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Abstract— This paper first develops data-driven Kalman
filters for non-uniformly sampled multirate systems. Then a
novel methodology of fault detection and isolation for such
systems is proposed. The proposed scheme is applied to a
pilot scale experimental plant, where a successful case study
on FDI is conducted.

I. INTRODUCTION

Originally developed in the 1960s [1], Kalman filters

have demonstrated their power in state estimation, system

identification, adaptive control, signal processing [2] and

found widely varying industrial applications [3]. Many

variants of Kalman filtering algorithms have been proposed

[4]. However, most of them are for single rate discrete-time

(DT) systems.

In many industrial processes, variables are sampled at

more than one rate, i.e. multiple rates. Take a polymer

reactor as an example, where the manipulated variables can

be adjusted at relatively fast rates [5], while the measure-

ments of quality variables, e.g. the composition and density,

are typically obtained after several minutes of laboratory

analysis. Furthermore, the sampling is called non-uniform,

if the sampling intervals for each variable are non-equally
spaced.

We have developed Kalman filters for a non-uniformly

sampled multirate (NUSM) system [6], assuming that the

model, referred to as lifted model, and the covariances

of relevant noise and disturbance are known a priori.
Since such an assumption may lose its validity in practical

situations, we are motivated to develop data-driven Kalman

filters by proposing a subspace method of identification

(SMI) for the afore-mentioned model and covariances.

Since the late 1980s, the SMI has been an active research

area and successfully applied to multivariate DT systems

with a single rate [7], [8], [9]. In comparison with the

traditional prediction errors methods of identification [10],

the SMI has better numerical properties for systems with

high dimensionality. A literature overview and comparison

on several popular SMIs have been given in [11].

Recently, SMIs for multirate systems have been reported.

However, they are developed either only for uniformly

sampled systems [12] or for NUSM systems with a special

purpose, e.g. identification of residual models for fault

detection and isolation (FDI) [13]. This paper focuses on

the development of data-driven Kalman filters for NUSM

systems, including a SMI algorithm to estimate the state
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space model, e.g. {A,B,C,D}, as well as the relevant

noise covariances of the NUSM systems. Another main

component of this paper is the development of a novel

Kalman filter-based approach towards FDI for NUSM sys-

tems.

II. PROBLEM FORMULATION

Consider a continuous-time (CT) state space system:

ẋ(t) = Ax(t) + Bũ(t) + φ(t)
ỹ(t) = Cx(t) + Dũ(t) (1)

where (i) ũ(t) ∈ �l and ỹ(t) ∈ �m are noise-free inputs

and outputs, respectively; (ii) x(t) ∈ �n is the state; (iii)

φ(t) is the disturbance assumed to be a Gaussian distrib-

uted white noise vector with covariance Rφ, i.e. φ(t) ∼
ℵ(0,Rφ); and (iv) A, B, C and D are unknown system

matrices with compatible dimensions. Note that in the

sequel throughout the paper, we use the notation, ℵ(0,R),
to stand for a Gaussian distributed white noise vector with

covariance R. It is further assumed that (i) the pair (A,C)
is observable, (ii) the pair (A,BR1/2

φ ) is controllable, and

(iii) the stochastic part of A is asymptotically stable.

A. The lifted model for a NUSM system

The non-uniformly multirate sampling approach [14] is

employed to collect measurements from Eqn. 1. For a given

frame period, T , over the kth frame period [kT, kT + T ),
the inputs and outputs are sampled as follows.

• An input variable is sampled g times at time instants:

{kT + t1, kT + t2, kT + t3, · · · , kT + tg}, where 0 =
t1 < t2 < · · · < tg < T .

• An output variable is sampled p times. Moreover,

within the time interval [kT + ti, kT + ti+1), for i =
[1, ..., g], ni (≥ 0) samples of the output variable are

taken at time instants: {kT +t1i , kT +t2i , · · · , kT +tni
i },

where ti ≤ t1i < t2i · · · < tni
i < ti+1 and tg+1 = T .

