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Abstract— In this paper, we study the following problem:
given n vehicles and origin-destination pairs in the plane, what
is the minimum time needed to transfer each vehicle from its
origin to its destination, avoiding conflicts with other vehicles?
The environment is free of obstacles, and a conflict occurs
when the distance between any two vehicles is smaller than a
velocity-dependent safety distance. We derive lower and upper
bounds on the time needed to complete the transfer, in the
case in which the origin and destination points can be chosen
arbitrarily, proving that the transfer takes Θ(

√
nL̄) time to

complete, where L̄ is the average distance between origins
and destinations. We also analyze the case in which origin
and destination points are generated randomly according to
a uniform distribution, and present an algorithm providing a
constructive upper bound on the time needed for complete the
transfer, proving that in the random case the transfer requires
O(

√
n log n) time.

I. INTRODUCTION

Problems involving the coordinated motion of several
mobile agents in a shared environment are ubiquitous,
appearing in many safety-critical application domains, such
as automated highways, air traffic control, and automated
factories. As a consequence, the design of algorithms for the
resolution of such problems has attracted a great interest
in the recent years, especially in view of the increasing
role of autonomous decision making in the development of
complex and information-rich man-made systems [1].

Many multiple-vehicle coordination algorithms have been
proposed by researchers from robotics, computer science,
systems and control, and optimization. While a thorough
review of the literature is out of the scope of this paper,
we mention a few recently-proposed approaches in the
literature. Centralized approaches in robotics solve a mo-
tion planning problem in an extended configuration space
obtained as the Cartesian product of the individual robots’
configuration spaces [2]. Prioritization-based schemes de-
sign a feasible trajectory for a robot considering higher-
priority robots as time-varying obstacles [3]. Coordination
solutions based on Nash equilibria were proposed in [4]. In
order to reduce the complexity of the problem, the motion
of the robots is often restricted on a graph (roadmap), as
in [5]; Pareto-optimal solution for coordination of robots
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moving on a roadmap have been characterized in [6], [7].
A market-based approach for conflict negotiation has been
proposed in [8]. Semi-definite relaxations of the coordina-
tion problems are considered in [9]. In [10], decentralized
optimization schemes are used to ensure safe coordination
of aircraft.

In spite of the richness of the literature on the subject, it
still remains unclear what the fundamental limits in terms
of achievable performance are for multiple-robot systems;
in particular, it remains unknown how the efficiency of the
coordinated motion scales with the number of robots. As
a consequence, it is difficult to objectively characterize the
effectiveness of the algorithms available in the literature in
solving coordination problems, especially when the number
of agents is very large and an optimal solution cannot be
practically computed. As a matter of fact, the importance of
the development of a model of computation for distributed
robotic systems has been emphasized in a number of recent
papers. For example, [11] introduces a notion of communi-
cation complexity, in the context of the development of a
control and communication language for robotic networks;
in [12], time and communication complexity of a number
of coordination tasks are investigated.

The objective of this paper is to make a further con-
tribution in this direction. We consider a particular class
of multiple-vehicle coordination problem, which we call
Conflict-Free Vehicle Routing. Informally, we wish to in-
vestigate the minimum time needed to safely transfer n
mobile agents between pre-assigned origin and destination
points, avoiding conflicts. A conflict is generated when two
agents get closer than a velocity-dependent safety distance.
As will be discussed, the problem is particularly interesting
when agents are allowed to get arbitrarily close, provided
that their speed is low enough. The main results of the
paper include: (i) a characterization of the minimum time
needed to solve certain instances of the problem, and (ii)
algorithms for conflict-free motion coordination, with an
asymptotic analysis of their performance as a function of
the number of vehicles. In this paper, we use the expression
time complexity to indicate the time needed to complete the
physical transfer of all the n robots from their origin to
their destination points. This is not necessarily related to
the algorithmic complexity of the problem, i.e., the number
of operations or memory space needed to compute a set
of conflict-free trajectories between origin and destination
points.

This paper builds on recent results obtained by Gupta
and Kumar [13] on the capacity of wireless networks.
Perhaps surprisingly, the insight gained through the analysis
of wireless networks can be used to yield novel results
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in terms of the time complexity of a class of motion
coordination problem. In fact, the capacity-limiting factor
in wireless networks is interference, occurring when nearby
network nodes attempt to broadcast information at the same
time; its effects can be reduced by appropriately tuning the
transmission schedule and the broadcast power. Similarly,
in our model, congestion is caused by vehicles moving too
close to one another, and generating a conflict; collisions
can be avoided by careful maneuvering, which in our model
requires a speed reduction. The main, substantial difference
with the wireless network case can be found in the effects of
the agent mobility on the topology of the vehicle network.

