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Abstract— This paper presents an optimal, in the Kalman
sense, filter for linear, continuous, stochastic state-space system
with continuous, multirate, randomly sampled and delayed
measurements. A general theorem on optimal filter of Itô-
Volterra system with discontinuous measure is presented and
then specialized to standard state-space model with both con-
tinuous and discrete measurements. The discontinuity of the
measurement vector leads to the optimal filter with continuous
and impulsive inputs, causing the discontinuity of the filter
equations. The size of the jumps in state and covariance matrix
can be explicitly calculated using the theory of vibrosolutions.
A previously unknown optimal filter for continuous state space
systems with continuous and sampled measurements, including
multirate, randomly sampled and delayed measurements, is
obtained. Under additional assumption, it is shown that the
derived optimal filter recovers several known results, including
the Kalman-Bucy and Jazwinski filters (continuous process
with discrete measurements). The developed and the previously
reported filters are compared using Monte Carlo simulations,
which show that the optimal result gives the least-mean-
square-error estimates of the states, and correctly predicts
the goodness of the obtained estimates; the alternative filters
tend to be overly optimistic in calculating the quality of the
generated state estimates. Numerical simulations demonstrate
that the proposed approach is convenient in practice as
it neither requires implementation of multirate filters, nor
any approximations to handle measurements arriving with
different and, possibly, random sampling rates, as often is the
case with human-in-the-loop and networked measurements.

I. INTRODUCTION

Most processes of practical interest are continuous in
nature, while the available measurements used to probe the
current state of continuous processes are either sampled
(discrete), or the combination of sampled and continu-
ous measurements. In approaching the problem of state
estimation of a continuous process with the combination
of continuous and discrete measurements, we have three
fundamental options, summarized in Figure 1:

(1) Discrete state estimator approach requires approxima-
tion of the continuous model of the process and sampling
of the available continuous measurements. Subsequently,
one of the known state estimators for discrete systems (i.e.
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Fig. 1. State estimation problem for continuous process with continuous
and sampled measurements.

discrete Kalman filter, KF) is applied to obtain an estimate
of the states of the continuous process at certain discrete
moments.

(2) The second alternative is to lift the discrete measure-
ments into the space of continuous functions (e.g. by using
the polynomial fit of several discrete measurements in a
sliding window) and then apply one of the known results
for state estimation in the continuous system (i.e., Kalman-
Bucy filter).

(3) The final option is to directly consider the state
estimation problem with a continuous model and the com-
bination of the discrete and continuous measurements.

The applicability of classical state estimation methods
after simple approximations led to a wide acceptance of
the first two approaches, both of which give suboptimal
solutions. The optimal state estimation is obtained if we
follow a more theoretically challenging Approach 3, which
results in the optimal filter in the form of a continuous
system with impulsive inputs.

There are many examples of multirate state estimation
algorithms based on the application of discrete KF (Ap-
proach 1): Ellis et al. [1] used a multirate extended KF
(EKF) to estimate the unmeasurable process states using fre-
quently available measurements of temperature and density
and the infrequent and delayed measurements of average
molecular weights. Shah et al. [2] implemented a multirate
formulation of the iterated EKF on a bioreactor. Mutha et
al. [3] proposed fixed-lag smoothing-based EKF algorithm,
which was applied to the case of emulsion copolymerization
batch reactor. The Kalman filter has also been the basis of
multirate digital filters (decimators and interpolators) and
filter banks (analysis/synthesis filter banks) [4]. Shah [5]
used a lifting technique to transform a multirate single-input
single-output system to a single-rate MIMO system, which
allowed them to use slow-rate measurements to generate
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high rate control inputs.
The purpose of this paper is to extend the previous

result [6] to optimal filter of state-space system with con-
tinuous, multirate, randomly sampled and delayed measure-
ments. In the next section, We first show that the Kalman
filter [7] for dynamic systems in the integral Itô-Volterra
(IV) form can be adapted for the case of the linear stochastic
systems with discontinuous measurements. We then show
that the optimal filter for the IV systems with discontinuities
in measurements can be specialized for the case of state
space systems. Based on theory of vibrosolutions, which is
used to explicitly computed the size of jumps, an optimal
filter for continuous state space systems with an arbitrary
combination of continuous and sampled measurements is
obtained, including multirate, randomly sampled and de-
layed cases. The paper is concluded with numerical exam-
ples illustrating the application of the optimal filter, and its
comparison with traditional alternatives.

