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Abstract— Controllability and reachability of a class of
linear switched systems is investigated, where the switching
signal can not be chosen freely but have to be determinated
according to a switching digraph. Based on such a digraph,
the systems are divided into two types: irreducible systems
and reducible systems. For irreducible systems, necessary
and sufficient criterion for controllability is established. It is
also proved that in this case controllability is equivalent to
reachability. As for reducible systems, only sufficient condition
is established and it is shown that in this case controllability
is not equivalent to reachability in general by two simple
examples.

I. INTRODUCTION

Many real systems in physics, biology and engineer-

ing can be modelled as hybrid systems. Linear switched

systems(LSSs) are an important class of hybrid dynamic

systems(HDSs) which consist of a family of linear time-

invariant systems and a switching law specifying the switch-

ing between them. In recent years, there has been increasing

interest in the control problems of switched systems due to

their significance both in theory and applications.

Controllability and observability of LSSs have been stud-

ied by a number of papers. Ezzine and Haddad first studied

controllability and observability for periodic type LSSs in

[1]. Sun, Ge and Lee established necessary and sufficient

geometric type criteria for controllability and observability

of general LSSs in [2]. Then they expanded the results to

the discrete-time case in [3]. Meanwhile, Xie and Wang

proved that the controllability can be realized by a single

switched sequence in [4], a direct consequence is the criteria

given by Sun, Ge and Lee in [2]. For discrete-time systems,

a corresponding result is also given by Xie and Wang

in [5]. Different from the above work, Xu and Antsaklis

investigated the reachability of a class of 2-dimensional

LSSs in [6].

A common characteristic of the models in the above

works is that the switching between two subsystems is

arbitrary. However, in many real world systems, this is not

true. For example, in an automobile power train, switching

from one gear to another gear goes step by step. Other

examples include autopilot systems, car driving systems,

etc. In order to describe this characteristic, a switching

digraph is introduced into the model. We’ll investigate the

controllability and reachability of this new class of LSSs.
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The remainder of this paper is organized as follows.

Section II gives the system description. Sections III and

IV investigate controllability and reachability of irreducible

systems and reducible systems, respectively. Finally, we

provide the conclusion in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Consider a linear switched system given by

ẋ(t) = Ar(t)x(t) + Br(t)u(t)
y(t) = Cr(t)x(t)

(1)

where x(t) ∈ R
n is the state, u(t) ∈ R

p is the input,

y(t) ∈ R
q is the output and the left continuous piecewise

constant function r(t) : R
+ → I = {1, · · · , N} is the

switching signal to be designed. (Ai, Bi, Ci), i ∈ I denote

N(< ∞) subsystems. r(t) = i implies that the subsystem

(Ai, Bi, Ci) is activated at time instant t.

Moreover, a digraph D with N nodes is given to prescribe

the switching between the subsystems(A brief introduction

of digraph theory can be seen in Appendix A). This digraph

is called as switching digraph. If there exists an arc from

node i to node j in the switching digraph D, then one can let

the switching signal change its value from i to j instantly.

This means that the switching from subsystem (Ai, Bi, Ci)
to subsystem (Aj , Bj , Cj) is admissible. On the other hand,

if there does not exist an arc from node i to node j, such

a switching is not admissible.

The adjacency matrix Γ = [γij ]N×N of the switching

digraph D is called as switching matrix. Here we assume

that the diagonal elements of Γ are all ones, i.e., γ11 =
· · · = γNN = 1, which means the switching signal can

keep the same value as long as one wills. According as

whether the corresponding switching matrix is reducible

or not, LSSs are generally divided into two categories:

reducible LSSs and irreducible LSSs.

In the paper, by system Σ, we mean the LSS given by

(1) without switching digraph, i.e., there is no restriction on

the design of switching signal for system Σ; by system ΣD,

we mean the LSS given by (1) with a switching digraph D.

Now, we introduce the concept of switching sequence to

describe the switching signal.

