
A Hybrid Scheme for Distributed Control of Autonomous Swarms

Wei Xi, Xiaobo Tan and John S. Baras

Abstract— In this paper a hybrid scheme for distributed
control of autonomous vehicles is presented by combining the
deterministic gradient-flow method and the stochastic method
based on the Gibbs sampler. The scheme has the advantages
of both methods and can potentially provide fast, distributed
maneuvers while avoiding getting trapped at local minima
of the potential function. Preliminary analysis is performed
for the optimal design of the parameters controlling the
switching between the two methods. The performance of the
hybrid scheme is further enhanced by the introduction of
vehicle memory. Simulation results are provided to confirm the
analysis and show the effectiveness of the proposed algorithm.

I. INTRODUCTION

With the rapid advances in sensing, communication, com-
putation, and actuation capabilities, autonomous unmanned
vehicles (AUVs) are expected to cooperatively perform dan-
gerous or explorative tasks in various hazardous, unknown
or remote environments [1]. Distributed methods for con-
trol and coordination of vehicles are especially appealing
due to the large scale of vehicle networks and bandwidth
constraints on communication [2], [3], [4], [5]. A popular
approach is based on artificial potential functions, which
encode desired vehicle behaviors such as inter-vehicle inter-
actions, obstacle avoidance, and target approaching [6], [7],
[8], [9], [10]. Vehicles then follow the negative gradients of
potentials mimicking the emergent behaviors (e.g. foraging)
demonstrated by swarms of bacteria, insects, and animals
[11].

The potential function-based approach has been explored
for path planning and control of robotic manipulators and
mobile robots over the past two decades [12], [13], [14].
Despite its simple, local, and elegant nature, this approach
suffers from the problem that the system dynamics could
be trapped at the local minima of potential functions [15].
Researchers attempted to address this problem by designing
potential functions that have no other local minima [16],
[17], or escaping from local minima using ad hoc tech-
niques, e.g., random walk [18], virtual obstacles [19], and
virtual local targets [20].

An alternative approach to dealing with the local minima
problem was explored using the concept of Markov Ran-

This research was supported by the Army Research Office under
the ODDR&E MURI01 Program Grant No. DAAD19-01-1-0465 to the
Center for Networked Communicating Control Systems (through Boston
University), and under ARO Grant No. DAAD190210319.

W. Xi and J. S. Baras are with the Institute for Systems
Research and the Department of Electrical & Computer Engi-
neering, University of Maryland, College Park, MD 20742, USA.
{wxi,baras}@isr.umd.edu

X. Tan is with the Department of Electrical and Computer Engi-
neering, Michigan State University, East Lansing, MI 48824, USA.
xbtan@msu.edu

dom Fields (MRFs) by Baras and Tan [21]. Traditionally
used in statistical mechanics and in image processing [22],
MRFs were proposed to model swarms of vehicles. Sim-
ilar to the artificial potential approach, global objectives
and constraints (e.g., obstacles) are reflected through the
design of potential functions. The movement of vehicles
is then decided using simulated annealing based on the
Gibbs sampler. Simulation and analysis have shown that
simulated annealing with the Gibbs sampler can lead to
the achievement of global objectives with limited moving
capabilities and communication ranges [21], [23]. However,
the high traveling cost arising from the stochastic nature of
the algorithm presents a barrier to its application in practice.

In this paper a hybrid approach is proposed, which
combines the advantages of the deterministic gradient-flow
method and the stochastic simulated annealing method.
The algorithm works as follows. Each vehicle in a swarm
makes its own decision to switch between the two methods:
with initial choice of the gradient-flow scheme, a vehicle
switches to simulated annealing when it determines that
it gets trapped by some obstacles. After a certain number
N of annealing steps, it switches back to the gradient-
flow scheme to save traveling time and cost. A notion of
memory is introduced to further improve the performance.
Each vehicle records the “dangerous” locations where it has
been trapped before, and adaptively takes this information
into account when making moving decisions.