II. ITÔ-VOLTERRA DESCRIPTION OF DYNAMIC

SYSTEMS

Let (Ω, F, P ) be a complete probability space with an
increasing right-continuous family of σ-algebras Ft, t ≥ 0,
and let (W1(t), Ft, t ≥ 0) and (W2(t), Ft, t ≥ 0) be
independent Wiener processes. Here Ω is the sample space,
F is a set of subsets on which the probability measure
(or, simply, probability) is defined, and P is the probability
defined on F . All subsets of F form a σ-algebra, and Ft

denotes a family of subsets (σ-algebra) for each t such that
for t1 < t2, Ft1 ⊂ Ft2 . The partly observed Ft-measurable
random process (x(t), z(t)) can be described using the Itô-
Volterra equations:

x(t)=
∫ t

0
(A(t,s)x(s)+B(t,s)u(s))ds+

∫ t

0
G(t,s)dW1(s) (1)

z(t) =
∫ t

0
C(t, s)x(s)ds +

∫ t

0
H(t, s)dW2(s) (2)

where x(t)∈Rn is the state vector and z(t)∈Rm is a vector
of measurements integrated over the interval [0, t]. Func-
tion B(t, s)u(s) describes known system inputs. B(t, s)
is a smooth function of t uniformly in s. Functions
C(t, s) and H(t, s) of appropriate dimensions are con-
tinuous in t and s with H(t, s)HT (t, s)>0. To sim-
plify notation, Υ(t, s)=(H(t, s)HT (t, s))−1 and G2(t, s) =
G(t, s)GT (t, s) throughout the paper. Both t and s are inde-
pendent (time) variables with t≥s≥0. All coefficients in the
equations (1) and (2) are deterministic functions. Without
loss of generality, we assume zero initial conditions.

The estimation problem is to find the estimate of the sys-
tem state x(t) described by the Itô–Volterra model (1) based
on the observation process Z(t) = {z(s), 0 ≤ s ≤ t}, which
minimizes the 2-norm E[(x(t)−x̂(t))T (x(t)−x̂(t))] at each
time moment t. Alternatively, the objective is to find the
conditional expectation m(t) = x̂(t) = E(x(t) | FZ

t ). As
usual, the matrix function P (t) = E[(x(t) − m(t))(x(t) −
m(t))T | FZ

t ] is the estimation error covariance matrix.
The state space model is recovered when all functional
parameters in (1)–(2) depend only on s.

In the context of the current paper, the main advan-
tage of the integral formulation is the ability to introduce
discontinuities into the vector of measurement by using
discontinuous measures, which allows us to consistently
model an arbitrary combination of sampled and continuous
measurement available for the continuous process (1).

The solution of the optimal filtering problem for the
system (1)–(2) was reported in [7], which generalized
results of [8], [9]. The explicit solution of the optimal state
estimation problem is obtained in terms of the integral
cross-correlation function f(t, s), which characterizes the
deviation of the optimal estimate m(t) from unknown true
state x(t), and is defined as:

f(t, s) = E[(xt
s − mt

s)(x(s) − m(s))T | FZ
t,s] (3)

where xt
s can be viewed as a state with independent (time)

variable s and parameter t:

xt
s=

∫ s

0
[A(t, r)x(r)+B(t, r)u(r)]dr+

∫ s

0
G(t, r)dW1(r) (4)

The governing equation for xt
s can be differentiated with

respect to s to yield the state space form of equation (4).
FZ

t,s is the σ-algebra generated by the stochastic process zt
s:

zt
s =

∫ s

0
C(t, r)x(r)dr +

∫ s

0
H(t, r)dW2(r) (5)

and mt
s = E[xt

s | FZ
t,s]. Function f is a generalization of

the variance P since f(t, t) = P (t). Furthermore for s = t,
xt

s = x(t) and zt
s = z(t).

Next, we introduce IV measurement model with discon-
tinuous measure and obtain the optimal filter for this case.