Definition 1 (Switching Sequence): A switching

sequence is defined as

π:={(i1, h1), (i2, h2), · · · , (iM , hM )} (2)

where M < ∞ is the length of π , im ∈ {1, · · · , N} is the

index of the mth subsystem, and hm > 0 is the dwell time
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of the mth subsystem, for m = 1, · · · ,M . Denote T[π] =
h1 + h2 + · · · + hM , and we call T[π] the period of the

switching sequence π.

Given a switching sequence π given by (2), or briefly,

π = {(im, hm)}M
m=1, an associated switching signal

r(t), t ∈ [0, T[π]] can be determined as

r(t) = im, if t ∈ (tm−1, tm] (3)

where t0 = 0, tm =
∑m

l=1 hl, for m = 1, · · · ,M .

For system ΣD, a switching sequence {(im, hm)}M
m=1

is said to be admissible if the component of the switching

matrix γij satisfies that γi1i2 = · · · = γiM−1iM
= 1, i.e.,

there exists an arc from node im−1 to node im, for m =
2, · · · ,M ; otherwise, it is said to be inadmissible.

The set of all admissible switching sequence for system

ΣD is denoted by Πa(ΣD)1.

As to system Σ, it is obvious that any switching sequence

given by (2) is admissible since there is no restriction on

switching.

Here we give a simple example to illustrate the above

concepts.

Example 1: Consider an LSS with N = 5, i.e., I =
{1, 2, 3, 4, 5}, its switching digraph D is given in Fig.1.

Fig. 1. Switching Digraph D of the LSS in Example 1.

Its switching matrix is given by

Γ =

⎡⎢⎢⎢⎢⎣
1 1 1 0 0
0 1 1 0 0
0 0 1 0 1
0 1 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦
Thus, the admissible switching sequence for the LSS in

Example 1 must be one of the following forms:

{(i, h1)}, i ∈ I;

{(1, h1), (2, h2)};

{(1, h1), (3, h2)};

{(1, h1), (2, h2), (3, h3)};

{(1, h1), (2, h2), (3, h3), (5, h4)};

{(1, h1), (3, h2), (5, h3)};

{(2, h1), (3, h2)};

{(2, h1), (3, h2), (5, h3)};

{(3, h1), (5, h2)};

{(4, h1), (2, h2)};

{(4, h1), (2, h2), (3, h3)};

{(4, h1), (2, h2), (3, h3), (5, h4)}.

where h1, h2, h3, h4 > 0.

1Here we assume that the switching sequence can start from any
subsystem.

In the sequel, denote U the set of functions piecewise con-

tinuous. As usual, assume that all the control input u(t) ∈
U. By

∏n
i=1 Ai denote the matrices product A1 · · ·An and

by
∏1

i=n Ai denote the matrices product An · · ·A1.

The concepts of controllability and reachability for LSSs

are defined as follows.

Definition 2 (Controllability): For a LSS ΣD, a nonzero

state x0 is controllable, if there exist a switching sequence

π ∈ Πa(ΣD) and an input u(t)) ∈ U, t ∈ [0, T[π]] such that

the system is driven from x(0) = x0 to x(T[π]) = 0. The

system is (completely) controllable if any nonzero state x

is controllable.

Definition 3 (Reachability): For a LSS ΣD, a nonzero

state xf is reachable, if there exist a switching sequence

π ∈ Πa(ΣD) and an input u(t)) ∈ U, t ∈ [0, T[π]] such that

the system is driven from x(0) = 0 to x(T[π]) = xf . The

system is (completely) reachable if any nonzero state x is

reachable.

Definition 4 (Controllable State Set): Given a switching

sequence π ∈ Πa(ΣD), the controllable state set of π is

defined as

C(π):={x|∃ u(t), t ∈ [0, T[π]],
s. t. the system is driven from x(0) = x to x(T[π]) = 0.}

(4)

The system controllable state set is defined as

C =
⋃

∀π∈Πa(ΣD)

C(π) (5)

Thus, the system is controllable if and only if C = R
n.

Definition 5 (Reachable State Set): Given a switching

sequence π ∈ Πa(ΣD), the reachable state set of π is

defined as

R(π):={xf |∃ u(t), t ∈ [0, T[π]],
s. t. the system is driven from x(0) = 0 to x(T[π]) = xf .}

(6)

The system reachable state set is defined as

R =
⋃

∀π∈Πa(ΣD)

R(π) (7)

The system is reachable if and only if R = R
n.

