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Abstract— This paper presents a new approach to diagnose
faults in electrical systems based on probabilistic modelling
and machine learning techniques. Our framework consist of
two phases: an approximated diagnosis on the first phase and
a refined diagnosis on the second phase. On the first phase the
system behavior is modelled with a Dynamic Bayesian Network
that generates a subset of most likely faulty components. In this
phase the structure and parameters of the Dynamic Bayesian
Network are learned off-line from raw data (discrete and
continuous). On the second phase a Particle Filter algorithm is
used to monitor suspicious components and extract the faulty
components. The feasibility of this approach has been tested
in a simulation environment using several interconnected
electrical machines.

I. INTRODUCTION

When a machine fails in a real process, the maintenance
people take minutes, hours or even days looking for the
faulty elements depending on the complexity of the system.

Diagnosing in large interconnected process, such as
power electrical systems, is a difficult task due mainly
to the inherent uncertainty in information. The uncertainty
arises due to close interaction between systems components,
that in the faulty event hide real fault symptoms. Other
sources of uncertainty include: noisy data, non-linearities
and missing information. An adequate automated decision
support system has to deal with the challenge in the fault
diagnosis task. This system enables us to diagnose faults
in an uncertain environment. Extensive research has been
done to develop fault diagnosis methods based in analytical
methods [1], [2], [3] or artificial intelligence techniques [4]
[5][6], [7]. Recently, attention to probabilistic modelling
and machine learning techniques has grown [8], [9], due to
the availability of data and computation power, but mainly
because of the difficulty to model systems with analytical
techniques. Powerful diagnosis methods are able to deal
with different sources of uncertainty and capable of learning
models of system behavior from data.

A recent trend is the combination of different techniques,
to address challenging environments such as large intercon-
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Monterrey Campus, México, legarza@itesm.mx
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nected systems, where discrete and continuous signals are
present. In such systems, classical mathematical models can
not deal with all sources of uncertainty and are very difficult
to obtain as the system grows in complexity.

This paper is mainly focused on the integration of dy-
namic Bayesian Networks and Particle Filtering algorithms
to tackle the problem of diagnosis. This approach permits
improvement in system robustness and allows to accomplish
a better performance compared to the separate individual
application. The study was applied to a simple case of an in-
terconnected electrical system in a simulation environment.

The paper is organized as follows. Section II presents
background on fault diagnosis methods. Section III de-
scribes the interconnected electrical system used as a case
study. Section IV explains the approach and framework
proposed in this paper. Section V shows the simulation
results and finally section VI concludes the paper and
includes future work.

II. FAULT DIAGNOSIS METHODS

The fault diagnosis task can be separated into two steps:
fault detection and fault diagnosis. Fault detection is mainly
concerned with the identification of an abnormal situation
in a process.

Fault detection can be based on analytical or heuristic
symptoms. Analytical symptoms are generated by simple
limit value checking or by more elaborated techniques such
as signal analysis (eg. statistical or frequency analysis).
Heuristic symptoms are produced by qualitative information
extracted from human operators or process history records.
Different approaches of fault detection methods has been
developed. Most approaches use mathematical models such
as: Kalman filter, state observers, parity relations, etc. [10].
Fault diagnosis consists of the determination of the type,
size, and location of a fault, together with the time of
detection.

Fault diagnosis methods mainly use classification tech-
niques or reasoning methods [2]. Classification techniques
includes statistical methods, neural networks and fuzzy
clustering. Reasoning methods mainly include first order
logic, fuzzy logic and Bayesian networks.

A. Bayesian Networks

Bayesian networks are a helpful tool to model multi-fault,
multi-symptom dependency relations: every fault and every
symptom is modelled by a random variable with a finite
range of possible values. A graph is constructed with a node
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for each variable. The graph constructed has an edge from
one node to another, whenever the first node models a fault
directly exhibiting the symptom modelled by the second.
In general, Bayesian networks are a representation of prob-
ability distributions over complex domains. Formally, we
consider probability spaces defined as the set of possible
assignments to some set of random variables X1, . . . , Xn,
each of which has a domain Dom[Xi] of possible val-
ues. For example the domain of the discrete variable
Breaker status is {normal, open, faulty}. The domain of
the variable Voltage can be �, or it can be discretized into
some appropriate partition. The goal is to represent a joint
probability distribution over these variables.
Formally, a Bayesian network is defined by a directed
acyclic graph together with a local probabilistic model for
each node. There is a node in the graph for each random
variable X1, . . . , Xn. The edges in the graph denote direct
dependency of a variable Xi on its parents Parents(Xi).
The graphical structure encodes a set of conditional in-
dependence assumptions (each node Xi is conditionally
independent of its non-descendants given its parents ).
The qualitative independence assumptions implied by the
network structure, combined with the conditional proba-
bility distributions associated with the nodes, are enough
to specify a full joint distribution through the following
eqn (1), known as the chain rule for Bayesian networks:

p(X1, . . . , Xn) =
n∏

i=1

p(Xi|Parents(Xi)) (1)

