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Abstract— Empirical balanced truncation is considered as
an approach for deriving reduced-order models of large-scale
nonlinear systems that are of interest in the design of feedback
control systems. Empirical balanced truncation is related to
the widely-applied Proper Orthogonal Decomposition (POD)
methodology and yet may be better suited for closed-loop
control because order reduction is based on the system’s state-
to-output interaction along with its input-to-state interaction,
not just the latter. Refinements to the scheme originally
proposed in the literature are presented leading to reduced
data requirements that may become significant for applications
such as aerodynamic flow control. Towards that end, the
1−dimensional Burgers’ equation is used to validate the basic
ideas, implementation details, and applicability to closed-loop
control system design.

I. INTRODUCTION

There has been a recent surge in basic and applied
research on reduced-order modeling and control of dis-
tributed parameter systems in general and aerodynamic flow
control problems in particular. Much of this effort can be
classified according to ‘design-then-reduce’ and ‘reduce-
then-design’ philosophies. In the former approach, a high-
order controller is first designed on the basis of a large-scale
plant model and is subsequently approximated by a reduced-
order controller. In the latter approach, order reduction is
first performed on the large-scale plant model and then a
reduced-order controller is designed on the basis of the
reduced-order plant model. In most of the work in either
category, the Karhunen-Loève decomposition, also known
as Proper Orthogonal Decomposition (POD), is the key tool
for performing model reduction on either plant or controller.

The design-then-reduce approach is motivated by the
fact that the ultimate goal in designing a reduced-order
controller is the accurate approximation of closed-loop
behavior. For this reason, it is potentially ill-advised to
discard plant information as the first step in the design
process, as argued in [1]. Consequently, the feedback loop
must first be closed using the high-order plant and con-
troller, with controller order reduction then performed with
respect to a measure of closed-loop approximation quality.
In the context of distributed parameter systems, a design-
then-reduce approach has been successfully applied to a
variety of systems described by partial differential equations
([5], [6], [7], [9], [10]). In this work, Proper Orthogonal
Decomposition is applied to the functional gains of an
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infinite dimensional control law to yield a reduced-order
controller.

A reduce-then-design strategy is applicable in cases
where it is known that the internal dynamics of a large-scale
system are either well-approximated by a small number
of modes or have negligible impact on the behavior from
actuated input to measured output. Also, model reduction
may be a necessary first step in cases where the construction
of high-order controllers is computationally intractable.
Numerous flow control studies have been performed using
Proper Orthogonal Decomposition to first generate reduced-
order flow field models. A number of works by various
researchers using POD have indicated that such techniques
can make use of experimentally derived data to generate
reduced-order flow field models that are directly amenable
to control design ([2], [13], [14], [15], [16], [18], [20],
[21], [24], [25], [26]). POD has also been used success-
fully generate reduced-order models for other distributed
parameter systems ([3], [23]). Another interesting approach
bases model reduction on a time scale separation property
of the system dynamics whereby the “slow” dominant
modes correspond to a low-dimensional positively invariant
manifold called an inertial manifold ([4], [8], [12], [11]),
and methods for the computation of approximate inertial
manifolds are presented.

A model reduction technique bearing some resemblance
to POD employs balanced truncation ([17]) to extract a
reduced-order model that accurately reproduces the large-
scale system’s interaction between its inputs (actuators)
and measurements (sensors). The approach is based upon
the work of Moore ([19]) except that empirically-derived
controllability and observability gramians are used in place
of their analytically-derived counterparts. As proposed in
[17], separate sets of experiments/simulations are required
to calculate the respective gramian. First, the state response
to impulsive or otherwise sufficiently rich excitations for
zero initial conditions is used to construct an emprical
controllability gramian. Second, the output response for
zero input across a large set of initial states leads to
the construction of an empirical observability gramian. In
contrast, POD as implemented in the references cited above
does not consider the interaction between the system state
and those sensed variables that are available for feedback in
a closed-loop control system. Consequently, order reduction
based on measurements that only characterize the input-to-
state interaction may inadvertently fail to capture dynamic
input-output behavior that is critical from the standpoint of
closing the loop between sensors and actuators.

