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Abstract—Load balancing for parallel computations is mod-
eled as a deterministic dynamic nonlinear time-delay system.
This model accounts for the trade-off between using processor
time/network bandwidth and the advantage of distributing the
load evenly between the nodes to reduce overall processing
time. A distributed closed-loop controller is presented to
balance load dynamically at each node by using not only
the local estimate of the queue size of other nodes, but also
estimates of the number of tasks in transit. A discrete event
simulation using OPNET Modeler is presented and compared
with experimental data, and results indicate good agreement
between the nonlinear time-delay model and the behaviors
observed on a parallel computer network. Moreover, both
simulations and experiments show a dramatic increase in per-
formance obtained using the proposed closed-loop controller.

I. INTRODUCTION

The objectives of parallel processing are to reduce wall-

clock time, increase throughput, and increase the size of

solvable problems by dividing the software into multi-

ple fragments that can be executed simultaneously on a

set of computational elements (CE) interconnected via a

high bandwidth network. To effectively utilize a parallel

computer architecture, the computational loads need to be

distributed more or less evenly over the available CEs. The

qualifier “more or less” is used because the communications

required to distribute the load consume both computational

resources and network bandwidth. A point of diminishing

returns exists.

Various taxonomies of load balancing algorithms exist

in the literature [1][2]. Direct methods examine the global

distribution of computational load and assign portions of the

workload to resources before processing begins. Iterative

methods examine the progress of the computation and the

expected utilization of resources, and adjust the workload

assignments periodically as computation progresses. As-

signment may be either deterministic, as with the dimension
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exchange/diffusion [3] and gradient methods, stochastic, or

optimization based. A comparison of several deterministic

methods is provided by Willebeek-LeMair and Reeves [4].

Approaches to modeling and iterative load balancing are

given in [5][6][7]. In recent years, there has been active

work on load balancing using control theory, especially for

database applications and web services [8][9][10][11]. A

queuing theory [12] approach is well-suited to the modeling

requirements and has been used in the literature by Spies

[13] and others. However, whereas Spies assumes a homo-

geneous network of CEs and models the queues in detail,

the present work generalizes queue length to an expected

waiting time, normalizing to account for differences among

CEs, and aggregates the behavior of each queue. Previous

results by the authors appear in [14][15][16][17].

There is a trade-off between using processor

time/network bandwidth and the advantage of distributing

the load between nodes to reduce overall processing

time. Our work in [18] discusses a mathematical model

that captures the processor resource constraints in load

balancing. The open-loop experiments and Simulink

simulations correspond well. The work has been extended

to the closed-loop control of a load balancing network,

and some initial results are presented in [19]. However,

Simulink does not easily handle time varying delays which

arise in the closed-loop case. This motivated the authors to

develop a new discrete event simulation based on OPNET

Modeler.

This work presents the closed-loop control of a load

balancing network with time delays and processor resource

constraints. The closed-loop controller at each node uses not

only the local estimate of the queue sizes of other nodes, but

also estimates of the number of tasks in transit to it. A dis-

crete event simulation using OPNET Modeler is presented

and compared with the experiments on a parallel computer

network. The OPNET Modeler simulations indicate good

agreement of the nonlinear time-delay model with the actual

implementation. Both OPNET simulations and experimental

results show the superiority of using the controller based on

the anticipated queue sizes to using the controller based on

the local queue sizes only.

Section II presents a model of a load balancing algorithm

in the computer network that incorporates the presence of

time delays in communicating between nodes and transfer-

ring tasks. Section III addresses the feedback control law

on a local node and how a node portions out its tasks

to other nodes. Feedback controllers based on the actual
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queue size and on the anticipated queue size are discussed
in this section. Section IV presents the OPNET model of

a load balancing system. Simulations and experiments are

presented to demonstrate the feedback controller based on

the anticipated queue size. Section V is summarizes the

present work.

II. MATHEMATICAL MODEL OF LOAD BALANCING

In this section, a nonlinear continuous time model is

developed to model load balancing among a network of

computers. Consider a computing network consisting of n
computers (nodes) all of which can communicate with each

other. At start up, the computers may be assigned an equal

number of tasks; however, when a node executes a particular

task it can in turn generate more tasks so that very quickly

the loads on various nodes become unequal.