Note that p = n1 + n2 + · · · + ng can be larger/less

than, or equal to g.

The sampling is repeated over the next frame period.

In the most general case, among the m + l inputs and

outputs, each variable is sampled differently from the others.

However, for simplicity of mathematical manipulation and

without loss of generality it is assumed that (i) the l inputs,

ũ(t), and the disturbances are sampled at one rate; and

(ii) the m outputs, ỹ(t), are sampled at the other rate.
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Accordingly, the lifted vectors for inputs and outputs are

constructed as follows, respectively,

ũ(k) =

⎡
⎢⎣

ũ(kT + t1)
...

ũ(kT + tg)

⎤
⎥⎦ , ỹ(k) ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ỹ(kT + t11)
...

ỹ(kT + tn1
1 )

...

ỹ(kT + t1g)
...

ỹ(kT + t
ng
g )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In addition, the lifted vector for the disturbance, φ(k), is

structurally identical to ũ(k).
At the time instant kT + tji , for j = [1, ni], the sampled

outputs are

y(kT + tji ) = ỹ(kT + tji ) + o(kT + tji ) (2)

where o( ) ∼ ℵ(0,Ro) is the measurement error and

independent of the initial state, x(0). However, at instant

kT + ti for i = [1, g], assume that ũ(kT + ti) be available,

i.e. u(kT + ti) = ũ(kT + ti), because in a closed-loop

system they are outputs of controllers and can be known.

It follows from Eqn. 2 that y(k) = ỹ(k) + o(k), where

y(k) and o(k) have the identical structure to ỹ(k). Besides,

o(k) ∼ ℵ(0,Ro) with Ro = Ip ⊗ Ro, where ⊗ is the

Kronecker tensor product and Il denotes an l × l identity

matrix. In the sequel, any κ × κ identity matrix is denoted

by Iκ. The lifted model of Eqn. 1 can be derived as follows

[14]:

x(k + 1) = A x(k) + B u(k) + W φ(k) (3)

y(k) = C x(k) + D u(k) + J φ(k) + o(k)

where (i) A, B, C, D, J, and W are functions of A, B, C,

D, ti, and tni
i , ∀ i = 1, · · · , g; (ii) φ(k) ∼ ℵ(0,Rφ) with

Rφ = In⊗Rφ. It is assumed that the frame period T is non-

pathological relative to matrix A. As a consequence, Eqn. 3

preserves the causality, controllability and observability of

Eqn. 1 [14]. Denote ω(k) ≡ W φ(k) and ε(k) ≡ J φ(k)+
o(k), which have the following auto/cross-covariances:

Rω = W RφW
′,Rε = J RφJ

′ + Ro,Rω,ε = W RφJ
′.

Consequently, we rewrite Eqn. 3 as

x(k + 1) = A x(k) + B u(k) + ω(k)
y(k) = C x(k) + D u(k) + ε(k) (4)

Eqn. 4 is the lifted model of a NUSM system.

B. Problem statement

Kalman filters for the lifted system of Eqn. 4 are [6]:

x̂(k + 1|k) = A x̂(k|k − 1) + B u(k) + (5)

L(k)
[
y(k) − C x̂(k|k − 1) − D u(k)

]
where, x̂(i + 1|i) is the unbiased estimate of x(i + 1) from

{u(1),y(1), · · · ,u(i),y(i)} for i = k − 1 or i = k with

initial value, x̂(0|−1) = E[x(0)]. Note that E( ) represents

the mean of the argument. In addition,

L(k) =
(
A M(k)C′ + Rω,ε

)
G−1(k)

is the Kalman gain, where

G(k) = C M(k)C′ + Rε

M(k + 1) = A M(k)A′ + Rω −[
A M(k)C′ + Rω,ε

]
G−1(k) •[

A M(k)C′ + Rω,ε

]′
with ( )′ standing for the transpose of the argument.

