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Abstract— Control of nonlinear systems preceded by un-
known hysteresis nonlinearities is a challenging task and has
received great attention recently due to increasing industrial
demands. In the literature, many mathematical models have
been proposed to describe the hysteresis. The challenge ad-
dressed here is how to fuse those hysteresis models with
available robust control techniques to have the basic require-
ment of stability of the system. The purpose of the paper
is to show such a possibility by using the Prandtl-Ishlinskii
(PI) hysteresis model. An adaptive variable structure control
approach, serving as an illustration, is fused with the PI model
without necessarily constructing a hysteresis inverse. The
global stability of the system and tracking a desired trajectory
to a certain precision are achieved. Simulations performed
on a nonlinear system illustrate and further validate the
effectiveness of the proposed approach.

I. INTRODUCTION

The hysteresis phenomenon occurs in all the smart
material-based actuators, such as piezoceramics and shape
memory alloys [1]. When a nonlinear plant is preceded by
the hysteresis nonlinearity, the system usually exhibits unde-
sirable inaccuracies or oscillations and even instability [15]
due to the nondifferentiable and nonmemoryless character
of the hysteresis. The development of control techniques
to mitigate the effects of hystereses has been studied for
decades and has recently re-attracted significant attention,
as can be seen in [10] and the references therein. Much
of this renewed interest is a direct consequence of the
importance of hysteresis in current applications. Interest
in studying dynamic systems with actuator hysteresis is
also motivated by the fact that they are nonlinear systems
with nonsmooth nonlinearities for which traditional control
methods are insufficient and so requiring development of
new approaches [16]. Development of a general frame for
control of a system in the presence of unknown hysteresis
nonlinearities is a quite challenging task.

To address such a challenge, it necessitates to char-
acterize these nonlinearities. Hysteresis models can be
roughly classified into physics based models and purely
phenomenological models. Physics-based models are built
on first principles of physics. Phenomenological models,
on the other hand, are used to produce behaviors similar
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to those physical systems without necessarily providing
physical insight into the problems. The basic idea consists
of the modeling of the real complex hysteresis nonlinearities
by the weighted aggregate effect of all possible so-called el-
ementary hysteresis operators. Elementary hysteresis opera-
tors are non-complex hysteretic nonlinearities with a simple
mathematical structure. Models set up by the composition
of operators of play and stop type are referred to as Prandtl-
Ishlinskii models in the literature (see, e.g., [6], [18]). The
reader may refer to [9] for a recent review for the hysteresis
models.

With all the developed hysteresis models, it is by nature
to seek the way to fuse those hysteresis models with
available robust control techniques to mitigate the effects of
hysteresis, especially when the hystereis is unknown, which
is a typical case in the practical applications. However,
the discussions on the fusion of the available hysteresis
models with the available control techniques is surprisingly
spare [14] in the literature. The most common approach is
to construct an inverse operator, which was pioneered by
Tao and Kokotovic [15], and the reader may refer to, for
instance, [4], [3], [7] and references therein.

The challenge addressed here is to fuse those hysteresis
models with available control techniques to have the basic
requirement of stability of the system. As an illustration,
in this paper we show such a possibility by fusing the
Prandtl-Ishlinskii models with the adaptive variable struc-
ture control approach to mitigate the effects of the hysteresis
without constructing inverse hysteresis nonlinearity. The
proposed control law ensures the global stability of the
adaptive system and achieves both stabilization and strict
tracking precision. Simulations performed on a nonlinear
system illustrate and further validate the effectiveness of the
proposed approach. The proposed method can be observed
as an initial step to to fuse the available hysteresis models
with available control techniques.

II. PROBLEM STATEMENT

Consider a controlled system consisting of a nonlinear
plant preceded by an actuator with hysteresis nonlinearity,
that is, the hysteresis is presented as an input of the
nonlinear plant. The hysteresis is denoted as an operator

w(t) = P [v](t) (1)

with v(t) as the input and w(t) as the output. The operator
P [v] will be discussed in detail in the forthcoming section.
The nonlinear dynamic system being preceded by the above
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hysteresis is described in the canonical form as,

x(n)(t) +
k∑

i=1

aiYi(x(t), ẋ(t), ..., x(n−1)(t)) = bw(t) (2)

where Yi are known continuous, linear or nonlinear func-
tions. Parameters ai and control gain b are constants. It
is a common assumption that the sign of b is known.
Without losing generality, we assume b > 0. It should be
noted that more general classes of nonlinear systems can be
transformed into this structure [5].