III. OPTIMAL FILTERING FOR ITÔ-VOLTERRA SYSTEMS

WITH DISCONTINUOUS MEASURE

Consider a nondecreasing vector-valued function of
bounded variation µ(t) ∈ Rm:

µ(t) = {µc
k(t) + µd

k(t)}, k = 1,m (6)

where µc
k(t) is a continuous nondecreasing function (such as

µc
k(t) = t), µd

k(t) is a sum of bounded jumps ∆µi occurring
at ti −h: µd

k(t) =
∑N

i=1 ∆µiχ(t− (ti −h)), where h is the
delay and χ is the Heaviside step function. In this paper,
the sampled measurements are modeled assuming ∆µi =
µ((ti − h)+)− µ((ti − h)−) = 1. In practical applications,
each channel k will typically be either continuous (e.g.
µk(t) = t) or sampled (e.g., µk(t) = µd

k(t)), but not both.
The set of discontinuity points of µ(t) is considered to be
a countable set of isolated points.

Using µ(t) as a measure in equation (2), both continuous
and sampled measurements can be modeled as follows:

z(t) =
∫ t

0
C(t, s)x(s)dµ(s) +

∫ t

0
H(t, s)dW2 (µ(s)) (7)

where we use componentwise multiplication by dµ(s). If
µ(s) includes continuous and discontinues components,
then measurements z(t) also has continuous, zc, and dis-
continuous, zd components:

z(t) = {zc
k(t) + zd

k(t)} (8)
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where zc is given by equation (2). For purely continuous
measurements in k-th channel zd

k ≡ 0; if only discrete
measurements are available, then zc

k ≡ 0. In general,
equation (7) describes an arbitrary combination of discrete
and continuous measurements. In the standard differential
notation, the i-th continuous measurement yi(t) = dzi(t)

dt .
The relationship between j-th discrete measurement in
differential and integral forms is given by the summation
zj(tk) =

∑k
l=0 yj(tl), and yj(tk) = δzj(tk).

Theorem 1: [7], [10] The optimal in the Kalman sense
estimate m(t) of the states of system (1) with discontinuous
measurements (7) satisfies the following filter equation

m(t) =
∫ t

0

[
A(t, s)m(s) + B(t, s)u(s)

]
ds

+
∫ t

0
Ktttt(s)

[
dz(s) − C(t, s)m(s)dµ(s)

]
(9)

where the filter gain is equal

Kabcd(e) = f(a, e)CT (b, e)
(
H(c, e)HT (d, e)

)−1
(10)

and f(·, ·) satisfies the following Riccati-like equation:

f(t, s) =
∫ s

0

[
A(t, r)fT (s, r) + f(t, r)AT (s, r)

+ 1
2 (G(t, r)GT (s, r) + G(s, r)GT (t, r))

]
dr

− ∫ s

0
[Ktsss(r)C(s, r)fT (s, r) + Ktttt(r)C(t, r)fT (s, r)

−1
2Kttts(r)C(s, r)fT (s, r)

−1
2
Kssst(r)C(t, r)fT (t, r)]dµ(r) (11)

where r and s are independent variables. The error covari-
ance P (t) = f(t, t), and satisfies the following equation:

P =
∫ t

0
[f(t, s)AT (t, s) + A(t, s)fT (t, s) + G2(t, s)]dr

−∫ t

0
f(t, s)CT (t,s)Υ(t, s)C(t,s)fT (t, s)dµ(s) (12)

IV. OPTIMAL FILTER FOR STATE-SPACE SYSTEMS WITH

CONTINUOUS AND DISCRETE MEASUREMENTS

Consider the case of A, B, and G independent of t.
Differentiation of (1) yields the state-space system:

ẋ(t) = A(t)x(t) + B(t)u(t) + G(t)w1(t) (13)

where ω1dt = dW1(t), ω1(t) ∼ N(0, Q̃(t)) is l×1 white
Gaussian process. Without loss of generality, set Q̃(t) = I .
Further assume that measurements are memoryless (C and
H are independent of t). Then (7) can be written as:

z(t) =
∫ t

0
C(s)x(s)dµ(s) +

∫ t

0
H(s)dW2(µ(s)) (14)

For the state-space system with continuous and discrete
measurements, described by (13)–(14), the filter equations
(9) and (12) takes the following simplified form:

m(t) =
∫ t

0
(A(s)m(s) + B(s)u(s))ds

+
∫ t

0
P (s−)CT (s)Υ(s)[dz(s) − C(s)m(s−)dµ(s)](15)

P (t) =
∫ t

0

[
A(s)P (s) + P (s)AT (s) + G(s)GT (s)

]
ds

− ∫ t

0
P (s−)CT (s)Υ(s)C(s)P (s−)dµ(s) (16)

where we accounted that for system (13)–(14), xt
s = x(s),

mt
s = E[x(s)|FY

s ] = m(s), zt
s = z(s), f(t, s) = P (s).