This paper considers the following problems:

• Given data: {u(1),y(1), · · · ,u(N),y(N)}, as N →
∞, develop a SMI to estimate the system matrices, A,

B, C, and D; the covariances, Rε, Rω, Rω,ε;

• Construct the Kalman filters of Eqn. 5, and further

investigate a Kalman filter-based FDI methodology for

NUSM systems.

III. THE SUBSPACE IDENTIFICATION ALGORITHMS

In this section, by extending the N4SID algorithms [15]

from single rate DT systems to NUSM systems, we propose

SMI for the system described by Eqn. 4. The derivation of

the identification algorithm is similar to that in the N4SID.

Therefore, only the main results are provided.

A. The stacked equations

For any positive integer j, we define a

reversed extended controllability matrix, ∆j ≡
[Aj−1B Aj−2B . . . A B B]; and a stacked vector,

ξ
j
(k) =

[
ξ′(k) · · · ξ′(k + j − 1)

]′
,

where ξ(k) can be u(k), y(k), ω(k), or ε(k). From time

instants k up to k + j, applying repeated recursions to Eqn.

4 yields

x(k + j) = Ajx(k) + ∆juj(k) + ∆s
jωj(k)

y(k + j) = C[Ajx(k) + ∆juj(k) + ∆s
jωj(k)]

+ D u(k + j) + ε(k + j) (6)

where ∆s
j = ∆j |B=In

and we define ∆j ≡ 0 if j = 0.

Define an extended observability matrix (i > n),

Γi ≡ [C′ A′C′ . . .
(
Ai−1

)′
C′]′ ∈ �imp×n

and a lower block triangular Toeplitz matrix,

Hi ≡
[

D 0
Γi−1B Hi−1

]
∈ �imp×igl

with H0 = D. We emphasize that Γi has rank n because

the pair (C,A) is observable. Stacking Eqn. 6 from j = 0
until j = i − 1 provides

y
i
(k) = Γix(k) + Hiui(k) + πi(k) (7)

where πi(k) = Hs
i ωi(k)+εi(k), and Hs

i = Hi|B=In,D=0.
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Define a block Hankel matrix for the inputs,

U0,i−1 =

⎡
⎢⎣

u(0) u(1) · · · u(N − 1)
...

...
. . .

...

u(i − 1) u(i) · · · u(i + N − 2)

⎤
⎥⎦ ,

where the subscripts, “0′′ and “i − 1′′, indicate the time

stamps of the (1, 1) and (i, 1) block elements of the matrix,

respectively, and N → ∞. Accordingly, we extend Eqn. 7

to

Y0,i−1 = ΓiX0 + HiU0,i−1 + Π0,i−1 (8)

where, Y0,i−1 and Π0,i−1 are block Hankel matri-

ces of {y
i
(k)} and {πi(k)}, respectively; X0 =

[x(0) x(1) · · · x(N−1)], in which the subscript “0′′ stands

for the time instant of the first vector x(0). It follows from

Eqn. 8 that

X0 = Γ+
i

(
Y0,i−1 − HiU0,i−1 − Π0,i−1

)
(9)

where Γ+
i is the Moore-Penrose pseudo inverse of Γi, and

has a rank of n.

Eqn. 7 can also be extended to

Yi,2i−1 = ΓiXi + HiUi,2i−1 + Πi,2i−1 (10)

where Yi,2i−1, Πi,2i−1, and Ui,2i−1 are analogous to Y0,i,

Π0,i and U0,i, respectively;

Xi = AiX0 + ∆iU0,i−1 + ∆s
iΩ0,i−1 (11)

is derived from Eqn. 6; Ω0,i−1 is the block Hankel matrix

of ωi(k). Eqns. 9, 10, and 11 are the Hankel matrix-based

stacked equations. Their combination readily shows that

Yi,2i−1 is a linear combination of U0,i, Y0,i, and Ui,2i−1.