The paper is organized as follows. In Section II we intro-
duce some notation, formulate and motivate the problem we
wish to address. In Section III we provide lower and upper
bounds on the time complexity of the coordination problem
for the case in which the origin-destination pairs can be
chosen arbitrarily, thus showing that the time complexity
of the problem is Θ(

√
nL̄). In Section IV, we provide

an upper bound on the time complexity of the motion
coordination problem in the case in which origin-destination
pairs are chosen randomly from a uniform distribution, thus
proving that the problem has time complexity O(

√
n log n).

Finally, in Section V we draw some conclusions and discuss
directions of future research.

II. PROBLEM FORMULATION AND MOTIVATION

Let the environment Q be a convex, compact region in
the plane. Without loss of generality, we shall assume that Q
is a square of unit area. Consider n pairs of points in Q, to
which we will refer to as origin-destination (O,D) pairs,
with (O,D)i ∈ Q × Q, i ∈ {1, . . . , n}. The i-th (O,D)
pair is assigned to a mobile agent Ai, i ∈ {1, . . . , n}. We
will refer to an (O,D) pair and the agent assigned to it
interchangeably.

Initially, each agent is inactive, i.e., is not considered to
be in the environment, and cannot be involved in a conflict
(defined in the following). Let t0,i ≥ 0 be the time at which
the i-th agent is activated and enters the environment at
location Oi; the agent reverts to the inactive state upon
arrival at its destination Di, at time t0,i + Ti. While active,
the i-th agent moves within Q along a continuous, time-
parameterized path γi : [0, Ti] → Q. The position of
an agent as a function of time is given by the function
xi : t �→ xi(t) = γi(t − t0,i); by convention, we will set
xi(t) = γi(0) = Oi for t < t0,i, and xi(t) = γi(Ti) = Di

for t > t0,i + Ti. Finally, let vi(t) be the velocity of
agent i at time t, and assume its magnitude is bounded
by vmax > 0. The active/inactive status of agents can
be thought of as representing the fact that origin and
destination locations are “safe havens” in which vehicles
are removed from the environment shared with traffic, and
safety is guaranteed; for example, these might represent
parking spots for automobiles, and airports for aircraft.

For each active agent, we define an exclusion region C,
modeled as a disk centered at the agent’s position, and with

radius depending on the agent’s velocity, i.e.,

Ci(t) = {z ∈ R
2 : |z − xi(t)| < r0 + k|vi(t)|}, (1)

for given constants r0, k ≥ 0, r0k > 0; | · | represents
the Euclidean norm. We say that a conflict occurs between
agents Ai and Aj if there exists a time tc such that:

• Both Ai and Aj are active at time tc, and
• Ci(tc) ∩ Cj(tc) �= ∅.

The motivation for a velocity-dependent exclusion region
can be found, for example, in the need to ensure safety
in the presence of position and velocity uncertainties, and
delays in sensing or communication of the state of other
agents. We will henceforth use the word “agent” to refer
interchangeably to the mobile vehicle and to its exclusion
region.

A conflict-free routing policy is a map π : (O,D) �→
(t0, T, γ) that, given a set of (O,D) pairs, assigns to each
agent an activation schedule, and a time-parameterized path.
We say that the policy π is safe if it does not generate
conflicts. Let us indicate with Tπ(O,D) the time at which
the last agent is deactivated according to policy π; we
will define the time complexity of the Conflict-Free Vehicle
Routing Problem (CF-VRP) defined by the (O,D) pairs as
the infimum of this time over all safe policies, i.e.,

T ∗(O,D) = inf
π safe

Tπ(O,D).

In the remainder of the paper, we will aim at establishing
asymptotic bounds on the time complexity of the problem,
as n → ∞ (for a review of asymptotic notation, as well as
big-O notation, see a standard text such as [14]).

A. Some preliminary results

We have the following trivial bound:
Proposition 2.1: For any set of n origin-destination

pairs, the time complexity of the conflict-free vehicle rout-
ing problem is O(n).