B. A Brief Review of LSSs without Restriction on Switching

Here we give a brief review of LSSs without restriction

on switching(for details, see [4]). Given a matrix B ∈
R

n×p, denote Im(B) as the range of B, i.e., Im(B) =
{y|y = Bx, x ∈ R

p}. Given a matrix A ∈ R
n×n and

a linear subspace W ⊆ R
n, let 〈A|W〉 be the minimal

invariant subspace, i.e., 〈A|W〉 =
∑n

i=1 Ai−1W . For

notational simplicity, denote 〈A|B〉 = 〈A|Im(B)〉.
Lemma 1: [4] Given an admissible switching sequence

π = {(im, hm)}M
m=1, we have

C(π) = 〈Ai1 |Bi1〉+

M∑
m=2

m−1∏
j=1

exp(−Aij
hj) 〈Aim

|Bim
〉 (8)

R(π)=
M−1∑
m=1

m+1∏
j=M

exp(Aij
hj) 〈Aim

|Bim
〉+〈AiM

|BiM
〉 (9)
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Given a switching sequence π = {(im, hm)}M
m=1, denote

exp(π) =

1∏
m=M

exp(Aim
hm) (10)

It is easy to verify that

R(π) ≡ exp(π)C(π) (11)

For system Σ, we define a subspace sequence as

follows[2][4]

W1 =
N∑

i=1

〈Ai|Bi〉,Wm =
N∑

i=1

〈Ai|Wm−1〉,m =2,· · · ,n (12)

and

W = Wn. (13)

It is easy to see that C,R ⊆ W .

The sufficient and necessary criterion for controllability

of LSSs without restriction on switching has been estab-

lished as follows(for details, see [4]).

Lemma 2: [4] For system Σ, there exists a switching se-

quence π, such that C(π) = W . Furthermore, the following

statements are equivalent:

(a) the system is controllable;

(b) the system is reachable;

(c) the corresponding linear subspace W is the full space,

i.e., W = R
n.

III. IRREDUCIBLE SYSTEM

It is easy to obtain the fact that if an LSS ΣD is

controllable, then the corresponding LSS Σ is controllable;

however, the converse is not true in general. If some

conditions on ΣD are imposed, we’ll find that the converse

is true as well.

For irreducible LSSs, we can establish necessary and

sufficient criterion for controllability and reachability and

the form of the condition is similar to that of LSSs without

restriction on switching.

Theorem 1: If an LSS ΣD is irreducible, then there exists

a switching sequence π ∈ Πa such that C(π) = W , where

W is defined by (12)(13) associated with the corresponding

LSS Σ. Furthermore, the following statements are equiva-

lent:

(a) the system is controllable;

(b) the system is reachable;

(c) the corresponding linear subspace W is the full space,

i.e., W = R
n.

Corollary 1: If an LSS ΣD is irreducible, the following

statements are equivalent:

(a) the system ΣD is controllable and reachable;

(b) the corresponding system Σ is controllable and reach-

able.

To prove Theorem 1 recall the following lemma.

Lemma 3: Given a square matrix sequence P1, · · · , PM

and a linear subspace sequence Q1, · · · ,QM such that

the linear space H =
∑M

m=1 PmQm is the full space,

moreover, given square matrices of appropriate dimen-

sions S1, S2, · · · , SM and positive scalars h1, h2, · · · , hM ,

if max1≤i≤M hi is selected small enough, then the linear

space H̃ =
∑M

m=1 Pm exp(−Smhm)Qm is also the full

space.

Proof: We choose matrix O1, · · · , OM such that

Im(Om) = Qm, m = 1, · · · ,M , then we have the

matrix O = [P1O1, · · · , PMOM ] is of full rank. Set

Õ = [P1 exp(−S1h1)O1, · · · , PM exp(−SMhM )OM ], it is

obvious that Im(Õ) = H̃.