The control objective is to design a control law for v(t)
in (1), to force the plant state x(t) to follow a specified
desired trajectory, xd(t), i.e., x(t) → xd(t) as t → ∞.

Through the paper the following assumption is made:
Assumption: The desired trajectory xd =

[xd, ẋd, ..., x
(n−1)
d ]T is continuous. Furthermore,

[xT
d , x

(n)
d ]T ∈ Ωd ⊂ Rn+1 with Ωd a compact set

and is available.

III. HYSTERESIS MODELS

As mentioned in the introduction, in this paper we will
focus on the Prandtl-Ishlinskii model to illustrate the fusion
of the Prandtl-Ishlinskii models with the adaptive variable
structure control approach to mitigate the effects of the
hysteresis.

A. Stop and Play Operators

Before giving Prandtl-Ishlinskii model, we list below
some basic well-known hysteresis operators. A detailed
discussion on this subject can be found in the monographs
[2], [6], [18]. One of the basic elements of the theory
of hysteresis operators is expressed by a stop operator,
w(t) = Er[v](t), with threshold r.

Analytically, suppose Cm[0, tE ] is the space of piece-
wise monotone continuous functions, for any input v(t) ∈
Cm[0, tE ], let er : R �→ R be defined by

er(v) = min(r,max(−r, v)). (3)

Then, for any initial value 1 w−1 ∈ R and r ≥ 0, the stop
operator Er[·;w−1] is defined as [2]

Er [v;w−1](0) = er(v(0) − w−1),
Er [v;w−1](t) = er(v(t) − v(ti) + Er[v;w−1](ti)),

(4)
for ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1, where 0 = t0 <
t1 < · · · < tN = tE is a partition of [0, tE ] such that
the function v is monotone on each of the sub-intervals
[ti, ti+1]. The argument of the operator is written in square
brackets to indicate the functional dependence, since it maps
a function to a function. The stop operator however is
mainly characterized by its threshold parameter r which
determines the hight of the hysteresis region in the (v, w)
plane.,

There is another basic hysteresis nonlinearity operator,
called the play operator [2]. For r ≥ 0, the play operator

1w−1 represent the value of v − w before v(0) is applied at time t=0.

Fr[·;w−1] : Cm[0, tE ] × w−1 �→ Cm[0, tE ] for a general
initial value2 w−1 ∈ R, is defined by

Fr [v;w−1](0) = fr(v(0), w−1),
Fr [v;w−1](t) = fr(v(t), Fr[v;w−1](ti)),

(5)

for ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1, with

fr(v, w) = max(v − r,min(v + r, w)). (6)

where the partition 0 = t0 < t1 < · · · < tN = tE is the
same as defined for the stop operator.

From the definitions given in (4) and (5), it can be proved
[2] that the operator Fr is the complement of Er, i.e., they
are closely related through the equation

Er[v](t) + Fr[v](t) = v(t), (7)

for any piece-wise monotone input function v and r ≥ 0.
In the sequel, we will simply write Er[v] or Fr[v] to

denote Er[v;w−1] or Fr[v;w−1] so long as doing so does
not affect the proof. Due to the natural of the play and
stop operators, above discussions are defined on the space
Cm[0, tE ] of continuous and piecewise monotone functions;
however, they can also be extended to the space C[0, tE ]
of continuous functions.

B. Prandtl-Ishlinskii Model

We are ready to introduce the Prandtl-Ishlinskii model de-
fined by the stop or play hysteresis operators. The Prandtl-
Ishlinskii model [12] was introduced to formulate the
elastic-plastic behavior through a weighted superposition of
basic elastic-plastic elements Er[v], or stop as follows:

w(t) =
∫ R

0

p(r)Er[v](t)dr, (8)

where p(r) is a given density function, satisfying p(r) ≥ 0
with

∫ ∞
rp(r)dr < ∞, and is expected to be identified

from experimental data. With the defined density function,
this operator maps C[t0,∞) into C[t0,∞),i.e., Lipschitz
continuous inputs will yield Lipschitz continuous outputs
[6]. Since the density function p(r) vanishes for large values
of r, the choice of R = ∞ as the upper limit of integration
in the literature is just a matter of convenience [2].