This paper considers empirical balanced truncation ap-
plied to the problem of reduced-order modeling for closed-
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loop control. Refinements to the originally proposed scheme
are presented that impose a significantly lighter require-
ment on the data needed and the manner in which it is
collected. The approach is applied to the 1−dimensional
Burgers’ equation, a partial differential equation in one
spatial dimension that possesses features comparable to the
Navier-Stokes equations governing fluid flow and yet lends
itself to simulation and computation in a desktop computing
environment.

The remainder of the paper is organized as follows. Sec-
tion II introduces the Burgers’ equation example. Section
III presents the requisite background material for linear sys-
tems upon which the aforementioned refinements are based.
Section IV considers empirical balanced truncation applied
to nonlinear systems. Section V discusses the application
of this technique to the Burgers’ equation example. Finally,
concluding remarks are offered in Section VI.

II. MOTIVATING EXAMPLE

We consider the 1−dimensional Burgers’ equation on the
spatial domain Ω = [0, 1]

wt(t, x) = κwxx(t, x) − w(t, x)wx(t, x) + u(t, x) (1)

with initial condition w(0, x) = w0(x). The distributed
control term is formulated as

u(t, x) = u1(t)b1(x) + u2(t)b2(x)

and we also include a 2−dimensional measurement given
by

yi(t) =

∫
Ω

ci(x)w(t, x)dx i = 1, 2

In what follows, we set κ = 0.01 and take

b1(x) = c1(x) = sin2(πx) b2(x) = c2(x) = sin2(2πx)

In terms of a finite set of basis functions {ϕ(x), i =
1, . . . , n}, the solution to (1) can be approximated via

w(t, x) ≈

n∑
i=1

wi(t)ϕi(x)

In this example, we use n = 99 triangular basis functions
corresponding to a uniform discretization of Ω with a spatial
increment of ∆x = 0.01.

A Galerkin-type projection of (1) onto this basis yields
an n−dimensional ordinary differential equation (ODE) of
the form

Mẇ(t) = Kw(t) + N(w(t)) + Lu(t) w(0) = w0

y(t) = Cw(t)

in which the coefficient matrices have entries

mij =
∫
Ω

ϕi(x)ϕj(x)dx kij = −κ
∫
Ω

ϕ′
i(x)ϕ′

j(x)dx

�ij =
∫
Ω

ϕi(x)bj(x)dx cij =
∫
Ω

ci(x)ϕj(x)dx

and the nonlinear term is specified by quadratic component
functions

nk(w) = wT Nkw nk
ij =

∫
Ω

ϕi(x)ϕ′
j(x)ϕk(x)dx

The mass matrix M is invertible and so the preceding ODE
can be reformulated as

ẇ(t) = Aw(t) + G(w(t)) + Bu(t) w(0) = w0

y(t) = Cw(t) (2)

This finite-dimensional approximation to (1) will constitute
the high-order model to which empirical balanced trunca-
tion will be applied in the sequel.

III. EMPIRICAL BALANCED TRUNCATION FOR
LINEAR SYSTEMS

It is well-known that a stable, minimal, linear discrete-
time m−input, p−output, n−dimensional state equation

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

with reachability gramian W and observability gramian M

can be transformed via x(k) = Tz(k) into one for which
the transformed gramians become equal and diagonal. That
is,

Ŵ = T−1WT−T = Σ M̂ = TT MT = Σ

in which Σ is a diagonal matrix displaying the system’s
Hankel singular values. Towards developing a procedure for
empirical balancing, we first consider an approximate bal-
ancing problem involving the q−step reachability gramian

Wq = RqR
T
q where Rq =

[
B AB · · · Aq−1B

]
and �−step observability gramian

M� = OT
� O� where O� =

⎡
⎢⎢⎢⎣

C

CA
...