B. Identification Algorithms

For two compatible matrices, A1 and A2, we denote

A1/A2 ≡ A1A′
2 (A1A′

2)
−1 A2 (12)

as the projection of A1 onto the row space of A2. A1/A2

is the optimal prediction of A1 based on A2 in the sense

that the squared F-norm, ‖A1−A2‖2
F , is minimized subject

to: row space of A1 ⊂ row space of A2.

We summarize the identification algorithms as follows.

• Using Eqn. 12, calculate

Zi = Yi,2i−1/

[
U0,2i−1

Y0,i−1

]

=
[
L1

i | L2
i | L3

i

]
⎡
⎣ U0,i−1

Ui,2i−1

Y0,i−1

⎤
⎦ and

Zi+1 = Yi+1,2i−1/

[
U0,2i−1

Y0,i

]

=
[
L1

i+1| L2
i+1| L3

i+1

]
⎡
⎣ U0,i−1

Ui,2i−1

Y0,i

⎤
⎦ .

• Calculate the singular value decomposition:

[
L1

i | L3
i

] [
U0,i−1

Y0,i−1

]
= U1Λ1V′

1,

where Λ1 is a diagonal matrix containing the non-zero

singular values, and U1 and V1 are the associated left

and right singular vectors, respectively. Select Γi =
U1Λ

1/2
1 .

• Determining the least squares solution:[
Γ+

i−1Zi+1

Yi,i

]
=

[
K11 K12

K21 K22

] [
Γ+

i Zi

Ui,2i−1

]

+ Ψi,

results in A ← K11, C ← K21, K12 = [K1
12 |K2

12],
and K22 = [K1

22 |K2
22], where Ψi is the error matrix.

Note that

K2
12 = Γ+

i−1Hi−1 − A Γ+
i

[
0

Hi−1

]
and

K2
22 = −C Γ+

i

[
0

Hi−1

]

can give solution to Hi−1. Furthermore, from

K1
22 = D − C Γ+

i

[
D

Γi−1B

]
and

K1
12 = B − A Γ+

i

[
D

Γi−1B

]
,

B and D can be calculated.

• From Ψi, calculate the covariance matrices,[
Rω R′

ω,ε

Rω,ε Rε

]
=

1
N

ΨiΨ
′
i.

IV. KALMAN FILTER-BASED FDI IN NUSM SYSTEMS

Kalman filters have extensive applicability. Especially,

since the pioneering work of Mehra and Peschon [16], they

have been frequently applied to FDI in single rate systems.

A survey of this area has been provided by Frank [17] and

the most recent work has been reported by Keller [18].

Recently research attention has focused on FDI of uni-

formly sampled multirate systems [19], [20]. FDI in NUSM

systems has also been considered [21] by extending the

Chow-Willsky scheme [22]. In addition, the use of Kalman

filters for sensor fault detection in NUSM systems [6] has

been investigated. This paper proposes a novel Kalman

filter-based approach towards sensor and actuator FDI in

NUSM systems.

A. Fault detection in NUSM systems

Typically, a plant with actuator and sensor faults can be

depicted by Fig. 1. In the plant, the measured outputs with

sensor faults, for j = [1, ni], can be represented by

y(kT + tji ) = y∗(kT + tji ) + fy(kT + tji ) (13)

where y∗(kT + tji ) = ỹ(kT + tji )+o(kT + tji ) is the fault-

free value, and fy(kT + tji ) is the fault magnitude vector
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Fig. 1. Schematic diagram of a system with actuator and sensor faults

with zero and non-zero elements. For instance, if the first

and third sensors are faulty, the first and third elements in

fy(kT + tji ) are non-zero, while other elements are zero.