Denote E(h1, · · · , hM ) = Õ − O. We have

rank(Õ) = rank(ÕÕT ) = rank(OOT + D(h1, · · · , hM )),
where D(h1, · · · , hM ) = E(h1, · · · , hM )OT

+OET (h1, · · · , hM )+ E(h1, · · · , hM )ET (h1, · · · , hM ).
Since O is of full rank, OOT is positive definite.

Therefore we can take maxi hi small enough such that

λmin(D(h1, · · · , hM )) ≥ −0.5λmin(OOT ). It follows that

λmin(ÕÕT ) ≥ λmin(OOT ) + λmin(D(h1, · · · , hM )) ≥
0.5λmin(OOT ). Thus, Õ is of full rank. Hence, H̃ is the

full space.

Now we give the proof of Theorem 1.

Proof: [Proof of Theorem 1] By Lemma 2, for system

Σ, there exist a switching sequence π = {(im, hm)}M
m=1,

such that C(π) = W = R
n.

For system ΣD, we try to find an admissible switching

sequence such that its controllable state set is equal to W as

well. If such a switching sequence exists, the proof of the

rest part of Theorem 1 is trivial. In fact, such a switching

sequence can be constructed based on the above switching

sequence π.

Consider the nodes i1 and i2, since the system is irre-

ducible, there must exist a path of finite length from the

node i1 to the node i2. Without loss of generality, suppose

this path is i1, j1, j2, · · · , jN1
, i2. At first, we consider the

switching sequence

π1
1 = {(i1, h1), (j1, g1), (i2, h2), · · · , (iM , hM )}

where g1 needs to be chosen. We have

C(π1
1) = 〈Ai1 |Bi1〉 + exp(−Ai1h1) 〈Aj1 |Bj1〉

+exp(−Ai1h1) exp(−Aj1g1)(
〈Ai2 |Bi2〉 +

M∑
m=3

m−1∏
k=j+1

exp(−Aik
hk) 〈Aim

|Bim
〉

)
By Lemma 3, we can choose g1 small enough such that

C(π1
1) = R

n. Then, we can repeat this process to construct

the follow switching sequences by choosing gm, m =
2, · · · , N1 small enough

πm
1 ={(i1, h1), (j1, g1), · · · , (jm, gm), (i2, h2), · · · , (iM , hM )},

m = 2, · · · , N1,

which satisfying C(πm
1 ) = R

n,m = 2, · · · , N1.

Up to now, we have constructed a switching sequence

π1 = πN1

1 in which the former part from i1 to i2 is ad-

missible, i.e., {(i1, h1), (j1, g1), · · · , (jm, gm), (i2, h2)} is

admissible.
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Obviously, we cant repeat this similar treatment M times

by considering the paths between nodes im−1 and im,

m = 2, · · · ,M . Finally, we can get an admissible switching

sequence πM for system ΣD which controllable state set

C(πM ) is still the full space.

Thus, we have constructed a switching sequence πM ∈
Πa such that C(πM ) = W . We have finished the first part

of Theorem 1. As for the rest, the proof is trivial.

IV. REDUCIBLE SYSTEM

In this section, we investigate the controllability and

reachability of a reducible system mainly by virtue of its

corresponding switching matrix. Obviously, the switching

matrix is reducible and nonnegative(i.e. all the elements of

the matrix are nonnegative).

Before proceeding further, we first present a simple form

for the switching sequence.

Lemma 4: [7] Given Γ ∈ R
N×N is a nonnegative

matrix, there exists an N × N permutation matrix P such

that

Γ̂ = PΓPT =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ1 0 · · · 0 Γ1,k+1 Γ1,k+2 · · · Γ1,s

0 Γ2 · · · 0 Γ2,k+1 Γ2,k+2 · · · Γ2,s

...
. . .

...
...

...

0 0 · · · Γk Γk,k+1 Γk,k+2 · · · Γk,s

0 · · · · · · 0 Γk+1 Γk+1,k+2 · · · Γk+1,s

0 · · · · · · 0 0 Γk+2 · · · Γk+2,s

...
...

...
. . .

...

