then, linearization yields

δωc(t) − δωn(t) = f(t) ∗ kωkθ

2ζ0
[δωs(t) − δωc(t)] , (27)

where kθ = −kgA
2
0/(4ζ0). Finally, letting k = kωkθ/(2ζ0),

the simplified linear time-invariant model of the resonance

tuning system becomes

δωc(t) − δωn(t) = kf(t) ∗ [δωs(t) − δωc(t)] . (28)

It should be noted that this approximation is quite accurate

provided that

|δωs(t) − δωc(t)|
ζ0ω0

≤ 1. (29)

The block diagram of the system described by (28) is

shown in Fig. 5. It is evident from this figure that the

lowpass filter plays an important role in the resonance

tuning system.

δωs(t)

δωn(t)

δωc(t)kF (s) ++

−

Fig. 5. Simplified model of the resonance tuning system.

B. Analysis with Exor Phase Detector

Consider again the resonance tuning system shown in

Fig. 1 with the assumptions of the previous subsection ex-

cept that now the phase detector is an exor type. Proceeding

similarly, the output of the phase detector for this case can

be expressed as

v(t) = f(t) ∗ ϕe (∠G[jωs(t)]) . (30)

Since −π ≤ ∠G[jωs(t)] ≤ 0, it follows from the phase

comparator characteristic that

v(t) = f(t) ∗ kθ (−∠G[jωs(t)] − π/2) , (31)

where kθ = 2V/π is the gain of the phase detector. Thus,

using

∠G[jωs(t)] = − arctan
[
2ζ(t)ωn(t)ωs(t)
ω2

c (t) − ω2
s(t)

]
(32)

in (31) yields

v(t) = f(t) ∗ kθ arctan
[

ω2
s(t) − ω2

c (t)
2ζ(t)ωn(t)ωs(t)

]
. (33)

Combining this equation with (6) results in

ω2
c (t) − ω2

n(t)
ω2

n(t)
= f(t)

∗kωkθ arctan
[

ω2
s(t) − ω2

c (t)
2ζ(t)ωn(t)ωs(t)

]
,

(34)

which describes the dynamics of the resonance tuning

system with an exor type phase detector.

Simulations show that (34) represents the actual reso-

nance tuning system very accurately. However, a simpler

model is still desired for the purpose of design. Therefore,

to proceed, the left side of (34) and the argument of the

arctangent function are linearized about the nominal natural

frequency ω0. For this purpose, again let ωs(t) = ω0 +
δωs(t), ωc(t) = ω0 + δωc(t) and ωn(t) = ω0 + δωn(t).
Moreover, assume that ζ(t) is equal to its nominal value

ζ0. Then, the resulting expression is

2
ω0

[δωc(t) − δωn(t)] = f(t)

∗kωkθ arctan
[
δωs(t) − δωc(t)

ζ0ω0

]
.

(35)
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This nonlinear equation can be further approximated accu-

rately by the linear equation

δωc(t) − δωn(t) = f(t) ∗ kωkθ

2ζ0
[δωs(t) − δωc(t)] , (36)

provided that

|δωs(t) − δωc(t)|
ζ0ω0

≤ 1. (37)

Finally, letting k = kωkθ/(2ζ0), the simplified linear time-

invariant model of the resonance tuning system becomes

δωc(t) − δωn(t) = kf(t) ∗ [δωs(t) − δωc(t)] . (38)

The block diagram of the system described by this

equation is shown in Fig. 5. Like the previous case, it is

evident that the lowpass filter plays an important role in the

resonance tuning system.

IV. DESIGN

In this section, the design of the resonance tuning sys-

tem is considered. Specifically, guidelines are provided for

choosing the order and parameters of the lowpass filter.

Based on the developed linear time-invariant models, the

resonance tuning system can be designed using standard

control system design methods. In the design, the main

goal is to find a “controller” F (s) so that the “output”

δωc(t) tracks the “reference” δωs(t) satisfactorily and the

effect of the “disturbance” δωn(t) on the “output” δωc(t)
is minimized.

In designing the resonance tuning system, certain guide-

lines should be taken into consideration. For instance, as a

direct consequence of the internal model principle [7], the

filter F (s) must contain the model of the reference δωs(t)
to achieve perfect asymptotic reference tracking. Similarly,

the filter F (s) must contain the model of the disturbance

δωn(t) to achieve perfect asymptotic disturbance rejection.

In particular, for δωc(t) to asymptotically track any step

change in δωs(t) and asymptotically reject any step change

in δωn(t), the filter F (s) must contain at least one inte-

grator. Moreover, the bandwidth of the lowpass filter F (s)
should be sufficiently small to filter out the high frequency

components at the output of the phase comparator. In

addition, the bandwidth of kF (s)/[1 + kF (s)] should be

sufficiently large for good reference tracking whereas the

gain of 1/[1+kF (s)] should be sufficiently small for good

disturbance rejection.