The paper is organized as follows. Some basic concepts
on MRFs and the Gibbs sampler are reviewed in Section II.
In Section III the path planning problem for an autonomous
swarm is formulated. The hybrid scheme is proposed and
its parameters’ design is discussed in Section IV. Some
preliminary analytical results are provided together with
simulation results. The concept of memory is introduced
and its impact studied in Section V. Concluding remarks
are provided in Section VI.

II. REVIEW OF MRFS AND GIBBS SAMPLER

A. MRFs and Gibbs Random Fields

Let S be a finite set of cardinality σ , with elements
indexed by s and called sites. For s ∈ S, let Λs be a finite
set called the phase space for site s. A random field on S
is a collection X = {Xs}s∈S of random variables Xs taking
values in Λs. A configuration of the system is x = {xs,s∈ S}
where xs ∈ Λs, ∀s. The product space Λ1×·· ·×Λσ is called
the configuration space. A neighborhood system on S is a
family N = {Ns}s∈S, where ∀s, r ∈ S, Ns ⊂ S, s /∈Ns, and
r ∈Ns if and only if s∈Nr. Ns is called the neighborhood
of site s. The random field X is called a Markov random
field (MRF) with respect to the neighborhood system N
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if, ∀s ∈ S, P(Xs = xs|Xr = xr,r �= s) = P(Xs = xs|Xr = xr,r ∈
Ns).

A random field X is a Gibbs random field if and only if
it has the Gibbs distribution:

P(X = x) =
e−

U(x)
T

Z
, ∀x,

where T is the temperature variable (widely used in sim-
ulated annealing algorithms), U(x) is the potential (or
energy) of the configuration x, and Z is the normalizing

constant, called the partition function: Z = ∑x e−
U(x)

T . One
then considers the following useful class of potential func-
tions U(x) = ∑s∈Λ Φs(x), which is a sum of individual
contributions Φs evaluated at each site. The Hammersley-
Clifford theorem [24] establishes the equivalence of a Gibbs
random field and an MRF.

B. Gibbs Sampler and Simulated Annealing

The Gibbs sampler belongs to the class of Markov Chain
Monte Carlo (MCMC) methods, which sample Markov
chains leading to stationary distributions. The algorithm
updates the configuration by visiting each site sequentially
and sampling from the local specifications of a Gibbs field.
One sequential visit to all sites is called a sweep. The
convergence of the Gibbs sampler was studied by D. Geman
and S. Geman in the context of image processing [25].
There it was shown that as the number of sweeps goes
to infinity, the distribution of X(n) converges to the Gibbs
distribution Π. Furthermore, with an appropriate cooling
schedule, simulated annealing using the Gibbs sampler
yields a uniform distribution on the space of configurations
corresponding to the minimum energy U(x). Thus the global
objectives could be achieved through appropriate design of
the Gibbs potential function.

III. PROBLEM SETUP

Consider a 2D mission space (the extension to 3D space
is straightforward), which is discretized into a lattice of
cells. For ease of presentation, each cell is assumed to be
square with unit dimensions. One could of course define
cells of other geometries (e.g., hexagons) and of other
dimensions (related to the coarseness of the grid) depending
on the problems at hand. Label each cell with its coordinates
(i, j), where 1 ≤ i ≤ N1,1 ≤ j ≤ N2, for N1,N2 > 0. There is
a set of vehicles (or mobile nodes) S indexed by s = 1, · · · ,σ
on the mission space. To be precise, each vehicle (node) s
is assumed to be a point mass located at the center of some
cell (is, js), and the position of vehicle s is taken to be
ps = (is, js). At most one vehicle is allowed to stay in each
cell at any time instant.

The distance between two cells, (ia, ja) and (ib, jb), is

defined to be R
�
=

√
(ia − ib)2 +( ja − jb)2. There might

be multiple obstacles in the space, where an obstacle is
defined to be a set of adjacent cells that are inaccessible
to vehicles. For instance, a “circular” obstacle centered
at (io, jo) with radius Ro can be defined as O

�
= {(i, j) :
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Fig. 1. An example mission scenario.