0 · · · · · · 0 0 · · · · · · Γs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(14)

where Γi ∈ R
li×li(i = 1, · · · , s) are irreducible and

nonnegative matrices,
s∑

i=1

li = N, 1 ≤ k ≤ s ≤ N .

Moreover, at least one of the matrices in the following

matrix sequences:

Γm,k+1, · · · ,Γm,s, (15)

is nonzero, m = 1, · · · , k.

By Lemma 4, since a permutation transformation just

changes the index of the subsystems, without loss of gen-

erality, we just let Γ be in the form of (14).

Set l0 = 0. For m = 1, · · · , s, by Σm denote the LSS

which takes the subsystems

(Ai, Bi, Ci), i ∈ {

m−1∑
j=0

lj + 1, · · · ,

m∑
j=0

lj},

as its subsystems; by Σm,D denoted the LSS which has

the same subsystems as those of system Σm and takes

digraph composed by the nodes
∑m−1

j=0 lj +1, · · · ,
∑m

j=0 lj
and the arcs between them appeared in the digraph D as its

switching digraph Dm, it is easy to verify that the adjacency

matrix of Dm is just the submatrix Γm.

For system Σm, we can determinate its controllable state

set by calculating the following subspace sequence

Wm,1 =

∑ m
j=0

lj∑
i=

∑ m−1

j=0
lj+1

〈Ai|Bi〉,

Wm,ρ =

∑ m
j=0

lj∑
i=

∑ m−1

j=0
lj+1

〈Ai|Wm,ρ−1〉, ρ = 2, · · · , n.

(16)

Obviously, the controllable state set of system Σm is

WΣm
= Wm,n. (17)

Since Γm is irreducible, by Corollary 1, system Σm,D is

controllable if and only if system Σm is controllable.

Based on the above analysis, we can established the

following theorem directly.

Theorem 2: If the reducible LSS ΣD satisfies k = s, i.e.,

the switching matrix Γ is just a block diagonal matrix:

Γ =

⎡⎢⎢⎢⎣
Γ1 0 · · · 0
0 Γ2 · · · 0
...

...
. . .

...

0 0 · · · Γs

⎤⎥⎥⎥⎦ ,

then the following two statements are equivalent:

(a) the system is controllable and reachable;

(b) there exists m ∈ {1, · · · , s} such that system Σm is

controllable and reachable.

Proof: (b) ⇒ (a) is trivial. (a) ⇒ (b) is easy to verify

since in this case, it is easy to see that the controllable state

set and the reachable state set of the system ΣD is

C = R =
⋃

1≤m≤s

WΣm
.

Remark 1: In Theorem 2, if s = N , this means there is

no switching that can happen between any pair of all these

subsystems, then the conclusion of the theorem is reduced

to the following trivial situation:

the system is controllable and reachable iff at least one
of its subsystem is controllable and reachable and we
can choose to start with the controllable and reachable
subsystem.

Next, we consider another more complicated case.

Theorem 3: Suppose the reducible LSS ΣD satisfies k =
s = 2, i.e., the switching matrix Γ is just a block upper

triangle matrix:

Γ =

[
Γ1 Γ1,2

0 Γ2

]
where Γ1,2 is nonzero, if

WΣ1
+ WΣ2

= R
n, (18)

then there exist an admissible switching sequence π such

that C(π) = WΣ1
+ WΣ2

, and hence, the system is

controllable and reachable.
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Proof: For systems Σ1,D, Σ2,D, by Theorem 1,

there exist two admissible switching sequences π1 =
{(iρ, hρ)}

M1

ρ=1, π2 = {(jρ, gρ)}
M2

ρ=1 such that

C(π1) = WΣ1
, C(π2) = WΣ2

.

Since the matrix Σ1,2 is nonzero, there must exist nodes

k1, k2 satisfying 1 ≤ k1 ≤ l1,l1 + 1 ≤ k2 ≤ N and there is

an arc from node k1 to k2 in D.

First, we can choose positive scalars f1, f2 small enough

to construct the follow two switching sequences(may be not

admissible):

π̂1 = {(i1, h1), · · · , (iM1
, hM1

), (k1, f1)}, (19)

π̂2 = {(k2, f2), (j1, g1), · · · , (jM2
, gM2

)} (20)

such that

C(π̂1) = WΣ1
, C(π̂2) = WΣ2

.