It can be seen that the stop operator Er serves as the
building element in the Prandtl-Ishlinskii model (8). We
should mention that the stop and play operators are rate-
independent and the Prandtl-Ishlinskii model (8) is also rate-
independent. As an illustration, Fig.1 shows w(t) generated
by model given in (8), with p(r) = e−0.067(r−1)2 , r ∈
[0, 10], and input v(t) = 7sin(3t)/(1 + t), t ∈ [0, 2π] with
w−1 = 0. This numerical result shows that the Prandtl-
Ishlinskii model (8) indeed generates the hysteresis curves
and is well-suited to model the rate-independent hysteretic
behavior.

Since the operator Fr is the complement of Er, the
Prandtl-Ishlinskii model can also be expressed through the

2w−1 represent the initial state before v(0) is applied at time t=0.
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Fig. 1. Hysteresis curves given by (8)

play operator. Using Equation (7) and substituting Er in
(8) by Fr, the Prandtl-Ishlinskii model defined by the play
hysteresis operator is expressed as follows:

w(t) = p0v(t) −
∫ R

0

p(r)Fr[v](t)dr, (9)

where p0 =
∫ R

0
p(r)dr is constant which depends on

the density function. It should be noted that Equation (9)
decomposes the hysteresis behavior into two terms. The first
term describes the linear reversible part and the second term
describes the nonlinear hysteretic part. This decomposition
is crucial since it facilitates the utilization of the currently
available control techniques for the controller design.

IV. CONTROLLER DESIGN

In this section, instead of constructing the inverse of
the hysteresis model to mimic the hysteresis effects as
frequently done in the literature, we shall propose, as an
illustration, an adaptive variable structure controller for
plants of the form described by (2) preceded by hysteresis
described by the Prandtl-Ishlinskii model. The proposed
controller will lead to global stability and yield tracking
within a desired precision.

Consider the Prandtl-Ishlinskii model expressed by the
play operator given in (9), the hysteresis output w(t) can
be expressed as

w(t) = p0v(t) − d[v](t), (10)

where

d[v](t) =
∫ R

0

p(r)Fr[v](t)dr, (11)

with p0 =
∫ R

0
p(r)dr.

Using the hysteresis model of (10), the system (2) be-
comes,

x(n)(t) +
k∑

i=1

aiYi(x(t), ẋ(t), ..., x(n−1)(t))

= b{p0v(t) − d[v](t)}, (12)

which yields a linear relation to the input signal v(t) plus
a shifting term bd[v].

Remark: It is clear that the first term on the right-hand
side of (12) is expressed as a linear function of the control
signal v(t). In this case, it is possible to fuse the currently
available controller design techniques with the hysteresis
model for the controller design. It will become clear later,
it is in fact this structure that makes it possible to design the
adaptive variable structure control algorithm. This was also
our primary motivation behind using the Prandtl-Ishlinskii
model.

In the following development, we shall propose an adap-
tive variable structure controller for (12).

Equation (12) can be re-expressed as

ẋ1 = x2

...

ẋn−1 = xn

ẋn = −
k∑

i=1

aiYi(x1(t), x2(t), ..., xn−1(t))

+b{p0v(t) − d[v](t)}
= aT Y + bpv(t) − db[v](t) (13)

where x1(t) = x(t), x2(t) = ẋ(t), · · · , xn(t) = x(n−1)(t),
a = [−a1,−a2, · · · ,−ak]T , Y = [Y1, Y2, · · · , Yk]T , bp =
bp0, and db[v](t) =

∫ R

0
pb(r)Fr[v](t)dr, with pb(r) =

bp(r).
In presenting the developed adaptive variable structure

control law, the following definitions are required:

ã(t) = a − â(t), (14)

φ̃(t) = φ − φ̂(t), (15)

p̃b(t, r) = pb(r) − p̂b(t, r), for all r ∈ [0, R], (16)

â is an estimate of a, φ̂ is an estimate of φ, which is defined
as φ

∆= (bp)−1, p̂b(t, r) is an estimate of the density function
pb(r). Let

B(v(t)) ∆=
∫ R

0

pb(r)|Fr[v](t)|dr, (17)

and the estimation B̂(t) is given by
∫ R

0
p̂b(t, r)|Fr[v](t)|dr,

which leads to

B̃(t) =
∫ R

0

(p̂b(t, r) − pb(r))|Fr[v](t)|dr. (18)