A simple approach to load balancing would be to have

each computer in the network broadcast its queue size q j(t)
to all other computers in the network. A node i receives
this information from node j delayed by a finite amount of
time τi j; that is, it receives q j(t−τi j). Each node i can then
use this information to compute its local estimate1 of the

average number of tasks in the queues of the n computers
in the network. The simple estimator

(
∑nj=1 q j(t− τi j)

)
/n,

(τii = 0), which is based on the most recent observations,
can be used as the network average. Node i would then
compares its queue size qi(t) with its estimate of the
network average as

(
qi(t)−

(
∑nj=1 q j(t− τi j)

)
/n

)
and, if

this is greater than zero or some positive threshold, the node

sends some of its tasks to the other nodes. If it is less than

zero, no tasks are sent. Further, the tasks sent by node i
are received by node j with a delay hi j. The task transfer
delay hi j depends on the number of tasks to be transferred
and is much greater than the communication delay τi j. The
controller (load balancing algorithm) decides how often and

fast to do load balancing (transfer tasks among the nodes)

and how many tasks are to be sent to each node. It was

shown in [19] that this straightforward controller leads to

unnecessary task transfers (the queue lengths oscillate) due

to the time delays. A modification of this controller is

proposed below that avoids unnecessary task transfers.

As explained, each node controller (load balancing al-

gorithm) has only delayed values of the queue lengths of
the other nodes, and each transfer of data from one node

to another is received only after a finite time delay. An

important issue considered here is the effect of these delays

on system performance. The model used here captures the

effect of the delays in load balancing techniques as well as

the processor constraints so that system theoretic methods

can be used to analyze them.

The basic mathematical model of a given computing node

1It is an estimate because at any time, each node only has a delayed
value of the number of tasks in the other nodes.

for load balancing is given by

dxi(t)
dt

= λi−µi (1−ηi(t))−Um(xi)ηi(t)

+
n

∑
j=1
pi j
tpi
tp j
Um(x j(t−hi j))η j(t−hi j) (1)

pi j � 0, p j j = 0,
n

∑
i=1
pi j = 1

where

Um(xi) =
{
Um0 > 0 if xi > 0
0 if xi ≤ 0.

In this model

• n is the number of nodes.
• xi(t) is the expected waiting time experienced by a task
inserted into the queue of the ith node. With qi(t) the
number of tasks in the ith node and tpi the average time
needed to process a task on the ith node, the expected
(average) waiting time is then given by xi(t) = qi(t)tpi .
Note that x j/tp j = q j is the number of tasks in the node
j queue. If these tasks were transferred to node i, then
the waiting time transferred is q jtpi = x jtpi/tp j , so that
the fraction tpi/tp j converts waiting time on node j to
waiting time on node i.

• λi ≥ 0 is the rate of generation of waiting time on
the ith node caused by the addition of tasks (rate of
increase in xi).

• µi ≥ 0 is the rate of reduction in waiting time caused
by the service of tasks at the ith node and is given
by µi ≡

(
1× tpi

)
/tpi = 1 for all i if xi(t) > 0, while if

xi(t) = 0 then µi � 0; that is, if there are no tasks in
the queue, then the queue cannot possibly decrease.

• ηi = 0 or 1 is the control input which specifies whether
tasks (waiting time) are processed on a node or tasks

(waiting time) are transferred to other nodes.

• Um0 is the limit on the rate at which data can be
transmitted from one node to another and is basically

a bandwidth constraint.

• pi jUm(x j)η j(t) is the rate at which node j sends
waiting time (tasks) to node i at time t where
pi j � 0,∑ni=1 pi j = 1 and p j j = 0. That is, the trans-
fer from node j of expected waiting time (tasks)∫ t2
t1
Um(x j)η j(t)dt in the interval of time

[
t1, t2

]
to the

other nodes is carried out with the ith node being sent
the fraction pi j

∫ t2
t1
Um(x j)η j(t)dt of this waiting time.

As ∑ni=1
(
pi j

∫ t2
t1
Um(x j)η j(t)dt

)
=

∫ t2
t1
Um(x j)η j(t)dt,

this results in removing all of the waiting time∫ t2
t1
Um(x j)η j(t)dt from node j.