In discrete networks, an explicit description of the joint
distribution requires a number of parameters that are expo-
nential in n (the number of variables). Bayesian networks
derive their power from the ability to represent conditional
independencies among variables, which allows them to take
advantage of the “locality” of causal influences. A variable
is independent of its indirect causal influences given its
direct causal influences. However, in order to reduce the
computational effort, statistically independent symptoms
have to be assumed.

B. Particle Filtering

Particle Filtering is a Markov chain Monte Carlo method
that approximates the belief state using a set of samples
called particles. The distribution of the particles is updated
taking into account the latest available evidence as time
increases. The standard Particle Filtering algorithm consists
of three basic sequential steps:

• Monte Carlo step. This step takes into account the
evolution of the system as time increases:

zt ∼ p(zt|zt−1) (2)

xt+1 = A(zt)xt + B(zt)γt + F (zt)ut (3)

yt = C(zt)xt + D(zt)vt (4)

The previous stochastic model of the system is used to
generate the predicted future state (z(i)

t , x
(i)
t , y

(i)
t ), see

[11] for details. We sampled a discrete mode, eqn (5),
and then the continuous state given the new discrete
mode, eqn (6).

ẑ
(i)
t ∼ p(zt|z(i)

t−1) (5)

x̂
(i)
t ∼ p(xt|ẑ(i)

t , x
(i)
t−1) (6)

• Sequential Importance Sampling step . By conditioning
on the new information and using the Bayes’ rule,
each particle is weighted by the likelihood of the
observations in the updated state represented by that
particle eqn (7).

ŵ
(i)
t ← p(yt|ẑ(i)

t , x̂
(i)
t ) (7)

• Selection step. High-weight particles are replaced by
several particles while low-weight particles tend to
disappear.

Particle Filtering algorithms approximate the true poste-
rior belief state given observations y1:t by a set of particles.

p(zt, xt|y1:t) =
1
N

N∑

i=1

w
(i)
t δ(zt,xt)(z

(i)
t , x

(i)
t ) (8)

where w
(i)
t is the weight of a particle, z

(i)
t are the discrete

modes, x
(i)
t are the continuous parameters and δ(·)(·) is

Dirac delta function.
Rao-Blackwellized Particle Filtering (RBPF) is a Particle

Filtering variant that uses some of the analytical structure
of the model, [12].

If we know the values of the discrete modes zt, it is
possible to calculate the distribution of the continuous states
xt. According to the Rao-Blackwell theorem, this leads
to estimators with less variance than those obtained using
only pure Monte Carlo sampling. Thus, if we can generate
particles of zt and analytically evaluate the expectation
of xt given zt, we will need less particles for a given
accuracy. We can therefore combine a Particle Filtering
that computes the distribution of the discrete modes with
a bank of Kalman filters that computes the distribution of
the continuous states.

A further improvement based on look-ahead RBPF is
proposed in [13]. While evaluating the importance of
weights for particles at time t, look-ahead RBPF looks
ahead one step to see the behavior of the measurements
at time t + 1. It then uses this information to compute
better weights at time t. The basic sequential steps are
Kalman prediction, Selection, Sequential Importance Sam-
pling, and Kalman updating. The look-ahead RBPF algo-
rithm is specifically exploited in this paper.

III. ELECTRICAL SYSTEM

A production line in a factory can be thought as a set
of interconnected electrical machines. These machines are
made up of several components which can be seen as
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series RL circuits. As the ratio of possible failures in this
system is high because of the number of total components,
a monitoring system for faulty component is required.

Figure 1 shows two electrical machines controlled and
supervised by the same control panel.

Fig. 1. Schematic diagram of two electrical machines. Series resistance-
inductance circuits are shown.

Each machine is made up of two or three identical RL
series circuits. Besides, each machine as well as its individ-
ual circuits has its own breakers that protect the rest of the
system against over-current. Also, these breakers are used
when machines or individual circuits need maintenance.

This electrical system is a typical application where inter-
action between continuous and discrete variables are high.
Discrete variables are the machines and circuit breakers,
and the continuous variables are given by the main current
as well as the circuit parameters.

The main task is to determine when there is a fault, which
of the two machines is in faulty mode and which circuit has
the problem.

For the simulation it was considered that one series
RL circuit has been isolated, also it was considered 9
possible faulty modes for this circuit. The faulty modes were
implemented using a change of 5Ω in the resistance value
of the circuit (starting from 10Ω).