Proof: If agents are activated sequentially, i.e., agent
Ai+1 is activated upon deactivation of agent Ai, no conflicts
can arise, and the time needed for the i-th agent to reach its
destination can be bounded as Ti ≤ diamQ/vmax. Hence,
the time at which the last agent arrives at its destination is

Tseq(O,D) =
n∑

i=1

Ti ≤ n
diamQ
vmax

,

which proves the claim.
Let us consider now the case in which r0 > 0 in the

definition of the exclusion region; we have the following:
Theorem 2.2: Suppose that r0 > 0 in (1). For any set of

n origin-destination pairs, with mini |Oi−Di| ≥ l > 0, the
time complexity of the conflict-free vehicle routing problem
is Θ(n).

Proof: Let us restrict our attention to the case r0 ≤ 1.
Since each active agent reclaims a region of area at least
πr2

0/4, at most nd =
⌊
4/(πr2

0)
⌋

agents can be active at
the same time. At most nd new agents can be activated no
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sooner than every l/vmax time units, i.e., the minimum time
needed for at least one agent to reach its destination. Hence
the time needed to activate all agents can be bounded as

Tr0>0 ≥ n
l

�4/(πr2
0)� vmax

,

which, together with Proposition 2.1, proves the claim.
This result condemns routing problems with agents of

non-vanishing size to linear time complexity, that is, not
significantly better than what can be achieved via sequential
agent activation, when n becomes large. In the remainder
of the paper, we will study the case in which r0 = 0 in
the definition of the no-conflict constraints, i.e., the case
in which the radius of the exclusion region is directly
proportional to the agent’s velocity1.

While this is not—strictly speaking—a physically real-
istic modeling assumption, one must keep in mind that,
in most problems of interest, conflicts are generated when
vehicles get closer than some safety distance that is much
bigger than the physical dimensions of the vehicle. For ex-
ample, in air traffic control, a conflict is generated whenever
two aircraft come to within 5 nautical miles from each
other. A common rule of thumb for defensive driving in
automotive traffic requires to maintain a two-second buffer
from a leading car; at 50 km/h, this corresponds to roughly
30 meters, several times the length of a typical car.

In addition, setting r0 = 0 lets us study the effect of
velocity on traffic congestion. The intuition is that as agents
move faster, they need a bigger buffer to avoid collisions
with others, hence reclaiming a larger portion of a shared
resource (the environment), and thereby imposing severe
constraints on the motion of other agents.

III. ARBITRARY (O,D) PAIRS

In this section we will compute upper and lower bounds
on time complexity for a routing problem in which the
(O,D) pairs can be chosen arbitrarily. Note that “arbitrar-
ily” here must be understood as “in such a way that the
time complexity is minimized.” In other words, this section
provides best-case bounds for the coordination problem.
We also note that with arbitrary (O,D) pairs, the average
distance between origins and destinations is an arbitrary
variable directly affecting the time complexity. The relevant
measure for the arbitrary case is therefore not completion
time, but time per unit distance traveled by each agent. This
is equivalent to describing time complexity in terms of both
n and the average distance between origins and destinations.

A. A lower bound on the time complexity

In the arbitrary case, we have the following lower bound.
Lemma 3.1: For any set of n (O,D) pairs, the time

complexity of the conflict-free motion coordination problem
is Ω(

√
nL̄), where L̄ is the average distance between origin

and destination points.

1Similar considerations hold when r0 = O(1/
√

n), but we will not
pursue this direction in this paper for the sake of conciseness.

Proof: Let us assume that the motion of all the agents
can be represented as a set of straight-line motions, over
a common, synchronized time schedule of length h. For
simplicity, let us assume that each time interval has the
common duration τ . By definition, all agents reach their
destination within time T ∗ = hτ . Let us indicate with rj

i

the length of the straight-line segment along which the i-th
agent moves during the j-th time interval. Obviously, we
have

∑h
j=1 rj

i ≥ Li, where Li = |Oi − Di|, and

n∑
i=1

h∑
j=1

rj
i ≥ nL̄. (2)

Defining δj
i = kvj

i = krj
i /τ , the area of the set spanned

by the exclusion region of the i-th agent during the j-th
time interval can be computed as

Aj
i = π(δj

i )
2 + 2δj

i r
j
i =

(
rj
i

τ

)2

k(πk + 2τ).