The inputs to a plant, or the outputs of actuators, can be

similarly represented by

u(kT + ti) = u∗(kT + ti) + fu(kT + ti) (14)

where u∗(kT + ti) are the fault-free values; fu(kT + ti)
is the fault vector in the actuators and analogous to fy( )
in structure. Note that u∗(kT + ti) are available, because

they are outputs of controllers. However, u(kT +ti) are not

available. Given data: {u∗(kT + ti)} and {y(kT + tji )}, for

i = [1, g], j = [1, ni], and k = [1, 2, · · ·), the purpose of

fault detection is to indicate when any elements in fu( )
and/or fy( ) begin to be non-zero. We define two lifted

vectors:

u(k) = u∗(k) + fu(k)
y(k) = y∗(k) + fy(k)

where fy(k) is structurally similar to y(k) (y∗(k)), and so

is fu(k) to u(k) (u∗(k)). Accordingly, we rewrite Eqn. 4

as

x(k + 1) = A x(k) + B u∗(k) + B fu(k) + ω(k)
y(k) = C x(k) + D u∗(k) + D fu(k) + fy(k) +

ε(k) (15)

The substitution of y(k) in Eqn. 15 into Eqn. 5 gives

x̂(k + 1|k) = A x̂(k|k − 1) + B u∗(k) +
Lȳ(k|k − 1) (16)

where

ȳ(k|k − 1) ≡ y(k) − ŷ(k|k − 1)
= Cx̄(k|k − 1) + D fu(k) + fy(k)
+ ε(k) (17)

with L being a steady value of L(k); x̄(i|i − 1) = x(i) −
x̂(i|i−1) is the state estimation error for i = k or i = k+1.

Furthermore, subtracting x(k+1) in Eqn. 15 using Eqn. 16

leads to

x̄(k + 1|k) = (A − L C) x̄(k|k − 1) − L fy(k) +
(B − L D) fu(k) + ω(k) − L ε(k).

From the preceding equation it can be shown that

x̄(k|k − 1) =
k−1∑
i=0

(A − L C)k−1−i •

[(B − L D)fu(i) − L fy(i)]
+ x̄∗(k|k − 1) (18)

where,

x̄∗(k|k − 1) = (A − L C)k x̄(0| − 1) +
k−1∑
i=0

(A − L C)k−1−i [ω(i) − L ε(i) ] .

Finally, the substitution of Eqn. 18 into Eqn. 17 produces

ȳ(k|k − 1) = ȳ∗(k|k − 1) + ȳf (k|k − 1) (19)

where

ȳ∗(k|k − 1) = C
k−1∑
i=0

(A − L C)k−1−i [ω(i) − L ε(i) ]

+ C (A − L C)k x̄(0| − 1) ∼ ℵ [0,G(k)]

as proved in [6];

ȳf (k|k − 1) = C
k−1∑
i=0

(A − L C)k−1−i •

[(B − L D)fu(i) − L fy(i)]
+ D fu(k) + fy(k).

In accordance with [23], it can be shown that A−L C has

stable eigenvalues. Perform an eigendecomposition (ED) on

A − L C, e.g., A − L C = UAΛAU−1
A , where ΛA is a

diagonal matrix containing n◦ (≤ n) non-zero eigenvalues

and UA are the associated eigenvectors. Using this ED in

Eqn. 19 leads to

ȳf (k|k − 1) = D fu(k) + fy(k) + C UA

k−1∑
i=0

Λk−1−i
A

•U−1
A [(B − L D)fu(i) − L fy(i)],

where C UA is mp × n◦-dimensional, and mp is usually

much larger than n◦.

For C UA, if its rank is n1 (≤ n◦), then the rank of its

null space is mp − n1. Selecting a matrix, W◦, from such

a null space, i.e. W◦C UA ≡ 0, we define

e(k) ≡ W◦ȳ(k|k − 1)

= e∗(k) + ef (k) ∈ �mp−n◦ (20)

as the primary residual vector (PRV) for fault detection.