IV. METHODOLOGY

The diagnosis system that we are proposing consists of
two phases, [14]. Figure 2 shows conceptual ideas.

In the first phase the full system is modelled in probabilis-
tic terms by a Bayesian network. It considers that we have
2 interconnected machines. The failure probabilities of each
machine, based on evidences, are updated periodically. The
Bayesian network is used to select the machines with a high
probability of failure. The main difference with [14] con-
sists of using first order logic representation for Bayesian
networks and a set of heuristics to deal with the both
problems of combinatorial explosion and selection of the
most likely faulty elements. That Independent Choice Logic

Fig. 2. General architecture for the diagnosis system.

framework allows a richer model representation framework,
where other features, as explicit time for instance, can be
modelled, [15]. This is a semantic framework which allows
for independent choices made by various agents, and a logic
program to give the consequences of the choices. This is
an expansion of Probabilistic Horn abduction to include a
richer logic, and choices by multiple agents, [16].

In the second phase, figure 2, these machines are con-
tinuously monitored to find the damaged components using
a Particle Filtering algorithm. In the work by [14], sec-
ond phase is implemented by using a residual approach
where normal process behavior is represented by a compact
probabilistic model whose parameters are learned offline
by finding the maximum entropy joint probability mass
function consistent with arbitrary probability constraints.
The structure of this model is found by learning the structure
of a discrete Bayesian network.

Each block in figure 2 will be described briefly:

A. Phase I

The implementation of first the phase consists of the
following steps.

1) Facts, assumptions, knowledge base. In this block a
table describes the behavior of all the breakers which
constitute the whole system as well as the behavior of
the main current. We prepares a table with all possible
combinations of breaker states; as a result, the data is
generated for the Bayesian network of the full system.

2) Discretization. The discretization of the continuous
variable is made. The key variable in this system is
the main electrical current.

3) Bayesian network. The specialized software Power
Constructor1 developed to learn a Bayesian network
from data is included here. It uses data bases in the
form of discrete variables. A Bayesian network uses
evidence from a set of variables and looks at the rest
of variables to predict the possible faults that could
be presented. The Hugin2 software was used to make
inferences and analysis.

B. Phase II

Fault diagnosis in this context, is to determine the state
of an electrical system over time given a stream of ob-

1http://www.cs.ualberta.ca/ jcheng/bnpc.htm
2http://www.hugin.com
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servations. Complex dynamics of electrical systems and
noisy environment makes it difficult to determine the true
state at any point in time with certainty. Uncertainty at
every point should be explicitly considered. To represent
uncertainty about the state of the system, it is assumed
a particular a probability distribution which is considered
in the Particle Filtering (PF) implemented algorithm. The
main purpose of Particle Filters in this work is to update
the Bayesian belief, [17]. The basic idea is to simulate the
behavior of the electrical system. Each particle predicts a
future behavior of the system in a Monte Carlo approach.
The particles that match the monitored system behavior
are kept and the others are thrown away. [18] describes a
number of PF-based algorithms for state estimation which
have demonstrated good results on diagnosis problems.

Particularly, the implementation of the second phase
consists of the following steps:

1) Subset of explanations. Once that data has been
analyzed a subset of explanations is given where a
possible fault is located in the system. This is just a
subset of the results, taking into account just the ones
with major values in probability, as indicated.

2) Discretization JMLG. Combining Hidden Markov
Models and State Space Models, a hybrid model can
be generated, which provides a rich representation for
processes. This model is called the Jump Markov Lin-
ear Gaussian (JMLG) model, as depicted in Figure 3.
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3
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xT

y
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zT
. . .
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Fig. 3. JMLG model. zt is the discrete mode switch variable, xt is the
real-valued state variable, ut and yt are the observable variables.

Formally, we can represent the JMLG model by eqns
(2-4). See [19] for detailed definitions and learning
procedure.

3) Particle Filtering. This final block of the diagnosis
system will make different decisions depending on
the results in Phase I according to the following
statements.

• If the probability of failure of the machines does
not change, then Particle Filters will continue
monitoring the same machines to find damaged
components.

• If the probability of failure, in a non-monitored
machine, increases to a warning level, then a
Particle Filter must be started to monitor this

machine.
• If the probability of failure in a monitored machine

increases then, Particle Filter must increase its
reliability, taken a greater number of particles.

• If the probability of failure in a monitored ma-
chine decreases then, Particle Filter must reduce
the number of particles in a first stage. If the
tendency remains, the Particle Filter must stop in
that machine.

V. RESULTS

These results were obtained when the proposed method-
ology was applied to an electrical system which consists of
two machines modelled with series resistance-inductance
circuit.