CA�−1

⎤
⎥⎥⎥⎦

for positive integers q and � to be specified shortly. Note
that

lim
q→∞

Wq = W and lim
�→∞

M� = M.

The goal now is to construct a nonsingular coordinate
transformation matrix T yielding

Ŵq = T−1WqT
−T = Σ1 = TT M�T = M̂�

in which the diagonal matrix Σ1 displays the nonzero
singular values of the �p × qm Hankel matrix

H�q = O�Rq

=

⎡
⎢⎢⎢⎣

CB CAB · · · CAq−1B

CAB CA2B · · · CAqB
...

...
. . .

...
CA�−1B CA�B · · · CA�+q−2B)

⎤
⎥⎥⎥⎦
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for integers q and � chosen so that

rank H�q = rank H�+1,q+j = n ∀j ≥ 1

which, following a standard result [22], is always possible.
In terms of the singular value decomposition (SVD) of

H�q

H�q = UΣV T =
[

U1 U2

] [
Σ1 0
0 0

] [
V T

1

V T
2

]

we construct T according to

T = RqV1Σ
−1/2

1 .

It is straightforward to verify that T−1 = Σ
−1/2

1 UT
1 O� from

which

Ŵq = T−1WqT
−T

=
(
Σ

−1/2

1 UT
1 O�

)(
RqR

T
q

)(
OT

� U1Σ
−1/2

)

= Σ
−1/2

1 UT
1 H�qH

T
�qU1Σ

−1/2

1

= Σ1

and

M̂� = TT M�T

=
(
Σ

−1/2

1 V T
1 RT

q

)
M�

(
RqV1Σ

−1/2

1

)

= Σ
−1/2

1 V T
1 HT

�qH�qV1Σ
−1/2

1

= Σ1

as desired.
Balanced truncation can subsequently be performed in

the usual way by discarding states in the approximately bal-
anced realization that are both weakly reachable and weakly
observable as dictated by the relative sizes of the Hankel
singular values. Suppose that with Σ1 = diag{σ1, . . . , σn},

σ1 ≥ σ2 ≥ · · · ≥ σn > 0,

and that for some r, σr � σr+1. As a result Σ1 can be
partitioned according to

Σ1 =

[
Σr 0
0 Σn−r

]

in which

Σr = diag {σ1, . . . , σr} Σn−r = diag {σr+1, . . . , σn}

along with a conformable column-wise partitioning of U1

and V1

U1 =
[

Ur Un−r

]
V1 =

[
Vr Vn−r

]
.

This leads to the construction of an immersion/projection
pair

Tr = RqVrΣ
−1/2
r T †

r = Σ−1/2
r UT

r O�

satisfying T †T = I from which a reduced-order
r−dimensional state equation is specified by the coefficient
matrices

Ar = T †
r ATr Br = T †

r B Cr = CTr.

The projection is also given by T †
r = Σ

−1/2
r (RqVr)

†.
Thus, the immersion/projection pair and hence the reduced-
order model can be computed directly from the reachability
matrix Rq and the SVD of the Hankel matrix H�q in
contrast to constructions involving the reachability and
observability gramians or their finite step approximations. In
the context of empirical balanced truncation, this becomes
significant with respect to simulation/experimentation and
data collection requirements. Rather than separately esti-
mating the reachability gramian from the state response
for a sufficiently rich input signal and then estimating
the observability gramian based on the unforced output
response measured across a large set of initial states, the
above constructions require estimates of the input-state
Markov parameters

AkB, k = 0, . . . , q − 1

and input-output Markov parameters

CAkB, k = 0, . . . , � + q − 2

that can be computed from a single simulation/experiment
in which a sufficiently rich input signal is applied and the
state and output responses are collected. For example, the
Discrete Fourier Transform (DFT) can be used to map the
time domain data into spectral densities from which fre-
quency response estimates can be calculated using reliable
signal processing techniques. The Markov parameters can
then be obtained by applying the Inverse Discrete Fourier
Transform (IDFT) to the frequency response estimates.