Since at each time instant, at least one fourth of each
exclusion region is within Q (chosen to be a unit square),
the sum of the areas of the regions claimed by all agents at
each time interval is bounded as

n∑
i=1

Aj
i =

k(πk + 2τ)
τ2

n∑
i=1

(
rj
i

)2

≤ 4.

Summing over all intervals in the time schedule, and
rearranging, we get

n∑
i=1

h∑
j=1

(
rj
i

)2

≤ 4hτ2

k(πk + 2τ)
. (3)

Consider a convex function f : R → R; Jensen’s
inequality states that

f

(
1
P

P∑
p=1

xp

)
≤ 1

P

P∑
p=1

f(xp).

Since the function x �→ x2 is convex, we can apply Jensen’s
inequality to (3) to obtain⎛

⎝ n∑
i=1

h∑
j=1

rj
i

⎞
⎠

2

≤ hn
n∑

i=1

h∑
j=1

(
rj
i

)2

≤ 4h2τ2n

k(πk + 2τ)
,

that is,
n∑

i=1

h∑
j=1

rj
i ≤ 2

√
(T ∗)2n

k(πk + 2τ)
.

Thus, from (2) we get T ∗ ≥ 1
2

√
k(πk + 2τ)nL̄. In the

limit as τ → 0, i.e., for continuous schedules, we get T ∗ ≥
1
2

√
πk2nL̄, which proves the result.

B. A constructive upper bound

In this section, we present an algorithm for choosing
(O,D) pairs in order to achieve the same time complexity
that appears in the lower bound.
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Fig. 1. Example of a selection of origin-destination pairs achieving the
upper bound in Lemma 3.2. Circles and crosses represent origins and
destinations, respectively, and the shaded disks are the exclusion regions.

Lemma 3.2: For any integer m there exists a set of
n = m2 (O, D) pairs, with average distance between
origin and destination points equal to L̄, such that the time
complexity of the conflict-free motion coordination problem
is O(

√
nL̄).

Proof: Consider a disk R of radius r < kvmax, and
place a single pair of origin and destination points at the
two points on a diameter at a distance ηr from the center
(η < 1). As the agent moves along the diameter, its
maximum velocity is constrained in such a way that its
exclusion region is entirely contained within R, that is,

dξ(t)
dt

≤ r

k

(
1 − |ξ(t)|

r

)
,

where ξ is the distance of the agent from the center of R as
a function of time. Given this constraint, the time needed
to travel from the origin to the destination can be computed
as

T = −2k log(1 − η). (4)

Pack n = m2 disjoint disks of radius r within Q. This
is possible with r = 1/2

√
n. Place one (O,D) pair on the

diameter of each disk, in such a way that each point is at a
distance ηr from the corresponding center. Move each agent
inside its disk according to the same schedule considered
above for the single-agent case. (See Figure 1 for a sketch.)

The time at which all agents will reach their destinations
is then the same, given by (4). Noting that L̄ = 2ηr =
η/

√
n, and multiplying and dividing (4) by L̄, we get our

result:

Tarb =
−2k log(1 − η)

η

√
nL̄.

Let OD(n, L̄) be the set of all sets of n (O,D) pairs
with average distance L̄; the combination of Lemmas 3.1
and 3.2 proves the following:

Theorem 3.3: The time complexity of the CF-VRP sat-
isfies

inf
(O,D)∈OD(n,L̄)

T ∗(O, D) = Θ(
√

n).

We remark again that this is a result on the best-case time
complexity: for all choices of (O,D) pairs in a given class,
the time complexity is Ω(

√
n), and there exists at least

one choice of (O,D) pairs in the same class with time
complexity O(

√
n).

IV. RANDOM (O,D) PAIRS

In this section we derive an upper bound on the time
complexity for the CF-VRP, for the case of randomly
distributed origin and destination points. Such problems
can arise in large-scale decentralized applications, in which
many independent agents travel across a region with a
large number of candidate origin or destination points.
Specifically, suppose that the (O,D) points are chosen from
a uniform distribution in Q, identically and independently
(i.i.d.). We will demonstrate the following bound:

Theorem 4.1: For any set of n (O,D) pairs, randomly
chosen from a uniform distribution in Q, the time complex-
ity of the CF-VRP is O(

√
n log n) with high probability.