In most practical applications, a first order filter of the

form

F (s) =
β

s
, (39)

where β is a design parameter, usually gives adequate re-

sults. With this filter, the settling time for δωc(t) calculated

from the linearized model is τ = 4/(kβ). If the desired

performance is not achievable by a first order filter, a second

order filter of the form

F (s) =
β

s(s + α)
, (40)

where α and β are design parameters, may be used. For

this case, the settling time for δωc(t) calculated from the

linearized model is τ = 8/α provided that α2 ≤ 4kβ.

It should also be noted that the linearized system given

in (28) or (38) is stable if all the roots of the characteristic

equation 1+kF (s) = 0 have negative real parts. Under this

condition, it can be concluded that the original nonlinear

and time-varying resonance tuning system given in Fig. 1

is also stable provided that the rate of variations of the

slowly varying parameters are sufficiently small [8].

V. EXAMPLES

In this section, the developed analysis and design meth-

ods are applied to two examples. All simulations were

performed in MATLAB/Simulink.

The first example illustrates the salient features of the

developed methods with the resonance tuning system for the

vibrational gyroscope considered in [3]. From the data given

in [3], the parameters of the resonance tuning system are

as follows: ωn(t) = 63881.1 rad/s, ωs(t) = 65973.4 rad/s,

ζ(t) = 0.0005, kg = 0.0666 and A1(t) = 1 V. Moreover,

the nominal frequency ω0, the feedback gain kf and the

logic voltage level V were selected as ω0 = 65973.4 rad/s,

kf = 100 and V = 2.5 V, respectively.

In [3], the resonance tuning system was first simulated

with a multiplication phase detector. For comparison, a

simulation was performed using the multiplication phase

detector with the first order low-pass filter

F (s) = −0.05
s

, (41)

which was designed using the method developed in this

paper. The results of this simulation are shown in Fig. 6.

Here, the solid curve is for the system designed in [3], the

dashed curve is for the actual system shown in Fig. 1 and the

dotted curve is for the nonlinear time-varying model (26).

The instantaneous input frequency ωs(t) is also shown by

the solid horizontal line for convenience.

Later in [3], the resonance tuning system was simulated

with the addition of saturation and a lowpass filter. For com-

parison with this case, a second simulation was performed

using the exor phase detector with the filter

F (s) =
0.048

s
, (42)

which was again designed using the method developed in

this paper. The results of this simulation are shown in Fig. 7.

Here, the solid curve is for the system designed in [3], the

dashed curve is for the actual system shown in Fig. 1 and the

dotted curve is for the nonlinear time-varying model (34).

The solid horizontal line is again the instantaneous input

frequency ωs(t).
It is evident from both Fig. 6 and Fig. 7 that a better

performance can be achieved using the design methods

developed in this paper. It should also be pointed out that

the developed nonlinear models approximate their respec-

tive actual systems very accurately. The responses of the
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Fig. 6. Simulation results with multiplication phase detector.
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Fig. 7. Simulation results with exor phase detector.

corresponding linear time-invariant models are, on the other

hand, quite different since the conditions (29) and (37) are

not satisfied. Although this discrepancy reduces the values

of the developed linear time-invariant models, they are still

quite useful as starting points in the design process.

The second example illustrates the accuracy of the devel-

oped linear time-invariant models when the conditions (29)

and (37) are satisfied. The parameters of the resonance

tuning system were chosen as follows: ωn(t) = 1000 rad/s,

ωs(t) = 1050 rad/s, ζ(t) = 0.05, kg = 1, kf = 1 and

ω0 = 1050 rad/s. Moreover, V and A1(t) were chosen as

V = 2.5 V and A1(t) = 0.5642 V, respectively, so that

the gains of the linearized models are the same. A third

simulation was performed using the multiplication and exor

phase detectors with the filter

F (s) =
10

s (s + 20)
. (43)

The results of this simulation are shown in Fig. 8. Here,

the solid and dashed curves are for the actual systems

t, s

ω
c
(t

),
ra

d
/s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
990

1000

1010

1020

1030

1040

1050

1060

Fig. 8. Simulation results for the second example.

shown in Fig. 1 with the multiplication and exor type phase

detectors, respectively, and the dashdot curve is for the

simplified linear time-invariant models (28) and (38). The

instantaneous input frequency ωs(t) is also shown by the

solid horizontal line for convenience.

It is clear from Fig. 8 that the developed linear time-

invariant models predict the performance of the actual

resonance tuning system quite accurately. Hence, when the

conditions (29) and (37) are satisfied, the developed linear

time-invariant models can be used for both analysis and

design of the adaptive resonance tuning system. It should

also be pointed out that the linearized model with exor phase

detector is more accurate compared to the linearized model

with multiplication phase detector.

VI. CONCLUSION

An adaptive control method that tunes the resonant fre-

quency of a lightly damped second order system to its ex-

citation frequency is investigated. A nonlinear time-varying

model that accurately predicts the tuning performance of the

system is developed. A simple linear time-invariant model

that facilitates both analysis and design of the resonance

tuning system is also obtained. Simulation results show the

effectiveness of the developed models.
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