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Abstract - Active Queue Management (AQM) has been 
widely used for congestion avoidance in Transmission 
Control Protocol (TCP) networks. Although numerous 
AQM schemes have been proposed to regulate a queue 
size close to a reference level, most of them are 
incapable of adequately adapting to TCP network 
dynamics due to TCP’s non-linearity and time-varying 
stochastic properties. To alleviate these problems, we 
introduce an AQM technique based on a dynamic 
neural network using the Back-Propagation (BP) 
algorithm. The dynamic neural network is designed to 
perform as a robust adaptive feedback controller for 
TCP dynamics after an adequate training period. We 
evaluate the performances of the proposed neural 
network AQM approach using simulation experiments. 
The proposed approach yields superior performance 
with faster transient time, larger throughput, and 
higher link utilization compared to two existing 
schemes: Random Early Detection (RED) and 
Proportional-Integral (PI)-based AQM. The neural 
AQM outperformed PI control and RED, especially in 
transient state and TCP dynamics variation.

I. INTRODUCTION 
The essence of congestion control strategies for TCP 

networks is to rapidly recover from network congestion, or 
to prevent an incipient congestion. This can be achieved by 
dynamically adjusting window size at the source side or 
controlling incoming packets to a router at the link side.  

Numerous TCP schemes that optimally adjust window 
size for congestion avoidance have been explored in the last 
decade. The first widely used scheme, TCP Tahoe, was later 
modified to TCP Reno [1], currently the most popular TCP. 
The congestion window in these protocols is based on the 
Additive Increase Multiplicative Decrease (AIMD) 
algorithm: congestion window size is increased by one 
packet per acknowledgement (ACK) but is halved if a 
source receives three duplicate ACK signals or does not 
receive any ACK within a given round-trip time (see [1]). 
Since the development of TCP Reno, several researchers 
have suggested additional TCP functions to improve 
network performance [2]. Whereas these algorithms 
operate at the source side, AQM is implemented at the link 
side, especially for incipient congestion avoidance. In other 
words, AQM provides congestion information acquired 
from the link side to the sources. The objective of an AQM 

is primarily to proactively respond to network congestion as 
its queue begins to increase. Rather than simply waiting for 
a congested queue to overflow and then tail drop all 
subsequently arriving packets, it maintains queue size at a 
predefined level in the router.  

RED [3] is a popular example of an AQM scheme. In 
RED, the router calculates the drop probability using a 
current queue size. The incoming packets are passed, 
dropped or marked, based on this probability. By discarding 
or marking a single packet, the router sends an implicit or 
explicit warning to the source. As a response to the warning, 
the source is expected to adjust the congestion window size 
to reduce its transmission rate. The drop probability is often 
linearly proportional to queue length. Although RED is an 
effective TCP congestion control [4], it can induce network 
instability and major traffic disruption if not properly 
configured. Hence, optimal parameter selection for RED 
design under different congestion scenarios has been a 
problem. Moreover, even if optimally selected, the 
parameter values must be adjusted in real-time 
implementations because TCP dynamics change with the 
number of active TCP flows. 

Many studies have addressed optimal parameter selection 
for RED and its variants. Floyd et al. proposed appropriate 
parameter ranges in [5] and presented an adaptive RED in 
which the best parameter settings are based upon a traffic 
mix flowing through the router [6]. In [7], the authors 
proposed Random Exponential Marking (REM) as a 
modification to RED. Their aim was to stabilize the input 
rate around the link capacity and maintain average queue 
size around a small reference level. Feng et al. [8] presented 
a self-configuring RED that adjusted the maximum drop 
probability according to the past history of the average 
queue size. They also proposed BLUE [9], a new AQM 
mechanism. BLUE uses buffer overflow and link idle 
events, together with average queue size, to control 
congestion. Another approach, Stabilized RED (SRED) 
[10], computes the drop probability based on the estimated 
number of active TCP flows and the instantaneous average 
queue size.  

In recent years, control-theoretic AQM approaches have 
been proposed, mostly using linear classical control. In [11], 
design guidelines were proposed for choosing AQM 
parameters based on Proportional (P) and 
Proportional-Integral (PI) control. The authors linearized 
the nonlinear differential equation TCP network model of 
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[12] at an operating point to derive a transfer function for P 
and PI controller design. Their AQM scheme was compared
to RED and found to be superior.