IV. EMPIRICAL MODEL REDUCTION FOR
NONLINEAR SYSTEMS

In this section, we apply the linear constructions of the
preceding section to nonlinear systems. As in [17], the
rationale for doing so is that linear subspace approximations
to exact submanifolds associated with nonlinear reacha-
bility and (un)observabilty require only standard matrix
manipulations utilizing simulation/experimental data. The
computational advantages of the scheme presented here
carry over directly to the nonlinear setting.

For the purpose of assessing the utility of this reduced-
order modeling approach for closed-loop control, a non-
linear controller design is presented. The controller is
observer-based with observer and feedback gains con-
structed using linear LQG theory based on the linearization
of the nonlinear reduced-order model about a nominal
equilibrium. The observer contains a copy of the nonlinear
reduced-order model for improved regulation performance.

A. Reduced-Order Modeling

Consider an n−dimensional nonlinear system described
by

ẋ(t) = f(x(t), u(t)) (3)

y(t) = h(x(t))
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and assumed to have an equilibrium at (x, u, y) = (0, 0, 0)
so that f(0, 0) = 0 and h(0) = 0. The reduced-order
model is derived from (3) via the construction of an
immersion/projection pair

x = Trxr xr = T †
r x

following the procedure of the preceding section and result-
ing in

ẋr(t) = T †
r f(Trxr(t), u(t)) (4)

yr(t) = h(Trxr(t))

The linearization of (3) about the equilibrium (x, u, y) =
(0, 0, 0) can be represented by the triple (A,B,C) in which

A =
∂f

∂x
(0, 0) B =

∂f

∂u
(0, 0) C =

∂h

∂x
(0) (5)

The reduced-order model (4), for convenience written as

ẋr(t) = fr(xr(t), u(t)) (6)

yr(t) = hr(xr(t))

has the linearization about (xr, u, y) = (0, 0, 0) represented
by

Ar =
∂fr

∂xr
(0, 0) Br =

∂fr

∂u
(0, 0) Cr =

∂hr

∂xr
(0) (7)

These two linearizations are related via

Ar = T †
r ATr Br = T †

r B Cr = CTr.

B. Controller Design

For simplicity, we consider reduced-order controllers
with the following observer-based structure

ẋc(t) = fr(xc(t),−Frxc(t)) + Lr (y(t) − hr(xc(t)))

u(t) = −Frxc(t) (8)

in which the gain matrices Fr and Lr are designed us-
ing standard tools for linear LQG synthesis based on the
reduced-order linearization (7). Local exponential stability
of the feedback interconnection of the reduced-order non-
linear model (6) and the reduced-order controller (8) holds
provided the 2r × 2r matrix[

Ar −BrFr

LrCr Ar − BrFr − LrCr

]

has all eigenvalues confined to the open left half of the
complex plane. As we are ultimately interested in local
exponential stability of the feedback interconnection of
the large-scale nonlinear system (3) and the reduced-order
controller (8), a comparable eigenvalue condition must hold
for the (n + r) × (n + r) matrix[

A −BFr

LrC Ar − BrFr − LrCr

]
(9)

which involves the full-order linearization (5).

V. RESULTS

A 1024 point sequence of normally distributed 2 × 1
random vectors was passed through a zero-order hold device
with sample period ∆t = 0.01s resulting in a random
input signal with a bandwidth of 50Hz. This, in turn, was
applied to the large-scale model (2) and the state and
output responses were sampled every ∆t = 0.01s. It is
important to note, in support of the previous claim that
the methodology presented in this paper offers significantly
reduced data requirements as compared with the originally
proposed scheme [17], this single simulation yields the data
required to generate a reduced-order model.