We will use unit-step jumps in µ(s) to model sampled
measurements. Impulsive discontinuity in dµ(s) is a cause
of jumps in m(t), f(t, s) and P (t) when sampled measure-
ments arrive. The following theorem gives the vibrosolu-
tion [11], [12] the optimal filter equations (15)–(16), from
which the explicit expressions for these jumps can be found.

Theorem 2: The vibrosolution of the optimal filter (15)–
(16) for the state-space system with continuous and discrete
measurements is given by the following equations:

m(t) =
∫ t

0
(A(s)m(s) + B(s)u(s))ds

+
∫ t

0
P (s−)CT (s)Υ(s)[dzc(s) − C(s)m(s−)dµc(s)]

+
∑N

i=1 κ(ti − h) [y(ti)−C(ti − h)m(ti − h)] , (17)

P (t) =
∫ t

0

[
A(s)P (s) + P (s)AT (s) + G(s)GT (s)

]
ds

− ∫ t

0
P (s−)CT (s)Υ(s)C(s)P (s−)dµc(s)

−∑N
i=1κ(ti − h)C(ti − h)P (ti − h), (18)

κ(ti − h)=P (ti − h)[I+C(ti − h)Υ(ti− h)
×C(ti − h)P (ti − h)]−1CT (ti − h)Υ(ti − h) (19)

Proof: The proof for the general case of IV systems is
given in [10]. For state space systems, the proof is presented
in Appendix for scalar µd(s) only, which simplifies and
clarifies the development. The vector case is proved using
a componentwise multiplication by vector dµd(s).

The optimal filter (17)–(18) is a continuous system with
discontinuities at the time of arrival of discrete measure-
ments. The fusion of discrete and continuous measurements
to calculate optimal state estimates is direct and explicit.
Each sampled measurement is processed as soon as it
becomes available, so that the case of multirate and ran-
domly sampled measurements is allowed without additional
complications. Delays can be time varying, random and a
priori unknown as long as measurements are time-labelled.

The following examples illustrate the implementation of
the optimal filter given by Theorem 2.

a) Continuous system with continuous measurements:
This is the case when µ(t)={µc

k(t)}=t, yielding for the
state-space system the following optimal filter equations:

m(t) =
∫ t

0
(A(s)m(s) + B(s)u(s))ds

+
∫ t

0
P (s)CT (s)Υ(s)[dz(s)−C(s)m(s)ds] (20)

P (t) =
∫ t

0

[
A(s)P (s) + P (s)AT (s) + G(s)GT (s)

]
ds

− ∫ t

0
P (s)CT (s)Υ(s)C(s)P (s)ds (21)

which are identical to the Kalman-Bucy filter.
b) Continuous systems with delayed sampled measure-

ments: For purely discrete measurements, µ(t) = {µd
k(t)}.

The optimal filter is obtained by setting µc(s) = 0 in equa-
tions (17)-(18), and its implementation requires iterative
execution of the following steps:

S1. Initialize m(t) and P (t) as m(t+i−1) and P (t+i−1).
At i = 0, initialize with m(t+0 ) = E[x(t0) | FY

t0 ] and
P (t+0 ) = E[(x(t0) − m(t0)(x(t0) − m(t0)T | FY

t0 ].
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S2. Time update for t ∈ [ti−1, ti − h):

m(t)= m(t+i−1)+
∫ t

ti−1
(A(s)m(s) +B(s)u(s))ds (22)

P= P (t+i−1)+
∫ t

ti−1
[A(s)P (s)+P (s)AT (s)+G(s)GT ]ds (23)

S3. Measurement update for new delayed measurements,
which become available at ti:

m((ti − h)+) = m((ti − h)−) + δm((ti − h)+) (24)

P ((ti − h)+) = P ((ti − h)−) + δP ((ti − h)+) (25)

where the jumps are calculated explicitly as

δm((ti−h)+) = κ(ti−h) [y(ti)−C(ti−h)m(ti−h)] (26)