Kim and Low [13] formulated an AQM design problem
for stabilizing a given TCP network described by
state-space models and proposed Proportional-Derivative 
(PD) and Proportional-Integral-Derivative (PID) AQM
strategies. In [14], Dynamic-RED (DRED) was proposed to
stabilize queue dynamics even if the number of active TCP
connections is dynamically varied. DRED aims to maintain
queue size close to a reference queue level by a discrete
integral control approach. Recently, more complex control 
methodologies have been proposed for AQM. Quet and 
Ozbay [15] applied H  controller to AQM using the
linearized the TCP model of [12].  They derived the transfer 
function of the controller and showed through computer
simulation that the proposed AQM was superior to PI
control and RED.

We note that the choice of control parameters is the key to
satisfactory performance of a feedback control system.
However, in practice, parameter choices for the nominal
model may be suboptimal due to system uncertainty or
perturbation. Thus, parameter values must be adjusted to
adapt to operational changes. In addition, most
control-theoretic AQM proposed to date are based on linear
models while TCP networks are nonlinear time-varying
stochastic systems.

We present a more sophisticated adaptive control strategy
for AQM in TCP networks using a dynamic artificial neural
network AQM control. The control can promptly adapt its
operation to the nonlinear time-varying and stochastic
nature of TCP networks. Neural networks have been widely
applied in the last two decades in a variety of engineering 
fields such like signal processing, process control,
communication systems, etc. [16]. They are iteratively 
trained by a proper learning algorithm to minimize a
selected performance measure. As a result, unlike RED and
classical linear control based approaches, neural networks
are able to determine the optimal AQM system parameters
values autonomously after adequate training. Following
training, the neural network operates as an adaptive and
robust controller that can provide excellent performance
even for environmental conditions not included in the
training data set.

The dynamic neural network controller presented in this
paper is trained to regulate the actual queue size close to a 
reference value determined by network requirements. After
training, the neural network operates as an adaptive
controller under changes in TCP dynamics. We choose a 
multi-layer recurrent (including feedback) dynamic neural
model because of its well-known advantages. This model
has been popular since the mid 1990’s in many applications
for dynamical time-varying and nonlinear systems [17].
There are mainly two methods for training recurrent neural
networks: a back-propagation-trough-time algorithm [18]
and a real-time recurrent learning algorithm [19]. For 

simplicity, we derive a learning procedure by the general
back-propagation (BP) method [16]. To evaluate the
proposed neural AQM, a TCP network topology including a
simple bottleneck, two routers on the link side, and multiple
TCP sessions, is considered. We use the TCP system model
of [12] for our neural AQM analysis and illustrate the
advantages of our proposed methodology as compared to
RED and PI-based AQM. 

The outline of this paper is as follows. In Section II, we 
present our neural network AQM TCP congestion control.
A learning algorithm with BP is derived for this model in
Section III.  Simulation results and discussion are given in 
Section IV. Our conclusions are given in Section V. 

II. NEURAL NETWORK AQM 
The block diagram of TCP congestion control with the

neural network AQM proposed in this paper is shown in Fig.
1.

Neural
Network

TCP
Source Router

e p w
qq*

-

Fig. 1. Neural network AQM of TCP network.

In Fig. 1, the congestion window size, w of the TCP
source is determined by the probability, p calculated from
the neural network. Queue dynamics at the link side is
affected by w. The neural network control system
minimizes the error signal, e between the actual queue size, 
q and the reference queue target value, q*. The loss 
probability, p is the control input to the TCP source. The 
neural network model used in this paper is shown in Fig. 2. 
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Fig. 2. Recurrent neural network for AQM.

We select a dynamic recurrent neural model including
one feedback connection and a three-layer perceptron. The
input vector of this neural network includes the error signal,
e and the probability, p as a feedback signal from its output.
Thus, the input vector, u is given by

Tpeu (1)
The weight matrix in the first layer is 

21

1211

mm vv

vv

V (2)

where m denotes the number of nodes in the second layer.
In (2), the first column and the second column are related to
the error signal and the feedback probability, respectively.
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The weight vector in the second layer is
T

m1

(3
)

Thus, the dynamic behavior of the network is given by
bVuyy T

kk 1 (4)
where  is the feedback gain, k denotes discrete time, and b
is a bias connected with unit input. Finally, the network
output is obtained from the activation function

0,
)exp(1

1)( a
ay

yp (5)

where a is a constant scaling factor.