An empirical Hankel matrix H�q was constructed for
parameter values � = 200 and q = 300. Based upon the
Hankel singular values, plotted in Fig. 1, the dimension
of the reduced-order model was chosen to be r = 9.
The associated mode shapes are shown in Fig. 2 and the
9th−order model has the form

ẇr(t) = Arwr(t) + Gr(wr(t)) + Bru(t) (10)

yr(t) = Crwr(t)

in which the nonlinear term has quadratic dependence on
the reduced-order state.

For validation purposes, the full and reduced-order model
responses were compared for frequency sweep inputs. Over
a 2 second simulation interval, the frequency of Input 1
ranged from 0.1 to 10 Hz while the frequency of Input 2
ranged from 0.1 to 1 Hz. The output responses of the full
and reduced-order model are shown in Fig. 3. The full-
order state response is shown in Fig. 4 and the reduced-
order state response mapped into the full-order state space
via the immersion T is shown in Fig. 5. These responses
indicate that the reduced-order model reproduces the full-
order responses with reasonable accuracy over a range of
input frequencies.

Following the discussion in Section IV-B, a reduced-order
controller of the form

ẇc(t) =
(
Ar − BrFr

)
wc(t) + Gr(wc(t))

+Lr

(
y(t) − Crwc(t)

)
u(t) = −Frwr(t) (11)

was constructed. Note that the quadratic nonlinearity is du-
plicated in the controller as called for by (8). A similar strat-
egy was adopted in [5] specifically for the 1−dimensional
Burgers’ equation, albeit in a design-then-reduce context.
The gains Fr and Lr were constructed using standard LQG
techniques for linear time-invariant systems and it was
verified that the 108 × 108 matrix (9) was Hurwitz.

Simulations were conducted for the feedback intercon-
nection of the full-order nonlinear system (2) and the
reduced-order nonlinear controller (11). The initial state of
the full-order model was chosen as

wi(0) = sin2(2πi∆x) i = 1, . . . , 99
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and the initial state of the controller was set to a
9−dimensional zero vector. The output response of the full-
order system is shown in Fig. 6 and the state-response of the
full-order system is shown in Fig. 7. These plots depict good
regulation performance as predicted by that of the linear
LQG controller designed on the basis of the linearization
of the reduced-order model (10).

VI. CONCLUDING REMARKS

Empirical balanced truncation has been considered as
an approach for deriving reduced-order models of large-
scale nonlinear systems that are of interest in a ‘reduce-
then-design’ context. Like Proper Orthogonal Decomposi-
tion (POD), empirical balanced truncation is a data-based
approach that can be implemented via standard matrix
computations. However, since order reduction is based on
the system’s input-output behavior rather than solely on
its input-state interaction, empirical balanced truncation is
better suited for closed-loop control.

Refinements to the scheme originally proposed in [17]
have been presented that lead to reduced data require-
ments that may become significant for applications such
as aerodynamic flow control. Essentially, the balancing
transformation is constructed from input-state and input-
output Markov parameters that can be identified from state
and output measurements collected in a single experi-
ment/simulation. A particular advantage of this approach
is that, since an empirical observability gramian is not
required, the need to preset the system’s initial state over a
set that spans the full-order state-space is eliminated.

The approach has been applied with favorable results to
the 1−dimensional Burgers’ equation, a partial differential
equation in one spatial dimension that possesses features
comparable to the Navier-Stokes equations governing fluid
flow. The application to more realistic aerodynamic flow
control problems is a topic of on-going investigation.
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Fig. 1 Hankel singular values.
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Fig. 2 Reduced-order mode shapes.
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Fig. 3 Full-order system outputs (Solid) vs. reduced-order
model outputs (Dashed).

Fig. 4 Full-order system state.

Fig. 5 Reduced-order model state with immersion.
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Fig. 6 Full-order system outputs with reduced-order
controller.

Fig. 7 Full-order system state with reduced-order
controller.
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