In Eqn. 20, e∗(k) = W◦ȳ
∗(k|k − 1) is the fault-free

component, while

ef (k) = W◦ȳ
f (k|k − 1) = [W◦D | W◦]

[
fu(k)
fy(k)

]

is the fault-contribution component.

Besides satisfying W◦C UA = 0, W◦ should also have

maximized covariance with D such that the PRV will have

maximized sensitivity to any faults. In line with [24] and

[25],

W′
◦ = the singular vectors corresponding

to mp − n1 non-zero singular values of

[Imp − C UA (C UA)+]D (21)
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It can be shown that e(k) = e∗(k) ∼ ℵ [0,Re(k)]
in the absence of fault, or e(k) ∼ ℵ [

ef (k),Re(k)
]

in

the presence of any faults, where Re(k) = W◦G(k)W′
◦.

Therefore, fault detection can be conducted by testing

the whiteness of the PRV. Define a scalar fD(k) =
e′(k)R−1

e (k)e(k), which follows a (non-central) chi-square

distribution with mp−n1 degrees of freedom in the normal

(faulty) case [26]. Given a threshold, χ2
β(mp − n1), for

fD(k), where β is a level of significance. While fD(k) <
χ2

β(mp − n1) indicates the absence of fault, fD(k) ≥
χ2

β(mp − n1) triggers fault alarms.

B. Fault isolation

To isolate each faulty actuator/sensor, one needs to trans-

form the PRV into a set of structured residual vectors

(SRVs). For simplicity, assume that at each time, only a

single actuator/sensor is faulty in this paper. For isolation

of multiple faulty sensors/actuators, interested readers are

referred to [27] for details.

There are l actuators and m sensors in the considered

system. Accordingly (l + m) SRVs are designed. And

each SRV is made insensitive to one specific faulty actua-

tor/sensor but has maximized sensitivity to others. We call a

sensor or an actuator an instrument for convenience. More

specifically, the ith SRV, ri(k), is designed to be insensitive

to a fault in the ith instrument, but most sensitive to faults

in other instruments, for i ∈ [1, l + m]. The sensitivity

and insensitivity of the l + m SRVs with respect to the

faulty instruments, also termed as fault isolation logic, are

summarized in Table I. In the table, a “0”/“1” means the

insensitivity/maximized sensitivity of a SRV to a faulty

instrument. In addition, f i
u( )/f j

y ( ) stands for the fault in

the ith actuator/jth sensor, for i ∈ [1, l]/j ∈ [1,m].

f1
u( ) · · · f l

u( ) f1
y ( ) · · · fm

y ( )
r1(k) 0 1 1 1 1 1

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
rl(k) 1 1 0 1 1 1

rl+1(k) 1 1 1 0 1 1

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
rl+m(k) 1 · · · 1 1 1 0

TABLE I

Sensitivity and insensitivity of the l + m SRVs w.r.t. faulty

actuators/sensors

Mathematically, the ith SRV is

ri(k) = Wie(k) = r∗i (k) + rf
i (k),

where r∗i (k) = Wie
∗(k) ∼ ℵ(0,Re,i) with Re,i =

WiReW
′
i, and

rf
i (k) = Wie

f (k) = Wi[W◦D | W◦]
[

fu(k)
fy(k)

]
.

Denote Θ◦ ≡ [W◦D | W◦] ∈ �(mp−n1)×(mp+lg). As a

consequence, the fault model for the ith SRV is WiΘ◦.

Moreover, we can split Θ◦ into two parts, e.g. Θ◦ =
[Θ◦,i| Θ⊥

◦,i], where Θ◦,i denotes those columns associated

with fault in the ith instrument, and Θ⊥
◦,i the remaining

columns.

In the presence of a single sensor fault, (fu(k) is zero),

from its definition fy(k) has p non-zero elements. As a

consequence, Θ◦,i has p columns. Similarly, when a single

actuator occurs (fy(k) = 0), fu(k) has g non-zero elements,

and hence Θ◦,i has g columns.