δP ((ti − h)+) = −κ(ti − h)C(ti − h)P (ti − h) (27)

S4. Time update for t ∈ (ti − h, ti]:

m(t)=m((ti − h)+)+
∫ t

ti−h
(A(s)m(s) + B(s)u(s))ds (28)

P (t) = P ((ti − h)+) +
∫ t

ti−h
[A(s)P (s) + P (s)AT (s)

+G(s)GT (s)]ds (29)

If A,B,C, D,G, H and u are time-invariant in [ti −h, ti],
then (28) and (29) have analytical solution; e.g., instead of
using equation (28), the state estimate can be calculated as

m(ti) = eAhm((ti − h)+) − A−1[I − eAh]Bu (30)

The optimal filter (17)–(18) is applicable to all prac-
tically important cases of continuous processes with an
arbitrary combination of continuous and sampled measure-
ments, including multirate, randomly sampled, and delayed
measurements. The developed filter can be used without
modification in the case of time varying delays. Without
delays (h = 0), the optimal filter for continuous systems
with sampled measurements is recovered. If we further
assume that C is square and invertible, then the obtained
result is identical to the Jazwinski’s filter (Theorem 7.1[13]).

The implementation of the developed optimal filters is
transparent: The continuous filter (e.g., equations (20)–(21)
in the case of continuous measurements without delay) is
used with continuous measurements until sampled measure-
ment becomes available in one of the channels. At that time,
the jumps in m and P are computed explicitly using (26)–
(27), which give the optimal state estimate at the time when
the delayed measurement was taken. The estimate up to the
current time are then calculated using equations (20)–(21)
and stored continuous measurements.

V. EXAMPLES

The following stable, continuous LTI system with con-
tinuous and discrete measurements is selected to compare
the optimal approach with the alternatives:

At=

⎡
⎣−1 −.02 −.03 0
−.03 −2 .05 1
−.05 −6 −3 1
−1 .5 .8 −.9

⎤
⎦ , Bt=

⎡
⎣ 1

2.5
1
1

⎤
⎦ , Ct=

[
1 0 0 0
0 1 0 0
0 0 1 0

]

The model used in all filters is given by: A = 0.9At, B =
Bt, C = Ct. The plant-model mismatch is introduced

to amplify the effect of approximations on the perfor-
mance of state estimators derived following Approaches
1 and 2. We assume the continuous process disturbance
ω(t) ∼ N(0, Q̃), where Q̃ is known. In all examples, y1

is available continuously while y2 and y3 are sampled,
and R̃(1, 1), R(j, j), j = 2, 3 are known. The values
of Q̃, R̃ and R characterize either the actual Gaussian
disturbances and measurement noises, or represent model
and measurement uncertainties in L2 norm.

Each realization of the state estimation is a stochastic
process driven by random measurements z. Consequently,
characterization of the filter performance based on a single
realization may be misleading. In this paper, we use Monte
Carlo approach to assess the performance of different filters.
Multiple realizations of state trajectories (realizations of true
values of states) are calculated using the model stochastic
differential equation dx(t) = (Atx + Btu)dt + dW (t),
where ω = dW/dt and the Brownian process W (t) is
approximated as a random walk [14]. The corresponding
realization of stochastic measurements are by adding zero-
mean white measurement noises, generated to match co-
variances of continuous and sampled measurements. The
obtained measurements are used as inputs to all filters.

A total of N = 1000 realizations of the state trajectories
and the corresponding state estimates were obtained with
the filters described in the paper. A sample mean of the
estimate for each filter is calculated as an ensemble average
x̂s(t) = 1

N

∑
i x̂i(t) summed over all realizations. Assum-

ing that x̂i(t) are independent and identically distributed,
x̂s(t) = xm(t) as N → ∞, where the true mean of
the states is calculated from ẋm(t) = Atxm(t) + Btu,
with xm(t0) = E[x(0)]; x̂s(t) for different filters is then
compared with the theoretical mean xm(t).