• The quantity pi jUm(x j(t−hi j))η j(t−hi j) is the rate of
transfer of the expected waiting time (tasks) at time t
from node j by (to) node i where hi j (hii = 0) is the
time delay for the task transfer from node j to node i.

In this model, all rates are in units of the rate of change of

expected waiting time, or time/time which is dimensionless.
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As ηi = 1 or 0, node i can only send tasks to other nodes
and cannot initiate transfers from another node to itself. A

delay is experienced by transmitted tasks before they are

received at the other node. Model (1) is the basic model,

the p ji defines how to portion the tasks to be transferred
on each sending node i. One approach is to choose them as
constant and equal

p ji = 1/(n−1) for j �= i and pii = 0 (2)

where it is clear that p ji� 0,∑nj=1 p ji= 1. Another approach
is to base them on the estimated state of the network and

is presented in the next section.

The model (1) is shown in [18] to be self consistent

in that the queue lengths are always nonnegative and the

total number of tasks in all the queues and the network are

conserved (i.e., load balancing can neither create nor lose

tasks). The model is only (Lyapunov) stable, and asymptotic

stability must be insured by the choice of the feedback law.

III. FEEDBACK CONTROL

In [18], a feedback law at each node i was based on the
value of xi(t) and the delayed values x j(t−τi j) ( j �= i) from
the other nodes. Here τi j (τii= 0) denote the time delays for
communicating the expected waiting time x j from node j to
node i. However, there is additional information that can be
made available to the nodes — specifically, the information

on qneti , which is the number of tasks that are in the network
being sent to the ith node, or equivalently, the waiting time
xneti � tpiqneti .
Here it is proposed to base the controller not only on

the local queue size qi, but also use information about the
number of tasks qneti in transit to node i. The node j sends
to each node i in the network information on the number
of tasks qneti j it has decided to send to each of the other
nodes in the network. This way the other nodes can take

into account this information (without having to wait for the

actual arrival of the tasks) in making their control decision.

The communication of the number of tasks qneti j being sent
from node j to node i is much faster than the actual transfer
of the tasks. Furthermore, each node i also broadcasts its
total (anticipated) amount of tasks, i.e., q

i
+qneti to the other

nodes so that they have a more current estimate of the tasks

on each node (rather than have to wait for the actual transfer

of the tasks). The information that each node has will be a

more up to date estimate of the state of network using this

scheme.

Define

zi � xi+ xneti = tpi
(
q
i
+qneti

)
(3)

which is the anticipated waiting time at node i. Further,
define

zi avg �
(
n

∑
j=1
z j(t− τi j)

)
/n (4)

to be the ith node’s estimate of the average anticipated
waiting time of all the nodes in the network. This is still

an estimate due to the communication delays. Therefore,

wi(t) � xi(t)− zi avg(t) = xi(t)−
∑nj=1 z j(t− τi j)

n
(5)

to be the expected waiting time relative to the estimate of

average (anticipated) waiting time in the network by the ith

node. By using the waiting times zi(t) in (5) (rather than
xi(t)) unnecessary task transfers are avoided (see [19]). A
control law based on the anticipated waiting times is chosen

as

ηi(t) = h(wi(t)) . (6)

where h(·) is a function given by

h(w) =
{
1 if w� 0
0 if w< 0.

The control law (6) states a balancing action is needed on

node i if its local waiting time is above the estimate of the
anticipated network average waiting time. How a sending

node portions out its excess load to transfer to other nodes

is determined by the pi j. Rather than set the pi j constant
as in (2), they are specified by equation (7) below.

The quantity pi j is the fraction of waiting time above
the network average to be transferred from node j to node
i. The pi j can be specified using the anticipated waiting
times z j of the other nodes. The quantity z j avg− zi(t− τ ji)
represents what node j estimates the network’s average
anticipated waiting time is relative to its estimate of the

anticipated waiting time in the queue of node i. If the
estimate of the queue of node i (i.e., zi(t − τ ji)) is above
what node j estimates the network’s average (i.e., z j avg)
is, then node j sends tasks to node i. Otherwise, node j
sends no tasks to node i. Therefore sat

(
z j avg− zi(t− τ ji)

)
is a measure by node j as to how much node i is below
the local average. Node j then repeats this computation for
all the other nodes and then portions out its tasks among

the other nodes according to the amounts they are below its

estimate of the network average, that is,

pi j =
sat

(
z j avg− zi(t− τ ji)

)
∑
i � i�= j

sat
(
z j avg− zi(t− τ ji)

) . (7)

It is obvious that pi j � 0,∑ni=1 pi j = 1 and p j j = 0. All pi j
are defined to be zero, and no load is transferred if the

denominator is zero.