III. LEARNING PROCEDURE 
The neural network designed in Section II must be trained

to optimize a TCP network performance measure. During 
network training, the weights and the bias are iteratively
updated until they reach their optimal values. In this section, 
we present a BP learning algorithm for the proposed 
network and derive the rules for updating the network
weights and bias. The training objective is to minimize the
error signal J defined as 

2*

2
1

qqJ (6)

Adjustments of the weight matrix V, the weight vector ,
and the bias b, are governed by the delta rule as follows
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where  is the learning rate, i=1,…,m, and j=1, 2. The 
partial differential equations in the right side of (7), (8), and
(9) are expanded respectively by using the chain rule as 
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We calculate the three common terms in (10), (11), and
(12) using (5), (6), and the following approximations [20]
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These approximations describe the Jacobian of the TCP
system. We use an approximation of the TCP system
equation assuming that it is not provided. The approximate

derivative in (15) is determined by changing the input p and 
the output q [20].

The right hand sides of (10), (11), and (12) include
derivatives of y obtained using the following equations
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By substituting (13)-(18) in (7), (8), and (9), we finally 
obtain the update rules

jiij uv (19)
2
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IV. SIMULATIONS 
We conducted a simulation study to evaluate the

performance of neural network AQM. We considered the
TCP network topology of Fig. 3, including a simple
bottleneck link between two routers and numerous TCP
flows.

1

2

n

1

2

n

Router Router
Bottleneck Link

Sources Destinations

Fig. 3. TCP Network model.

The mathematical model used for AQM design and 
simulation is a fluid-flow expression [12]. The model
describes the dynamics of a queue and a congestion window
with the nonlinear differential equations

))((
))((2

))(()(
)(

1)( tRtp
tRtR
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tw (23)

otherwise
CtxtNifCtxtN

tq
0

)()()()(
)( (24)

where C is a link capacity, N is the number of TCP
connections, x(t) is a transmission rate defined as 

, and the round-trip time R(t) is calculated by)(/)( tRtw

C/tqtR )()( , where  is a random propagation delay
time. The specifications of the TCP network are from [11],
but some parameter values are modified for our simulation
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scenarios. We select the packet size as 512 bytes, C as 15 
Mb/sec, and a maximum q in a router as 800 packets.  is 
uniformly distributed in [0.16, 0.24] sec. 

We simulate RED and PI control under same simulation
scenarios as our control for comparison purposes. We
selected optimal parameter values for RED and PI control
from iterative numerical analyses using (23) and (24) under 
the given TCP specifications with 240 TCP connections. In
RED, the minimum and maximum thresholds of an 
averaging queue size are 200 and 250 packets respectively,
the maximum drop probability is 0.1, and the weight in the
moving average equations for computing the averaging
queue is 0.03. The PI controller used in this simulation is
given by

dttektekp ip )()( (25)
where kp is the proportional gain and ki is the integral gain.
We selected kp=5 10-7 and ki=5 10-5 for our simulations,
which are of the same order as the values of [11] and [15].

For the AQM neural network, we use three nodes in the
hidden layer and a learning rate of 0.1. The initial values of
the weights in the first and second layers, and the bias, were 
uniformly distributed in [ 1, 1]. The neural network was
trained to determine the optimal weights and bias under the
same simulation environment as RED and PI AQM. After
iterative network training with randomly chosen initial
weights and bias, the optimal weights that minimize our 
control performance measure were 

7065.02207.0
6853.04545.0
4417.05536.0

V (26)

T3087.07771.03902.0 (27)

and the bias b was 0.8444. We ran four simulation scenarios
to evaluate the three different AQM approaches: RED, PI 
control, and neural network control. We also tested the
robustness and adaptive capacity of the three schemes. To
illustrate dynamic queue responses applying these AQM 
methods, we solve the differential equations in (23) and
(24) numerically.

Case I: We used 240 TCP flows (N=240) and a reference 
queue size of 200 packets for PI control and neural AQM.
Time histories of the queue size for the three AQMs are 
shown in Fig. 4. We observe an initial overshoot in all three
AQMs after which the responses drop to their steady-state
values. The overshoot saturates at 800 packets due to the
maximum queue size in the router. In the steady state, large
oscillations continue for RED while the responses for PI
control and neural AQM oscillate very closely to the
reference level. PI and neural AQM control have 
considerably different transient responses. For PI control,
the settling time is about 25 sec and is three times that of the 
neural AQM, and transient saturation occurred as in RED.
This behavior is a very serious problem that can potentially

result in network congestion especially traffic status
changes rapidly. By contrast, neural AQM has a much
faster response but does not result in saturation. The
comparison indicates that neural AQM provides stable
control and a better transient response than PI-based AQM.
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(b) PI and neural AQM
Fig. 4. Queue dynamics for fixed N.