Since the ith SRV is designed to be insensitive to

any fault in the ith instrument, it is required that Wi is

orthogonal to Θ◦,i but has maximized covariance with Θ⊥
◦,i.

Using the similar algorithms to calculate W◦, we can obtain

l + m transformation matrices,

W′
i = the singular vectors corresponding

to non-zero singular values of

[Imp−n◦ − Θ◦,i

(
Θ◦,i

)+]Θ⊥
◦,i, (22)

∀ i ∈ [1, l + m]. Note that Wi is (mp − n1 − g) × (mp −
n1)/(mp−n1 − p)× (mp−n1)-dimensional when Θi

◦ has

g/p columns.

After fault detection, it follows from the pre-determined

isolation logic that

ri(k) ∼
{ ℵ(0,Re,i), if the ith instrument fails;

ℵ(rf
i (k),Re,i), if any other instrument fails;

where Re,i = WiReW
′
i. Define a scalar fault isolation in-

dex fI,i(k) = ri(k)R−1
e,i ri(k). If fI,i(k) follows a chi-square

distribution with degrees of freedom, (mp−n1−g)/(mp−
n1 − p), then the ith instrument is faulty. Otherwise, any

other but the ith instrument is faulty.

C. Analysis on fault detectability and isolability

The conditions under which a single fault is detectable

and isolable will be analyzed in this subsection. In the PRV,

note that

ef (k) = [W◦D | W◦]
[

fu(k)
fy(k)

]
,

where the gain matrix for fu(k) is W◦D and that for fy(k)
is W◦. The detectability of a fault is ensured if ef (k) is

always non-zero.

1) Fault detectability conditions: In the presence of a

single actuator fault, ef (k) = W◦D fu(k). Since fu(k)
has g non-zero elements, ef (k) is a linear combination of

g columns of W◦D specified by the non-zero elements.

Apparently, ef (k) �= 0 requires that any g columns in

W◦D are linearly independent.

In the presence of a single sensor fault, ef (k) =
W◦fy(k). It can be similarly understood that fault de-

tectability is guaranteed if any p columns in W◦ are linearly

independent.
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2) Fault isolability conditions: To isolate the ith actuator

fault, except rf
i (k) = WiW◦D fu(k) = 0, for any j ∈

[1, l] and j �= i, rf
j (k) = WjW◦D fu(k) �= 0 should be

guaranteed. This requires that any g columns in WjW◦D
are linearly independent. It can be similarly concluded that

to isolate a single sensor fault, any p columns in WjW◦
must be linearly independent.

V. AN EXPERIMENTAL CASE STUDY

In this section, an experimental case study is conducted

to test the correctness of the proposed SMI algorithm and

the utility of the FDI scheme.

A. The Experimental Pilot Plant

The experimental pilot plant is a continuous stirred tank

heater system (CSTHS) located in the Computer Process

Control Laboratory, at the University of Alberta. As shown

in Fig. 2, the CSTHS has two inputs, i.e. l = 2, the cold

and hot water flowrates, and two outputs, i.e. m = 2, the

level and temperature of the water in the tank. The inputs

are manipulated by respective controllers, and the outputs

from the controllers drive the actuators, which are two

valves. The ultimate purpose of the CSTHS is to regulate

the outputs.

Fig. 2. Physical layout of the CSTHS system with the associated hardware

B. Identification of the lifted model of the pilot plant

Select a frame period, T = 6 secs. From this pilot

plant, a set of training data covering 799 frame periods

is collected to identify the lifted model. Within each frame

period [kT, kT + T ] for k = 0, 1, 2, · · ·, the two inputs are

sampled at instants kT , kT +3, and kT +4, while the two

outputs are sampled at instants kT , kT + 2, and kT + 5.