√
(i− io)2 +( j− jo)2 ≤ Ro}. The accessible area is the

set of cells in the mission space that are not occupied by
obstacles. An accessible-area graph can then be induced
by letting each cell in the accessible area be a vertex
and connecting neighboring cells with edges. The mission
space is connected if the associated accessible-area graph
is connected, which will be assumed in this paper. There
is one target area in the space. A target area is a set of
adjacent cells that represent desirable destinations of mobile
nodes. A “circular” target area with center pg = (ig, jg) and
radius Rg can be defined similarly as a “circular” obstacle:

G
�
= {(i, j) :

√
(i− ig)2 +( j− jg)2 ≤ Rg}.

In this paper all nodes are assumed to be identical.
Each node has a sensing range Rs: it can sense whether
a cell within distance Rs is occupied by some node or
obstacle. Communication between two nodes that are within
a distance of Rs is regarded as local. The moving decision of
each node s depends on other nodes located within distance
Ri (Ri ≤ Rs), called the interaction range. These nodes form
the set Ns of neighbors of node s. A node can travel at most
Rm (Rm ≤ Rs), called moving range, within one move. We
assume Rs ≥ Ri + Rm, and Rs ≥ 2Rm.

The mission goal is completed if all vehicles reach and
gather in the target area. In addition, it is desired that
vehicles have more neighbors. An example scenario, which
will be used in the simulation, is shown in Fig. 1.

The neighborhood system defined earlier naturally leads
to a dynamic graph where each vehicle stands for a vertex
of the graph and the neighborhood relation prescribes the
edges between vehicles. An MRF can then be defined on
the graph, where each vehicle s is a site and the associated
phase space Λs is the set of all cells located within the
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moving range Rm from location ps and not occupied by
obstacles or other vehicles. An admissible configuration is
a graph where vehicles stay in different cells.

The same potential function will be used for the gradient-
flow method and the simulated annealing method. It is a
sum of individual potentials Φs(x) for each site s

U(x) = ∑
s∈S

Φs(x), (1)

where x = {xs,1 ≤ s ≤ σ} is the configuration of vehicles.
Moreover, the individual potential Φs(x) consists of three
terms with each reflecting one goal or one constraint. To be
specific,

Φs(x) = λgJg
s + λoJo

s + λnJn
s , (2)

where Jg
s , Jo

s , and Jn
s account for the attraction from the

target area, the repelling from obstacles, and the pulling
force from neighbors, respectively, and λ g,λo,λn are the
corresponding weighting coefficients for adjusting the po-
tential surface. Note that the design of these constants is
also a challenging and important issue as it may directly
impact the nodes behavior and the convergence rate of the
algorithm [8], [23]. In this paper, it is assumed that there
is one circular target area centered at pg, and there are K
(possibly overlapping) circular obstacles centered at p ok,
1 ≤ k ≤ K. The following potential functions are used:

Jg
s = ‖ps− pg‖

Jo
s =

K

∑
k=1

1
‖ps − pok‖ (3)

Jn
s =

⎧⎨
⎩

1
∑

z∈Ns

1
‖ps−pz‖

, i fNs �= /0

∆, i fNs = /0

where Jn
s tends to be smaller when site s has more neigh-

bors. ∆ > 0 is a relative large constant and it represents the
penalty for having no neighbors.

IV. THE HYBRID CONTROL SCHEME

In this section the hybrid control scheme is first pre-
sented, and then the design of its algorithmic parameters
is discussed.

A. A Hybrid Control Algorithm

The gradient-flow method alone provides fast march
toward the target in the absence of obstacles but it may
get vehicles trapped in non-target areas. On the other hand,
the Gibbs sampler-based simulated annealing complements
the gradient method in that it could move vehicles out
of otherwise trapping areas, but one has to pay the cost
associated with probabilistic exploration - longer execution
times and traveling distance. The hybrid control scheme
aims to combine advantages of both schemes while avoiding
their disadvantages.