Secondly, similar to the proof process of Theorem 1, we

can construct two admissible switching sequences base on

π̂1, π̂2, denoted as π̃1 = {(i′ρ, h
′
ρ)}

M ′

1

ρ=1, π̃2 = {(j′ρ, g
′
ρ)}

M ′

2

ρ=1

satisfying

C(π̃1) = WΣ1
, C(π̃2) = WΣ2

.

It is obvious that the index part of the last item of π̃1 is k1

and the index part of the first item of π̃2 is k2.

Finally, we can choose positive scalar η small enough to

construct the following admissible switching sequence for

system ΣD:

π̂={(i′1, h
′
1), · · · , (i

′
M ′

1

, h′
M ′

1

), (k2, η), (j′1, g
′
1), · · · , (j

′
M ′

1

, g′M ′

2

)}
(21)

it is easy to verify that

C(π̂) = WΣ1
+ WΣ2

. (22)

Up to now, we have constructed such an admissible switch-

ing sequence. The proof of the rest is trivial.

Remark 2: Theorem 3 can be extended to a more general

case: suppose that there exist 1 ≤ k1 < k2 ≤ s such that

Γk1,k2
is nonzero, if

WΣk1
+ WΣk2

= R
n, (23)

the conclusions still hold.

Remark 3: Theorem 3 can be extended to another more

general case: suppose that there exist 1 ≤ k1 < k2 < · · · <

kρ ≤ s such that Γk1,k2
, · · · ,Γkρ−1,kρ

are all nonzero, if

WΣk1
+ · · · + WΣkρ

= R
n, (24)

the conclusions still hold.

As for more general reducible systems, controllability is

not equivalent to reachability in general. Two numerical

examples are given below to show this fact.

Example 2: Consider the 2-dimensional LSS, with

A1 = 02×2, B1 =

[
1
0

]
;A2 =

[
0 −1
1 0

]
, B2 =

[
0
0

]
,

(25)

and the switching digraph is given in Fig.2.

Fig. 2. Switching Digraph of Example 2.

The admissible switching sequence has the following

forms:

π1 = {(1, h1), (2, h2)}, π2 = {(1, h1)}, π3 = {(2, h1)}

where h1, h2 > 0. Consider their controllable state set is

C(π1) = 〈A1|B1〉 + exp(−A1h1)〈A2|B2〉

≡ span{

[
1
0

]
}

C(π2) = 〈A1|B1〉 ≡ span{

[
1
0

]
}

C(π3) = 〈A2|B2〉 ≡ {0}

Then, we have C ≡ span{

[
1
0

]
}. Thus, the system is not

controllable.

On the other hand, consider the reachable state set of π1

R(π1) = exp(A2h2)〈A1|B1〉 + 〈A2|B2〉

= span{

[
cos(h2)
sin(h2)

]
}

Then, we have R ⊇
⋃

h2>0 span{

[
cos(h2)
sin(h2)

]
} = R

2.

Thus, the system is reachable.

In fact, given any nonzero state xf =

[
r cos (θ)
r sin (θ)

]
, r >

0, θ ∈ [0, 2π), there exist a switching sequence π =
{(1, 1), (2, θ)} and an input u(t) = r , t ∈ [0, 1 + θ], such

that the system state

x(t) =

⎧⎪⎪⎨⎪⎪⎩
[

r

0

]
, t ∈ [0, 1]

eA2(t−1)x(1), t ∈ (1, 1 + θ]

Then we have

x(T[π]) = eA2θx(1) = exp(

[
0 −θ

θ 0

]
)

[
r

0

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
r

0

]
=

[
r cos (θ)
r sin (θ)

]
Thus, we get x(1 + θ) = xf . This means that xf is

reachable. Since xf is arbitrarily selected, the system is

reachable indeed.

Moreover, given a state x =

[
0
1

]
, it is easy to prove

that any switching sequence and any input can not drive the

second component of the state to zero. Hence, the system

is not controllable indeed.