We will use “with high probability” (whp) to mean with
probability approaching 1 as n → ∞. In order to prove
this bound, we present an algorithm which achieves it whp.
The scheme we present is based on a partitioning Pn of
Q with a grid of identical square cells of area 4r2(n),
where r(n) is chosen appropriately. We assume a time
partition T into intervals of length τ . During each time
interval, each agent will either remain in its current cell
or transfer to a neighboring cell along its path. Thus the
motion coordination problem is decoupled into intracell and
intercell coordination, which we consider in order.

A. Intracell coordination scheme

Consider the following “nested orbiting” coordination
scheme within a square cell of area 4r2(n). Each agent
in a cell is assigned to an orbit (i.e., an annular region);
the first (outermost) orbit is contained between circles of
radius r0 = r and r1 = ηr, for a given η ∈ (0, 1). At
most two agents are assigned to a single orbit. The j-th
orbit is contained between circles of radius rj−1 = ηj−1r
and rj = ηjr = ηrj−1 (i.e., the orbits are logarithmically
spaced). An agent assigned to the j-th orbit can move along
its central circle at speed up to vj = ωrj , with

ω =
1 − η

2ηk
,

without interfering with agents in nearby orbits; in partic-
ular, agents can reposition themselves to anywhere in their
assigned orbit in no more than τa := π/ω time. An arbitrary
number of agents in neighboring orbits can move radially
at speed proportional to their instantaneous distance from
the center of the cell without conflicts; all agents will reach
the center of the next innermost (or outermost) orbit in at
most τr := − ln(η)/ω time.

Hence, the choice of logarithmically-spaced orbits has
the following important consequences:

3539



Fig. 2. Sketch of the initialization algorithm, on a row of Pn: note that
non-neighboring cells are initialized concurrently, which prevents conflicts
between moving agents.

1) All agents can move along the central circle of their
orbit at the same angular speed, without interfering
with agents on different orbits or agents in different
cells. Angular reconfiguration will not take more than
a constant time τa.

2) Agents can move to a higher or lower orbit within
constant time τc.

3) The operations of adding a new agent (pushing all
other agents one orbit down), or removing an agent
(“popping” the outermost agent, and moving the re-
maining agents one orbit up) can be performed in
constant time τc.

4) An arbitrary number of agents can be “stored” in a
single cell.

5) At least two agents can share a single orbit.

In other words, the nested orbiting scheme allows us to
treat each cell as a buffer with infinite capacity, and with
constant-cost insertion and extraction operations.

The agents are reconfigured from the origin points to
a nested configuration (with any arbitrary assignment of
agents to orbits) during an Initialization phase. The time
necessary to initialize a single cell can be bounded as
follows.

Lemma 4.2: Let N be the number of agents with origin
point within a square cell. For any assignment of agents
to orbits, there exists an algorithm to safely activate and
reconfigure the agents in a nested orbit configuration in time
O(N2).

Proof: In order to prove the statement, we present an
algorithm that achieves the claimed performance; see Figure
2 for a sketch. At each iteration, the algorithm activates the
agent assigned to the outermost empty orbit, and moves it
to a position within that orbit, without generating conflicts
with agents in the same cell. Consider the j-th iteration,
1 ≤ j ≤ N , and let Oj be the origin of the agent assigned
to the j-th orbit. All agents active at the beginning of this
iteration are in orbits lie outside of the j-th orbit. Before
activation of the new agent, all the already active agents are
moved to a point in their orbit opposite to Oj with respect
to the center of the cell: this takes constant time. Moving on
the radius through Oj , the new agent will be able to reach
the j-th orbit in time at most k log(2η1−j/(η + 1) + 1) =
O(N), without generating conflicts with active agents in the

same cell. Since there are at most N agents in a cell, it will
take O(N2) time to initialize nested orbits in it.

The initialization algorithm cannot be executed concur-
rently at all cells, since conflicts may be generated between
agents in neighboring cells. A straightforward coloring
argument shows that a schedule for concurrent initialization
of non-neighboring cells adds only a constant factor to the
time needed to initialize all cells, i.e.,

Proposition 4.3: Let N be the maximum number of
agents with origin point within a single cell in the partition
Pn. The initialization of all cells in Pn takes O(N2) time.

B. Intercell routing

At the end of the initialization phase all agents are
arranged in an array of nested orbits, with each agent in
the cell containing its origin point. A two-phase intercell
routing algorithm is proposed in the following: in the first
phase agents are moved to the column of Pn containing
their destination; in the second phase they are delivered to
the destination cell. In other words, we will consider two
consecutive routing problems on a linear array of cells with
infinite-capacity buffers.