In the proposed scheme vehicles make moving decisions
simultaneously and hence the scheme is fully parallel and
scalable. The algorithm works as follows:

• Step 1. Each vehicle starts with the gradient-flow
method (see below for more detail on the implemen-
tation of the gradient-flow method) and goes to Step
2;

• Step 2. If for d consecutive time instants a vehicle
cannot move under the gradient method and its location
is not within the target area, then it is considered to be
trapped. The vehicle then switches to the simulated an-
nealing method with a predetermined cooling schedule
(see below for more detail) and goes to Step 3;

• Step 3. After performing simulated annealing for N
time instants, the vehicle switches to the gradient
method and goes to Step 2.

In the case of a conflict (multiple nodes contend for one
spot), a uniform sampling is performed, and the winner will
take the spot while the other contenders will stay put for
the current time instant. Note that the resolution of conflict
can be achieved locally since Rs ≥ 2Rm and potentially
contending nodes are within the local communication range.
In the simulation the algorithm will stop if

ug = ∑
s∈S

‖ps − pg‖2 ≤ ε, (4)

where ug is an indicator measuring how far the vehicles, as
a whole, are away from the target area.

Implementation of the gradient-flow scheme and the sim-
ulated annealing scheme is provided next for completeness.

1) The gradient-flow scheme: In the gradient-flow
method the velocities of vehicles follow the (negative)
gradient flows of their potential surfaces. To be specific,
at each time instant,

• Step 1. For each vehicle s determine the set Λs of
candidate locations for the next move, i.e., the set of
cells within the distance Rm and not occupied by other
vehicles or obstacles;

• Step 2. For each l ∈ Λs, evaluate the potential function
Φs(X(S\s) = x(S\s),xs = l), where S\s denotes the
complement of s in S;

• Step 3. Update the location of vehicle s by taking

xs = arg
l∈Λs

minΦs(X(S\s) = x(S\s),xs = l).

2) Gibbs sampler-based simulated annealing: Unlike the
gradient-flow scheme, in simulated annealing each vehi-
cle updates its next location by sampling a probability
distribution. First a cooling schedule T (n) is determined
(how to choose a cooling schedule for best convergence
performance is itself a vast subject and is beyond the scope
of this paper).

• Step 1. Let n = 1;
• Step 2. The vehicle s determines the set Λs of candidate

locations for the next move as in the gradient-flow
method;

• Step 3. For each l ∈Λs, the vehicle evaluates the Gibbs
potential function Φs(l) = Φs(X(S\s)= x(S\s),xs = l),
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and calculates the probability distribution

P(xs = l) =
e
−Φs(l)

T (n)

∑
z∈Λs

e
−Φs(z)

T (n)

;

• Step 4. Update xs to l ∈ Λs with probability P(xs = l);
• Step 5. Let n = n+ 1, and repeat Step 2 to step 5.

B. Choice of Switching Parameters

In the hybrid algorithm there are two key parameters that
determine the performance of the system: d and N. d is
the waiting time that triggers a vehicle to switch from the
deterministic approach to the stochastic one, and N is used
to determine the duration of stochastic exploration.

1) Waiting time d: When d is smaller, it’s more likely
for a vehicle to make a wrong decision and switch to sim-
ulated annealing. In particular, a vehicle may be “trapped”
temporarily due to the presence of its neighbors. Premature
switching to stochastic exploration adds to the traveling
cost. On the other hand, if d is too large, it will also be
a waste of time if indeed the current cell is a trapping spot.