Each filter produces estimation error covariance ma-
trix, which self-characterizes the quality of generated
state estimates. Accuracy of filter-generated P is as-
sessed by calculating root mean square errors of filter
estimated xj using ensemble averaging : RMSE(xj)=√

1
N

∑N
i=1(x

i
j(t)−x̂i

j(t))2, and P (t)= E[(x(t)-x̂(t))(x(t)-

x̂(t))T ]≈ 1
N−1

∑N
i=1[(x(t)-x̂(t))(x(t)-x̂(t))T ].

Case 1: Continuous process with continuous and
single-rate sampled measurements: Both y2 and y3 are
sampled at the same uniform rate of 20×∆t. The discrete
KF is applied after approximating the continuous model
and measurement y1 using discretization step ∆t. The
continuous KF (Approach 2) is implemented after fitting
discrete measurements to a polynomial.

The first row of Fig. 2 compares the theoretical mean
of x2, x3 and x4 with the sample mean obtained for the
three filter and shows that the optimal filter results are
most accurate. The second row gives the RMSE for all
filters, which shows that the optimal filter has the smallest
RMSE, as expected. The third row gives the filter-generated
values of RMSE. In the case of the optimal filter, the filter-
generated values closely agree with the values obtained
using ensemble averaging. The two alternative filters over-
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Fig. 2. Case 1.

estimate the goodness of generated state estimates, with
Approach 1 giving the largest overestimation. Such behavior
of the discrete KF is due to the approximation [6], which
makes Q(ti) too small, leading to unjustifiably low Kalman
gain and excessive reliance of the mismatched model in
generating the state estimates. Using filter “tuning,” which
would require a substantial increase in Q, the discrete KF
could be adjusted to yield satisfactory results. Note that to
correctly tune discrete and Kalman-Bucy filters, the optimal
results must be known.

Case 2: Continuous process with continuous and mul-
tirate measurements: In this case, measurement y2 is sam-
pled every 20×∆t, while y3 is available every 40×∆t units.
A multirate discrete filter is implemented following [2]. To
apply the continuous Kalman-Bucy filter, the linear extrap-
olation was used to approximate y2 and y3 as piecewise
linear functions, which may introduces significant errors.
Fig. 3 shows the results for all filters, which indicate that:

1. The gain of the discrete KF is too small (consequence
of approximations), which leads to a biased estimation
for x4. At the same time, the estimation error covariance
generated by the discrete KF (not shown) continues to have
unjustifiably low values.

2. The optimal filter has a superior performance in terms
of RMSE.

3. In cases 2 and 3, close to the initial time, the Kalman-
Bucy filter estimates have the smallest RMSE, which is the
consequence of using true values of x2 and x3 before the
first measurements y2 and y3 become available.

Case 3: Continuous process with continuous and ran-
domly sampled measurements: In this case, y2 is sampled
every N1dt, where the integer N1 is obtained by rounding
N1=(20+4ω); y3 is sampled at N2dt, where N2 is obtained
by rounding (40+8ω), where ω∈N(0, 1) and dt = 0.05.
the implementation of the discrete and continuous KF was
similar to Case 2. Figure 4 shows that the optimal filter
continues to have the best performance in terms of RMSE.

Case 4: Continuous process with continuous and mul-
tirate measurements subject to delays: This case is similar
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to case 2, except that y3 is delayed by 10×∆t. With time
delays, the extrapolation of sampled measurements needed
to implement the Kalman-Bucy filter leads to significant
estimation errors. For this reason, only the results of the
optimal and discrete KF are compared in this case. The
discrete KF with fixed-lag smoothing is implemented by
augmenting the state vector with delayed states [3]. Smooth-
ing process utilize the same measurements multiple times,
which improves the performance of the discrete KF, Figure
5. Note that smoothing becomes computationally expensive
with long delays, as they require the introduction of a large
augmented state vector. The discrete KF is not applicable
in the general case of time-varying delays.

VI. CONCLUSIONS

The state estimation problem for continuous processes
with continuous and sampled measurements, including mul-
tirate and randomly sampled cases, attracted considerable
attention because of its practical importance. Most of pre-
viously proposed methods can be classified as belonging
to either Approach 1 or 2, and require the approximation
of the problem at hand as the state estimation for either
discrete or continuous systems. In this paper, we develop
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an optimal (in the Kalman sense) state estimator without
reverting to an approximation as a first step of the state
estimation procedure. The derived optimal filter is the
continuous system with discontinuous inputs appearing each
time a new sampled measurement becomes available. It
can be used with an arbitrary combination of continuous,
multirate, randomly sampled or delayed measurements, and
is convenient in applications since each sampled measure-
ment is processed immediately and explicitly whene it
becomes available, thus eliminating the need for multirate
filters. The numerical Monte-Carlo experiments show that
the optimal filter produces the smallest state estimation error
(as expected), and provides accurate information about the
goodness of obtained state estimates by generating correct
estimation error covariances. The alternative methods tend
to mislead the user by suggesting higher-quality estimates
than actually achieved.