Example 3: Consider the 2-dimensional LSS, with

A1 = 02×2, B1 =

[
−1
0

]
;A2 =

[
0 1

−1 0

]
, B2 =

[
0
0

]
(26)
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Fig. 3. Switching Digraph of Example 3.

and the switching digraph is given in Fig.3.

The admissible switching sequence has the following

forms:

π1 = {(2, h1), (1, h2)}, π2 = {(2, h1)}, π3 = {(1, h1)}

where h1, h2 > 0. Just consider the admissible switching

sequence π1, its controllable state set is

C(π1) = 〈A2|B2〉 + exp(−A1h2)〈A1|B1〉

= span{

[
cos(h2)
sin(h2)

]
}

Then, we have C ⊇
⋃

h2>0 span{

[
cos(h2)
sin(h2)

]
} = R

2.

Thus, the system is controllable.

On the other hand, consider its reachable state set

R(π1) = exp(A1h2)〈A2|B2〉 + 〈A1|B1〉

≡ span{

[
1
0

]
}

R(π2) = 〈A2|B2〉 ≡ {0}

R(π3) = 〈A1|B1〉 ≡ span{

[
1
0

]
}

Then, we have R ≡ span{

[
1
0

]
}. Thus, the system is not

reachable.

In fact, given any nonzero state xf =

[
r cos (θ)
r sin (θ)

]
, r >

0, θ ∈ [0, 2π), there exist a switching sequence π =
{(2, θ), (1, 1)} and an input u(t) = r , t ∈ [0, 1 + θ], such

that the system state

x(t) =

⎧⎪⎪⎨⎪⎪⎩
eA2t

[
r cos (θ)
r sin (θ)

]
, t ∈ [0, h1][

x1(θ) − r

x2(θ)

]
, t ∈ (θ, 1 + θ]

Then we have

x(θ) = eA2θx(0) = exp(

[
0 θ

−θ 0

]
)

[
r cos (θ)
r sin (θ)

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
r cos (θ)
r sin (θ)

]
Thus, we get x(θ) = [r 0]T , x(1+θ) = [0 0]T . This implies

that xf is controllable. Since xf is arbitrarily selected, the

system is controllable indeed.

Moreover, given a state x = [0, 1]T , it is easy to prove

that any switching sequence and any input can not drive the

second component of the state from zero to 1. Hence, the

system is not reachable indeed.

V. CONCLUSION

This paper has studied the controllability and reachability

of a general class of LSS, where the switching signal can not

be chosen freely but have to be determinated according to

a switching digraph. For irreducible systems, necessary and

sufficient criterion for controllability has been established.

It is also proved that in this case controllability is equivalent

to reachability. As for reducible systems, only sufficient

condition has been established and it is shown that in

this case controllability is not equivalent to reachability

in general. Some numerical examples have been given to

illustrate our results.

APPENDIX A

In this Appendix, we give a brief introduction of digraph

theory.

A digraph D(V,E) consists of a set of nodes V and a

set of ordered pairs of nodes E called arcs. The arc (u, v)
points from u to v. In a digraph, a walk is a sequence of

nodes vo, v1, · · · , vN in which each pair of nodes vi, vi+1

is linked by an arc (vi, vi+1) ; a path is a walk in which

all nodes are distinct. The length of a path is defined as the

number of arcs it contains.

A digraph is strongly connected if there exists a path of

finite length from every node to every other.

The adjacency matrix Λ = [λij ]N×N of a digraph is

an N × N matrix in which λij = 1 if (vi, vj) ∈ E

and λij = 0, otherwise. Given a digraph, we can easily

give its corresponding adjacency matrix; whereas, given an

adjacency matrix, we can also easily give its corresponding

digraph.

An N × N matrix Λ is reducible if there exists a

permutation matrix H such that HΛHT =

[
Λ1 Λ12

0 Λ2

]
,

where Λ1 is an r×r submatrix, Λ2 is an (N −r)×(N −r)
submatrix, 1 ≤ r < N . Otherwise, it is irreducible.

Lemma 5: [8] A digraph is strongly connected if and

only if its corresponding adjacency matrix is irreducible.
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