IV. EXPERIMENTAL RESULTS

A parallel machine has been built and used as an exper-

imental facility for evaluation of load balancing strategies.

A root node communicates with k groups of networked
computers. Each of these groups is composed of n nodes
(hosts) holding identical copies of a portion of the database.

Any pair of groups correspond to different databases, which

are not necessarily disjoint. In the experimental facility, all

machines run the Linux operating system. Our interest here

is in the load balancing in any one group of n nodes.
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The database is implemented as a set of queues with

associated search engine threads, typically assigned one per

node of the parallel machine. The search engine threads

access tree-structured indices to locate database records that

match search or store requests. Search requests that await

processing may be placed in any queue associated with a

search engine, and the contents of these queues may be

moved arbitrarily among the processing nodes of a group

to achieve a balance of the load.

The OPNET Modeler [20] is a tool suite for the creation

and analysis of discrete event simulations of computer

networks. A network in OPNET Modeler is built of many

components including network models, node models, link

models, packet formats, and process models. By configur-

ing specific parameters for each of these components and

writing C code to describe the behavior of the component, a

model was created to simulate the load balancing algorithm

behavior with time-varying delays over different network

topologies.

In the OPNET model of a load balancing system, three

nodes are connected by a model of a gigabit switch. Each

node simulates the load balancing algorithm using a process

model with a given set of initial conditions. Figure 1 shows

the process model at each node, which is the lowest level

of the OPNET model hierarchy. A process model is a finite

state machine, in which events from the simulation kernel

produce conditions that cause transitions between states.

The init state initializes system variables, schedules
SEND STATS and PROC JOB transitions, and immediately
transitions to the idle state. Here the idle state waits for
interrupts from the simulation kernel to cause transitions

to other states. The proc job state pulls a task from
the queue, optionally generates additional tasks, updates its

local average estimate, and schedules another PROC JOB
transition for ∼400µ sec in the future. Transitions to the
send stats state are scheduled at regular intervals, send-
ing the node’s queue size to all other nodes. Additionally,

the send stats state will schedule a LOADBAL transition
when it detects an imbalance in load based on the node’s

queue size and its local average estimate.

The loadbal state implements the load balancing algo-
rithm by determining the number of tasks to send to each

node, sending each node a notification of the number of

tasks in transit to it, and then sending the actual tasks.

The last action of the loadbal state is to schedule a
LOADBAL FINISHED transition, and to set a flag that
will block transitions to the proc job and send stats
states until the LOADBAL FINISHED transition occurs.
This is done to account for the fact that the load balancing

algorithm and search tasks contend for the same processing

resources. When packets are sent from a node, they are

passed to the simulation kernel where the delay to transfer

the packet to another node is determined based on the

packet size, the link bandwidth, and optionally, a random

propagation delay. Once the total delay is determined, a

PK ARRVL transition is scheduled at the receiving node

for the appropriate time. When this transition occurs, the

packet type is determined by the det pk type state to be
a statistic update of another node’s load, a notification of

incoming tasks, or incoming tasks themselves and are han-

dled by the rcv stats, rcv job info, and rcv jobs
states, respectively.

Fig. 1. OPNET simulation: process model in a load balancing system.

The node that transfers tasks computes the amounts to

be sent to other nodes using (7). This amount is computed

and sent before actually transferring tasks. Such commu-

nications are efficient; the communication delay of each

transferred measurement is much smaller than the task

transfer delays. Thus knowledge of the anticipated queue

sizes can be used to compensate the effect of delays.

OPNET simulations and experimental results on the parallel

computer are presented here to illustrate the effects of time

delays in closed loop load balancing.