Given the plant and hysteresis model subject to the
assumptions described above, we propose the following
control law:

v(t) = φ̂(t)v1(t) (19)

with

v1(t) = −cnzn − zn−1 − âT Y − sgn(zn)B̂ + x
(n)
d + α̇n−1

(20)
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where

z1(t) = x1(t) − xd(t)

zi = xi(t) − x
(i−1)
d − αi−1, i = 2, 3, · · · , n(21)

α1(t) = −c1z1(t)
αi(t) = −cizi(t) − zi−1(t) + α̇i−1,

i = 2, 3, · · · , n − 1 (22)

where ci, i = 1, 2, · · · , n−1, are positive design parameters.
The parameters φ̂, â, and function p̂b(t, r) will be updated
by the following adaptation laws

˙̂a = γY zn (23)
˙̂
φ = −ηv1zn (24)

∂

∂t
p̂b(t, r) = q|Fr[v](t)||zn|, for r ∈ [0, R], (25)

where parameters γ, η and q are positive constants deter-
mining the rates of the adaptations.

Remarks:
1) The term uN (t) represents the compensation compo-

nent for the function d[v](t). Unlike the traditional adaptive
variable structure controller designs, where d[v](t) is either
assumed to be bounded by a constant or a known function
[17], d[v](t) is presented as an integral equation, and there
is no assumption on its boundedness. Thanks to the density
function p(r), which is not a time function, we can thus treat
this term as a parameter of the hysteresis model and develop
an estimated law for it. This is crucial for the success of
the adaptive law design.

2) For the calculation of B̂(t) =
∫ R

0
p̂(r, t) |Fr [v](t)|

p0min
dr in

the implementation, using numerical technique, we can sim-
ply replace the integration with the sum by dividing R into
small intervals, i.e, B̂(t) =

∑N−1
l=0 p̂(l∆r, t) |Fl∆r [v](t)|

p0min
∆r,

where N determines the size of the intervals as ∆r = R/N .
The selection of the size of the intervals depends on the
accuracy requirement. As will be shown in the simulation
example, the size of the small intervals may not necessarily
be very small.

The stability of the closed-loop system described in (12),
(19) and (23)-(25) is established in the following theorem:

Theorem: For the plant given in Equation (2) with the
hysteresis (9), subject to Assumption 1, the adaptive vari-
able structure controller specified by (19) and (23)-(25)
ensures that all the closed-loop signals are bounded and
x(t) → xd(t) as t → ∞.

Proof: Using the expression (13) and the definition of zn

in (21), noticing that bpv(t) = bpφ̂v1(t) = v1(t)−bpφ̃v1(t),
one can obtain:

z1ż1 = −c1z
2
1 + z1z2

ziżi = −zi−1zi − ciz
2
i + zizi+1, i = 2, 3, · · · , n − 1

żn = −cnzn − zn−1 + ãT Y − sgn(zn)B̂
−db[v](t) − bpφ̃v1(t) (26)

To establish global boundedness, we define the following
Lyapunov function candidate

V (t) =
n∑

i=1

1
2
z2
i +

1
2γ

ãT ã +
bp

2η
φ̃2 +

1
2q

∫ R

0

p̃2
b(t, r)dr.

(27)
The derivative V̇ is given by

V̇ (t) =
n∑

i=1

ziżi +
1
γ
ãT ˙̃a +

bp

η
φ̃

˙̃
φ

+
1
q

∫ R

0

p̃b(t, r)
∂

∂t
p̃b(t, r)dr

≤ −
n∑

i=1

ciz
2
i +

1
γ
ãT ( ˙̃a + γY zn)

+
bp

η
φ̃( ˙̃

φ − ηv1zn)

−|zn|B̂ + |db[v](t)||zn|
+

∫ R

0

p̃b(t, r)|Fr[v](t)||zn|dr

≤ −
n∑

i=1

ciz
2
i +

1
γ
ãT ( ˙̃a + γY zn)

+
bp

η
φ̃( ˙̃

φ − ηv1zn)

−|zn|B̃ +
∫ R

0

p̃b(t, r)|Fr[v](t)||zn|dr

= −
n∑

i=1

ciz
2
i (28)

Equations (27) and (28) imply that V is no increasing.
Hence, zi, i=1,..,n, â, φ̂, and ∂

∂t p̂b(t, r) are bounded. By
applying the Lasalle-Yoshizawa theorem in [8] to (28), it
further follws that zi → 0, i=1,..,n as t → ∞, which implies
that limt→∞[x(t) − xd(t)] = 0.