Phase I An expert generates data for the machines using
maintenance records, data sheets from suppliers, intuition,
etc. Once the data base has been created, this file is opened
with Power Constructor to create the preliminary Bayesian
network and then this information is exported to Hugin.
The join distribution for the full network is obtained. Fig-
ure 4 shows the Bayesian network for the electrical system
where breakers are discrete variables and main current is a
discretized continuous variable.

Fig. 4. System’s Bayesian network

Using Hugin code we can make inferences on certain
variables which predict the behavior of the system as shown
in Figure 5.

Figure 5 shows the breaker status, this status consist of
two variables, one variable is the probability of the breaker
to be opened and the other variable is the probability of
the breaker to be closed, also in this figure are shown the
different values of the main current and the values of class
F which represents the decision logic.

In figure 5, it is shown an evidence in main current of
7.35 amperes. The subset of explanations give us the most
probable state of the variables, considering a main current
of 7.35 amperes the subset of explanation is the following:

• Breaker 1 has a probability of 50.82% of being opened;
therefore, machine 1 has a probability of 50.82% of
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Fig. 5. Electrical system Bayesian net with an evidence of 7.35 amperes
in the main current.

being turned off. This breaker connects the power
supply to the machine.

• Breaker 2 is closed; thus, machine 2 has a probability
of 93.74% of being turned on.

• Breakers 3 and 4 are opened; therefore, machine 1 is
turned off.

• Breaker 7 is opened.
• Breakers 6 and 5 are closed.
• Class F, the final node, indicates that circuits 2, 3 and

4 have a probability of being faulty. They have the
maximum values of probability.

Phase II Once phase I is finished for the full electrical
system, there are a set of machines with a high probability
of failure. We must run a closely monitoring system in
each probable faulty machine. In order to show how the
algorithm works, it was selected only one of the circuits of
only one machine. The system was tested with more than
20 runs for each number of particles. Also, several runs of
the experiment were executed taking into account different
levels of noise. For each level of noise were used 100, 500
and 1, 000 particles. The levels of noise used were 0.1%,
1%, 5% and 10% for both the process and measurement

noises. Finally, we computed the statistics (mean and stan-
dard deviation) of the diagnosis error. Diagnosis error is the
percentage of time steps during which the discrete mode (zt)
was not identified properly. The Maximum A Posteriori was
used to define the most probable discrete mode over time.

Table I shows a summary of the system performance for
the diagnosis algorithm. Note that the mean error diagnosis
is very low when the noise is 0.1% or 1%, while mean
diagnosis error grows up when the noise is 5% and 10%.
The standard deviation of the error diagnosis is less as the
number of particle grows up.

TABLE I

LOOK-AHEAD RBPF PERFORMANCE. DIAGNOSIS ERRORS ARE SHOWN

FOR DIFFERENT NUMBER OF PARTICLES AND LEVEL NOISES.

100 Particles 500 Particles 1,000 Particles
Level
noise

mean Std
desv

mean Std
desv

mean Std
desv

0.1% 0.04% 0.02% 0.05% 0.00% 0.05% 0.00%
1% 0.18% 0.05% 0.12% 0.05% 0.10% 0.00%
5% 5.77% 1.08% 5.30% 0.80% 4.76% 0.28%
10% 10.63% 3.82% 9.81% 1.31% 8.75% 0.58%

Figures 6-7 show the diagnosis performance for 100
particles with low-level noise. Figure 6 shows the real
discrete (zt) and continuous (yt) states over time, while
figure 7 shows the behavior of the look-ahead RBPF (the
real and estimated states are shown). As we can see, there
are few diagnosis errors. The diagnosis errors appear at the
transitions over time.

0 500 1000 1500 2000
0

2.5

5

7.5

10

z t

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

y t

time−steps

Fig. 6. True faulty states for the system and the measured variable

In presence of noise the algorithm has low performance.
We can cope with high-level noise increasing the number
of particle; however, high-level noise kills some look-ahead
RBPF features, [11].

VI. CONCLUSIONS AND FUTURE WORK

We have described a new approach for diagnosing faults
in industrial systems combining dynamic Bayesian learning-
inference and particle filtering. Our main contribution is
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Fig. 7. State estimation with 100 particles and low-level noise

the combination of both dynamic Bayesian networks and
particle filtering in a single framework and its testing in
diagnosing faults for an electrical system. The dynamic
Bayesian network chooses those electric machines with
the highest probability of failure. The particle filtering
algorithm is used to continuously monitor those machines
to detect if a circuit component has changed its parameter
values. The Bayesian network is periodically updated based
on evidence to have a reliable system.

We are working on the applicability of the framework
in more complex processes and its use on more complex
industrial applications such as CNC Milling Machines with
reconfigurable features.
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