A. Load Balancing with Initial Tasks

The OPNET Model is configured to match the charac-

teristics of the actual load balancing experiments with an

initial queue distribution of q1(0) = 600, q2(0) = 200 and
q3(0) = 100 tasks. The average time to do a search task is
400µ sec, and the inputs are set as λ1 = 0,λ2 = 0,λ3 = 0.
The actual delays experienced by the network traffic in the

parallel machine are random. Experiments were performed
and the resulting time delays were measured and analyzed.

Those values were used in the simulation for comparison

with the experiments.

Figure 2 shows the OPNET results of a 3-node load

balancing using pi j based on the anticipated waiting times
zi. The load balancer on each node uses the anticipated
queue sizes which include both the queue information of

other nodes and the task information in transit through the

network. As the communication delay of each transferred

measurement is much smaller than the actual task transfer

delays, the node controller gets more up to date information

to make its decision on load balancing. Figure 2 shows
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such a closed-loop controller which reduces unnecessary

transfers (due to delayed information of other nodes, see

[19]) resulting in a faster settling time.
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Fig. 2. OPNET 3-node simulation using controller (6) and pi j by (7).

Figure 3 shows the experimental data of the responses

of the queues versus time for load balancing with initial

queues of q1(0) = 600, q2(0) = 200 and q3(0) = 100 tasks.
In Figure 3, the system reaches the balanced state quickly

using the anticipated waiting times. Although all trajectories

contain random effects and therefore can not be compared

point by point, the qualitative behaviors of the OPNET

simulation and the experiment are quite similar.
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Fig. 3. Plot of queue sizes using controller (6) and pi j by (7).

Figure 4 shows node 2’s estimates of the anticipated

queue sizes in the network under closed-loop load balancing

with the pi j based on the zi. Node 1 broadcasts the number
of tasks it is sending to each node before actually transfer-

ring the tasks to the other nodes. Specifically, q1+qnet1 in
Figure 4 is what node 2 estimates the total tasks at node

1 or in transit to node 1, and q3 + qnet3 is what node 2
estimates the total tasks at node 3 or in transit to node

3. Node 2 uses the (anticipated) estimates q1+ qnet1 and
q3+qnet3 in the controller (5)(6) to balance its load. From
Figure 4, the anticipated estimates are used by the controller

to compensate the effect of delays in the task transfers so

that no unnecessary task transfers are initiated. This method

quickly balances computational workloads across all nodes

and results in a shorter job completion time.
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Fig. 4. Estimated queue sizes by node 2 using (6) and (7).

B. Load Balancing with Task Generation

In this experiment, the initial queue distribution is

q1(0) = 600 tasks, q2(0) = 200 tasks and q3(0) = 100 tasks.
The average time to do a search task is tpi = 400µ sec, and
the inputs were set as λ1 = 3,λ2 = 0,λ3 = 0. That is, a
number of new tasks is generated at the rate λ1 on node
1 in each processing loop. It is interesting to see how the

load balancing algorithm performs as tasks are dynamically

generated.

Figures 5 shows the OPNET simulation of a 3-node load

balancing using the pi j specified by (7) with task generation
in the process of execution. Figure 6 shows the responses

of the queues versus time in an actual experimental run.

The staircase-like increases of queue size corresponds to

new task insertions in node 1 at the rate λ1 = 3. Figures
5 and 6 show that the control system quickly acts to

balance the nodes using the anticipated waiting times. The

OPNET simulations indicate good agreement between the

event-based nonlinear time delay model and the actual

implementation.

V. SUMMARY

In this work, a load balancing algorithm for parallel

computing was modeled as a nonlinear dynamic system

in the presence of time delays and processor resource

constraints. A closed-loop controller was presented based

on the local queue size and an estimate of the tasks being

sent to the queue from other nodes. The proposed control

law on each node used not only its estimate of the queue
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Fig. 5. OPNET 3-node simulation of load balancing with task generation.
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Fig. 6. Plot of queue sizes in load balancing with task generation.

sizes at other nodes, but also an estimate of the number

of tasks in transit to it. The system achieved faster settling

times than reported in [18] by using this information to

avoid unnecessary transfers. An OPNET simulation model

was presented to include the time varying delays arising in

the closed-loop load balancing process. The OPNET simu-

lations indicated good agreement of the nonlinear time delay

model with the actual implementation. Both simulations and

experimental results showed a substantial improvement in

performance obtained using the closed-loop controller based

on anticipated queue sizes.
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