This tradeoff is verified through simulations. In the
simulations there are 20 vehicles on a 48 × 48 grid (see
Fig. 1). The target is located at the corner (5,48) with radius
Rg = 5, and two overlapped circular obstacles with radius 5
are centered at (17, 23) and (23, 17), respectively. Initially
the vehicles are randomly distributed close to the other
corner which is opposite to the target. The parameters used
are: λg = 10, λo = 1, λn = 5, Rm =

√
2, Rs = 6

√
2, and

the cooling schedule T (n) = 100
log(n) . The stopping criterion

ε = 200 (for the distance indicator ug) is chosen. So at the
end of each simulation, the average distance between the
target and vehicles is about

√
10, which is less than the

target radius Rg. While fixing the duration N to be 100, the
waiting time d is increased from 2 to 100. For each d, 10
simulation runs are performed and the traveling times are
averaged. Fig. 2 shows the average traveling time versus
the waiting time d.

In the figure, when d is very small (d = 2), vehicles take
about 950 steps to arrive at the target. Then the traveling
time drops to 850 when d is between 4 and 18. After
that, as d becomes larger and is comparable to stochastic
exploration duration N, the performance is dramatically
degraded. Clearly, a moderate d should be chosen for the
best efficiency.

2) Duration N: Duration time N for stochastic pertur-
bation is another key parameter. Intuitively a very small N
may not provide a trapped vehicle enough opportunities to
get out; and a very large N will kill the time-saving ad-
vantage offered by the gradient-flow algorithm. Therefore,
it is of interest to study how the duration time N affects
performance analytically.

A simplifying assumption is adopted to make the analysis
tractable. Considering that each vehicle makes its own
moving decision, one might approximate the multi-vehicle
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Fig. 2. Average traveling time versus the switching parameter d (waiting
time).

system as a collection of independent single vehicles. Fur-
thermore, it is assumed that the time spent on the gradient-
flow method is much shorter than the time spent on the
stochastic approach, and can be neglected. To justify the
latter assumption, it has been found in simulations that a
vehicle takes 40-50 times more steps to get to the target
using the stochastic approach than using the gradient-flow
approach in the absence of obstacles. Define the reachable
area to be the set of cells from which a vehicle can reach
the target area under the gradient-flow method, and the
unreachable area to be its complement. Starting from the
unreachable area with the gradient method, a vehicle will be
trapped at some point and it will then switch to simulated
annealing. For the duration N of stochastic exploration, let
P(N) be the probability that a vehicle will move to the
reachable area after N steps of simulated annealing with
the Gibbs sampler. Then the expected time for the vehicle
to reach the target is approximately

Ttotal =
∞

∑
k=1

k ·N ·P(N)(1−P(N))k−1

= N ·P(N)−1, (5)

where the vehicle is assumed to start from the unreachable
area, otherwise Ttotal = 0.

The key question then becomes how to evaluate P(N).
Fortunately, a bound on P(N) can be obtained based on
some recent results by the authors [23]. In particular,

‖νQ1...Qn −Π∞‖1 ≤ const ·n− 2λm̃
2m̃+λ∆τ (6)

where νQ1...Qn represents the probability distribution of
the (single) vehicle after n annealing steps, and Π∞ denotes
the probability distribution of sampled configurations as the
annealing temperature reaches 0, and m̃,λ ,∆, and τ are all
constants dependent on the potential function. By designing
the potential function so that the target location has the
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Fig. 3. Average traveling time versus the duration N for stochastic
exploration.

lowest potential, Π∞ has mass 1 in the target area. Since the
target belongs to the reachable area, the probability P(N)
satisfies the following inequality:

P(N) ≥ P(vehicle reaches target)

≥ 1− 1
2

const ·N− 2λm̃
2m̃+λ∆τ . (7)

Combining (5) and (7), one obtains

Ttotal ≤ N

1− 1
2 const ·N− 2λm̃

2m̃+λ∆τ
. (8)

Eq. (8) clearly indicates that an optimal N exists to
minimize the bound on Ttotal . This analytical result was
confirmed by simulations. Same scenario and parameters
are used as in earlier simulations except that the waiting
time d for switching is now fixed to 6 and the duration N
for stochastic exploration is varied from 30 to 600. Fig. 3
shows the average traveling time versus N, and one can see
that a choice of N between 50 and 150 would achieve good
time-efficiency.