APPENDIX

Proof of Theorem 2: A vibrosolution [12], [10] is defined
as a limiting result of a series of conventional solutions
obtained with the sequence of absolutely continuous func-
tions that, in the limit, approximate discontinuous bounded
variation function µ(t) at the point of its discontinuity.
The vibrosolutions are composed of two parts describing
the effect of continuous µc(t) and discontinuous function
µd(t). The continuous part of the vibrosolution for the state
estimate m(t) and covariance P (t) (equations (17) and (17))
are easy to recover. The jumps in m(t) and P (t), caused
by the arrival of discrete measurements, are computed by
solving the following equations in differential “in the point
of discontinuity” µ ∈ [µ(ti − h)−, µ(ti − h)+]:

dm(µ)
dµ = P (µ)CT Υ[dz(µ)

dµ − Cm(µ)] (31)
dP (µ)

dµ = −P (µ)CT ΥCP (µ) (32)

where C = C(ti−h) and Υ = [H((ti−h)HT ((ti−h)]−1.
The initial condition for the equation (31) is the value of
the state estimate just prior to the arrival of the sampled
measurement: m(µ((ti − h)−)) = m((ti − h)−) = m−.
Similarly, P (µ((ti − h)−)) = P ((ti − h)−) = P−.

The equation for P (µ) is independent of m(µ) and is
solved first. It is easy to verify that the analytical solution
of (32) is given by the following equation

P (µ) = P ((ti − h)−)
×[I + CT ΥCP (P ((ti − h)−)(µ − µ((ti − h)−))]−1(33)

To verify it in the matrix case, note that for any
square A with an appropriately defined matrix inverse
dA−1

dt =−A−1 dA
dt A−1, which is proved by the following

sequence of equalities: dA(t)A−1(t)
dt = dA

dt A−1 + AdA−1

dt =
dI
dt = 0.

The jumps in P are computed by evaluating (33) before

and after the arrival of a sampled measurement at t = ti−h:

δP ((ti − h)+) = P
(
µ((ti − h)+)

) − P
(
µ((ti − h)−)

)
= P

(
(ti − h)+

) − P
(
(ti − h)−

)
= P−[I + CT ΥCP−]−1 − P−

= −P−[I + CT ΥCP−]−1CT ΥCP−

where we took into account that [I+A]−1-I=-A[I+A]−1,
and that sampled measurements are modeled using ∆µi=1.

With found P , the directly verification shows that the
analytical solution of (31) is given by

m(µ) = m(µ((ti − h)−))
+P (µ)CTΥ[y(µ)−Cm(µ((ti − h)−))(µ−µ((ti−h)−))](34)

The jumps in the optimal state estimates caused by the
arrival of discrete measurements can now be computed as
by evaluating (34) at m

(
µ((ti − h)+)

)
= m

(
(ti − h)+

)
:

δm((ti − h)+) = m
(
µ((ti − h)+)

) − m
(
µ((ti − h)−)

)
= m

(
(ti − h)+

) − m
(
(ti − h)−

)
=P ((ti − h)+)CT Υ[y((ti − h)+) −Cm−)∆µi]
=P−[I+CT ΥCP−]−1CT Υ[y((ti − h)+)−Cm−] (35)

Following Proposition 2 in [11], the result of Theorem
2, equations (17)–(18), are immediately recovered, thus
completing the proof.
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of conditional laws of Itô-Volterra processes. In Statistics and Control
of Stochastic Processes, pages 179–196. New York, 1985.

[9] L. E. Shaikhet. On an optimal control problem of partly observable
stochastic Volterra processes. Problems of Control and Inform.
Theory, 16:439–448, 1987.

[10] H. Zhang, M. V. Basin, and M. Skliar. An Itô-Volterra optimal state
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