Thus, the lifted input and output vectors are

u(k) =

⎡
⎣ u(kT )

u(kT + 3)
u(kT + 4)

⎤
⎦ , y(k) =

⎡
⎣ y(kT )

y(kT + 2)
y(kT + 5)

⎤
⎦ ,

where g = p = 3. From {u(k),y(k)} for k = 1, 2, · · · , 799,

we construct three data matrices, U0,i−1, Y0,i−1, and

Yi,2i−1 with i = 3, and each matrix has 799 columns. Sub-

sequently, applying the subspace identification algorithms

developed in Section 3, we estimate the lifted model, A, B,

C, and D, and the noise covariances, Rε, Rω, and Rω,ε.

Using the identified matrices, we construct the Kalman

filter, Eqn. 5. We also calculate W◦ and Wi for i ∈ [1, 4]
in order to generate one PRV for fault detection and four

SRVs for fault isolation. Note that we have employed the

isolation logic in table I to design the SRVs, i.e. the ith

SRV is insensitive to fault in the ith instrument, but has

maximized sensitivity to faults in other instruments, for i ∈
[1, 4]. Finally, we calculate the covariances, Re and Re,i

for the PRV and SRVs, for i ∈ [1, 4].
1) Validation of the identified model: In addition to

the data used for identification, another sequence of data

covering 350 frame periods for the fault-free case was made

available for model validation. From this data sequence,

a sequence of PRVs, {e(k)}, is generated, where each

PRV is 4-dimensional. Moreover, we calculate the fault

detection index, fD(k) = e′(k)R−1
e e(k). In this fault-free

case, fD(k) follows a chi-square distribution with degrees

of freedom equal to 4. Therefore, with a pre-selected level

of significance β = 0.01, the confidence limit for fD(k) is

χ2
0.01(4) = 13.277. We scale fD(k) by 13.277 and plot the

scaled value, “FD”, in Figure 3. Note that in the figure, each

point in the x-axis represents a frame period, i.e. 6 seconds.

As can be seen clearly, “FD” is within its confidence limit,

1, (with an acceptable rate of false alarm) indicating the

validity of the identified model.
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Fig. 3. The scaled fault detection index generated from the validation
data

C. FDI results

Due to space limitation in this paper, FDI results for only

one fault scenario are presented. However, we have carried

out FDI in many other fault scenarios and interested readers

are encouraged to contact the authors to obtain more details.

A random noise, ℵ(0, 0.252), is introduced to an instru-

ment at tf = 389 ∗ 6 = 2334 seconds. The test data are

sampled at the same rate as the training data, and on-line

and real-time FDI is carried out. The relevant FDI results
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are depicted in Figure 4, where FD is the scaled fault

detection index, and {FI1, F I2, F I3, F I4} are the scaled

fault isolation indices, respectively. It can be seen from the

figure that FD is beyond the unit confidence limit after the

occurrence of the fault. Therefore, fault detection has been

successfully performed. Moreover, since FI4 is unaffected

by the fault, i.e. it is below the confidence limit (except at

few statistically insignificant periods of time due to errors

of chance, it is beyond the limits), while {FI1, F I2, F I3}
are affected by the fault, i.e. they are beyond the confidence

limit. The sensitivity of the 4 fault isolation indices can be

characterized by a binary code [1 1 1 0]. Thus it can be

inferred that the second sensor has a fault.
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Fig. 4. Detection and isolation of a fault in the 2nd sensor. The sensitivity
of the isolation indices to the fault is [1 1 1 0].

VI. CONCLUSION

Data-driven Kalman filters for NUSM systems have been

proposed. A novel Kalman filter-based FDI methodology

has been investigated. Analysis on fault detectability and

isolability has been conducted. This developed FDI scheme

has been applied to an experimental pilot plant, i.e. the

CSTHS system in the Computer Process Control laboratory,

at The University of Alberta. Different types of actuator

and sensor faults in the CSTHS system, including drift and

precision degradation, are successfully detected and iso-

lated. Therefore, the practicality and utility of the proposed

methodology have been demonstrated.
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