1) Routing in a linear array: We have the following
result, which is a simple extension of a widely-known fact in
parallel computing, i.e. that the farthest-first routing strategy
is time-optimal in linear arrays [15]. In the farthest-first
strategy, if one or more packets need to leave a node,
conflict is resolved giving precedence to packets that have
to travel the farthest to reach their destination.

Theorem 4.4 (Adapted from [15]): Consider a linear ar-
ray of l nodes with infinite buffers. Each node is able to
transfer one packet to each neighbor in a single time step.
If each node is the source and destination of at most N
packets, all packets can be delivered using the farthest-first
strategy within max{l, Nl/4} + O(

√
Nl log l) time steps,

with high probability.
2) Intercell coordination scheme: Without loss of gen-

erality, let us assume that in the first phase only horizontal
cell transfers are allowed. Choose the following criteria
for assigning agents to orbits in the initialization phase:
(i) Assign agents traveling “right” to even-numbered orbits,
and agents traveling “left” to odd-numbered orbits; (ii) sort
agents in order of distance to their destination column,
placing on the outermost orbit the agent that has to go the
farthest distance. From such a configuration, the agents can
be reconfigured in constant time to a configuration in which
all agents moving right are directly above the center of the
cell, and all agents moving left are below the center of
the cell. From such a configuration, at each time step all
agents in the outermost orbit can move to next cell, with
no conflicts between agents moving in opposite directions
(see Figure 3). It can be shown that an agent will never stop
moving until it reaches its destination cell; upon reaching
the destination cell, the agent moves directly to the lowest
empty orbit. The length of the time step is a constant, i.e.,
τ = 3r1/v1 = 4/(1−η). Theorem 4.4, and the fact that the
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Fig. 3. Sketch of the routing algorithm, on a row of Pn: note that once
an agent starts moving between cells, it does not stop until it reaches its
destination cell, at which point it moves to the lowest empty orbit.

number of cells in a row is l = 1/(2r), show that the column
of the destination cell is reached within O(N/r) time. In the
second phase, an analogous procedure is followed, allowing
motions in the vertical direction.

C. Termination phase

At the end of the two intercell routing phases, all agents
are in the cell containing their destination point. All agents
are moved within their cell to their destination using an
algorithm analogous to the initialization phase; the termi-
nation phase requires the same time as its initialization
counterpart, i.e., O(N2) time.

D. Time complexity bound

Choose the dimension of the cells as follows:

r(n) =

√
3
4

log n

n
.

In other words, the area of each cell is chosen as A(n) =
3 log n/n; we ignore edge effects (i.e. a nonintegral number
of cells) since their significance vanishes as n → ∞. We
use the following result adapted from [16];

Proposition 4.5: Any cell in Pn contains no more than
3e log n origin/destination points, almost surely.
In other words, N ≤ 3e log n almost surely. We can finally
prove the main result of this section.
Proof of Theorem 4.1: The result is proven by combining the
algorithms for the distinct phases outlined above, along with
the bound on N , the maximum number of origin/destination
points in each cell. The initialization and termination phase
will take O((log n)2) each whp, where the horizontal and
vertical intercell routing phases will take O(

√
n log n) time

whp. The combination of all these phases will require
O(

√
n log n) time with high probability.

V. CONCLUSIONS

In this paper, we have studied the time complexity of
classes of conflict-free motion coordination problems, with
conflicts defined by the intersection of velocity-dependent
exclusion regions. We first showed that if the area of the
exclusion region is bounded away from zero, the time com-
plexity of the coordination problem is Θ(n), i.e., is no better
than the trivial worst-case bound. We then focused on the
case in which the exclusion region can be made arbitrarily
small by reducing the agent’s velocity, and showed that for
the case in which origin and destination pairs can be chosen

arbitrarily, the time complexity of the motion coordination
problem is Θ(

√
n). In the case of random origin-destination

pairs, we showed that the time complexity is O(
√

n log n).
A tighter upper bound for the random case is now available,
proving that the time complexity is Θ(

√
n) [17]. Future

directions include the convergence of our results with those
available in the wireless communications community to
characterize the capacity of mobile wireless networks under
realistic constraints on the agents’ motion.
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