Case II-1: In real-time TCP implementations, the number of 
TCP flows varies randomly. Thus, we simulated the system
with time-varying TCP flows, i.e., the number of TCP
connections was varied. We assume that N is progressively
increased by 100 every 50 sec, i.e. N =240 in [0, 50] sec, N
=340 in [50, 100] sec, N =440 in [100, 150] sec, and N =540
in [150, 200] sec. The reference queue size in PI control and 
neural AQM is still set to 200 packets. Fig. 5 shows the 
queue dynamics for this simulation scenario. Fig.5 (a)
shows that the response in RED is very similar to Case I. In 
Fig. 5(b), both PI and neural AQM still have the initial
overshoots at the starting time as well as at the times when 
N is changed. The response for PI control initially saturates 
and has a larger settling time than neural AQM. For both,
the overshoot increases while the undershoot decreases as N
increases. These results show that neural AQM outperforms
PI AQM for dynamic reference queue level.
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(a) RED (b) PI and neural AQM
Fig. 6. Queue dynamics for decreasing N.

0 50 100 150 200
0

100

200

300

400

500

600

700

800

Q
ue

ue
 s

iz
e 

[P
ac

ke
ts

]

time(sec)

PI control
Neural AQM

Case III: The simulation in this case is for comparisons of 
the two feedback control schemes: PI-based AQM and
neural AQM. RED is not included because it is not a
feedback control AQM scheme. We vary the reference 
queue size, but keep N fixed at 240. We set a reference
queue level, q* as 200 packets both in [0, 50] sec and
[100,150] sec, and as 400 packets both in [50,100] and
[150,200] sec. Fig. 7 shows the simulation results for the
queue dynamics. These results indicate that neural AQM
has better performance than PI control for varying reference
queue size.

(b) PI and neural AQM
Fig. 5. Queue dynamics for increasing N.
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Case II-2: This example is the opposite scenario of Case
II-1. In this case, the number of TCP flows are dynamically
decreased, that is, N=540 in [0, 50], N=440 in [50, 100],
N=340 in [100, 150], and N=240 in [150, 200]. Time
histories of the queue size for these three AQMs are plotted 
in Fig. 6. In this case, undershoots occurred in both PI and 
neural AQM but we again observe that the neural AQM has
a superior transient response to PI-based AQM. The
superior transient response of the proposed solution in this
case directly explains the higher throughput compared to
PI-based AQM because the system can quickly adjust itself 
to fully utilize the available bandwidth due to less traffic. Fig. 7. Queue size for PI and neural AQM for varying q*.
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Table 1 shows the mean values and variances of the
throughput and the queue size for each AQM. The queue
size of neural AQM has the smallest mean values and the 
largest throughput in all simulations. Higher throughput
implies more efficient utilization of the network link. The
mean queue size of neural AQM remains closer to the 
reference queue value than PI control, and the variance of
its throughput is the smallest for all cases. Hence, neural
AQM provides more stable queue management.

(a) RED 
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Table 1. Simulation results for RED, PI control, and neural 
AQM

Mean Variance
Case Control 

Queue size 
[Packets] 

Throughput 
[Packets/sec] 

Queue size 
[Packets] 

Throughput 
[Packets/sec] 

RED 232.11 15.29 4.44 104 20.30 
PI 214.38 15.96 1.17 104 3.73 I

NN 201.26 16.06 3.70 103 3.08 
RED 248.35 10.63 4.03 104 18.06 

PI 262.99 10.78 1.56 104 15.03 II-1
NN 214.80 10.89 5.15 103 13.06 

RED 248.03 10.61 4.14 104 18.53 

PI 214.28 10.79 3.36 104 12.64 II-2

NN 201.21 10.97 8.59 103 12.37 
PI 311.89 15.94 1.90 104 3.43 

III
NN 300.50 16.00 1.34 104 2.66 

V. CONCLUSION 
We presented a novel AQM methodology using a dynamic 
neural network for TCP congestion control. The neural 
network acts as a feedback controller to maintain the actual 
queue size close to a reference target. The neural network is 
trained by a BP algorithm. We applied the neural AQM to a 
single bottleneck network supporting multiple TCP flows. 
Four scenarios were examined in the simulation 
experiments to compare neural AQM to RED and PI-based 
AQM. While PI AQM resulted in queue saturation and 
larger overshoot, neural AQM reduced overshoot and 
eliminated saturation. Neural AQM was more stable with 
no packet loss due to congestion. Especially for the case of 
time-varying TCP dynamics, the neural AQM was superior. 
We conclude that neural AQM is an effective adaptive 
controller and provides higher Quality of Service (QoS) in 
TCP networks. Future work will extend our results to more 
complex network scenarios, such as heterogeneous RTTs, 
short TCP connections or noise disturbance networks, and 
different TCP data streams and will include various 
simulation scenarios using a network simulation tool such 
as OPNET to verify our results. 
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