C. Comparison with Other Random Perturbation Schemes

The hybrid control scheme proposed is essentially a
kind of stochastic relaxation algorithm. However, simulated
annealing based on the Gibbs sampler provides advantages
over many other stochastic perturbation methods.

For ease of discussion, consider the single-vehicle case.
One can show that the probability of a vehicle getting
trapped again after N annealing steps goes to zero as N
goes to infinity. This is not the case with just any stochastic
scheme. Take a random walk-type perturbation scheme [18]
as an example. As the number N of random walks goes
to infinity, the distribution of the vehicle approaches the
stationary distribution of the Markov chain defined by the
random walk. In general there will be positive masses
falling in the unreachable area. This implies that there is

no guarantee for the vehicle to reach the target no matter
how many steps are used for the random perturbation.

V. HYBRID SCHEME WITH MEMORY

In this section the notion of memory is introduced to
further enhance the hybrid control scheme. The idea is to
record the trapping spots and reduce the probability of re-
peatedly being trapped at the same spots. Each vehicle keeps
track of the risk level of dangerous cells, and accordingly
modifies its potential surface to lower the probability of
accessing high-risk regions. To be specific, the enhanced
algorithm works as follows:

• Step 1. Initialize the algorithm, set parameter d, N, and
the cooling schedule T (n), and let all vehicles initially
choose the gradient-flow method;

• Step 2. When a vehicle s determines that it has been
trapped at cell y, it increases the risk level Rs

y by 1
(the default risk level for every location is 1). Then the
vehicle switches to simulated annealing with n = 1;

• Step 3. At each annealing step, vehicle s determines
the set Λs of candidate locations for its next move.
For l ∈ Λs, it evaluates the Gibbs potential function
Φs(X(S\s) = x(S\s),xs = l), which is simply denoted
as Φs(l). Then vehicle s will take l with the probability

P(xs = l) =
e
−Φs(l)

T (n) /Rs
l

∑
z∈Λs

e
−Φs(z)

T (n) /Rs
z

;

• Step 4. Increase n by 1 and repeat Step 3 until n reaches
N. The vehicle s then switches back to the gradient-
flow algorithm and goes to Step 2;

• Step 5. The algorithm stops if the aggregate distance
indicator ug ≤ ε .

To compare the performance with the original hybrid
control scheme, simulations were performed with the same
setup as in the previous section. The waiting time was set
to be d = 6 and the duration N was varied from 30 to 600.
As seen in Fig. 4, the hybrid control scheme with memory
always achieves better performance than the original one
for all N.

VI. CONCLUSIONS AND DISCUSSIONS

A hybrid control scheme was proposed for path gener-
ation of autonomous swarms. The scheme combines the
advantages of the deterministic gradient-flow approach and
of the stochastic simulated annealing based on the Gibbs
sampler. The selection of the two key parameters involved
in the switching was investigated through analysis and
simulation. An enhanced version of the algorithm was
also presented by adaptively adjusting the local sampling
probabilities based on the risk levels perceived by individual
vehicles.

It should be noted that the scheme is meant to be a high-
level planning algorithm. In particular, it does not address
issues like collision avoidance at intermediate spots when
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Fig. 4. Averaged traveling time under the hybrid scheme with memory,
in comparison with that under the memoryless scheme.

nodes simultaneously take the moves (although the conflicts
in destinations of each move were resolved). In a practical
implementation, such issues need to be considered together
with specific vehicle dynamics and constraints.

Other variants of the hybrid scheme can be developed.
For instance, one could use simulated annealing with non-
monotone cooling schedules with the trapping status re-
flected through the temperature. One could also use a
weighted combination of the decisions produced through
both the gradient-flow method and simulated annealing,
where the weight depends on the trapping status.
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