Remark: It is now clear that the developed control strat-
egy to deal with the hysteresis nonlinearities can be applied
to many systems and may not necessarily be limited to the
system described by (2). However, we should emphasize
that our goal in this paper is to illustrate the fusion of
the hysteresis models with available control techniques in a
simpler setting that reveals its essential features.

V. SIMULATION STUDIES

In this section, we illustrate the methodology presented
in the previous sections using a simple nonlinear system
described by

ẋ = a
1 − e−x(t)

1 + e−x(t)
+ bw(t) (29)

where w(t) represents the output of the hysteresis. The
actual parameter values are b = 1 and a = 1. Without
control, i.e., v(t) = 0, so w(t) = 0, the system in (29)
is unstable since ẋ = 1−e−x(t)

1+e−x(t) > 0 for x > 0, and

ẋ = 1−e−x(t)

1+e−x(t) < 0 for x < 0. The objective is to control
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the system state x to follow the desired trajectory xd =
5sin(2t) + cos(3.2t). The hysteresis is described by

w(t) = p0v(t) −
∫ R

0

p(r)Fr[v](t)dr, (30)

where p(r) = αe−β(r−σ)2 for r ∈ [0, 100], with parameters
α = 0.5, β = 0.0014, and σ = 1.

In the simulation, the adaptive variable structure control
law (12) and (23)-(25) were used, taking c1 = 0.9368. In the
adaptation laws, we choose γ = 0.13, η = 0.05, q = 0.437,
and the initial parameters â(0) = 0.13, φ̂(0) = 0.431, and
p̂b(0, r) = 0. The initial state is chosen as x(0) = 2.05,
sample time is 0.002. We also assume that the hysteresis
internal state was w−1 = 0.07 for r ∈ [0, R] before v(0)
was applied. For the calculation of B̂(t), we replace the
integration by the sum

∑N
0 . In the simulation, we choose

N = 6000.
To illustrate the effectiveness of the proposed control

scheme, the simulation has also been conducted without
controlling the effects of hysteresis, which is implemented
by setting uN (t) = 0 in the controller v(t). This implies
that the control compensation for the hysteresis nonlinearity
is ignored. Simulation results are shown in Figs. 2-5 for
the system (12) to track the desired trajectory xd(t) =
5sin(2t) + cos(3.2t). Figs. 2 and 3 show the state trajec-
tories and tracking errors for the desired trajectory with
and without considering the effects of hysteresis, where the
solid line is the results with uN (t) �= 0 and the dotted line
is with uN (t) = 0 . Fig. 4 shows the role of signal uN (t)
and Figs. 5 and 6 show the input control signal v(t) and
the hysteresis output w(t). From Figs. 2 and 3 it illustrates
that the proposed robust controller clearly demonstrates
excellent tracking performance and the developed control
algorithm can overcome the effects of the hysteresis.

0 1 2 3 4 5 6 7 8 9 10
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x(
t),

xd
(t)

desired  trajactory xd(t)(green) and system output x(t) with uN(red) & without uN(black)

xd(t)

x(t)

x(t) with uN=0 

Fig. 2. Desired trajectory xd(t) = 5sin(2t)+cos(3.2t), system outputs
x(t) with control term uN (-.) and uN = 0 (dotted line)

VI. CONCLUSION

In practical control systems, hysteresis nonlinearity with
unknown parameters in physical components may severely
limit the performance of control. In this paper, an adaptive
variable structure control architecture is proposed for a class
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Fig. 3. Tracking errors of the state with control term uN and uN = 0
(dotted line)
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t

uN
(t)

controller term uN(t)

Fig. 4. Signal uN designed to reduce the tracking error caused by the
hysteresis

of continuous-time nonlinear dynamic systems preceded by
a hysteresis nonlinearity with the Prandtl-Ishlinskii model
presentation. The control law ensures global stability of the
entire system and achieves both stabilization and tracking
within a desired precision. Simulations performed on an
unstable nonlinear system illustrate and further validate
the effectiveness of the proposed approach. The primary
purpose of exploring new avenues to fuse the model of
hysteresis nonlinearities with the available adaptive con-
troller design methodology without constructing a hysteresis
inverse is achieved with highly promising results. The
results presented in this paper can be considered as a
stepping stone to be used towards the development of a
general control framework for the systems with hysteretic
behavior.
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