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Abstract

In this paper we consider the problem of computing
decentralized control policies in a discrete stochastic
decision problem. For the problem we consider, com-
putation of optimal decentralized policies is NP-hard.
We present a relaxation method for this problem which
computes suboptimal decentralized policies as well as
bounds on the optimal achievable value. We then show
that policies computed from this relaxation are guar-
anteed to be within a fixed bound of optimal. The re-
laxation is derived from an equivalent formulation of
this decentralized decision problem as a polynomial op-
timization problem. The method is illustrated by an
example of decentralized detection.

1 Introduction

Decentralized decision problems are optimization prob-
lems in which a collection of decisions are made in re-
sponse to a set of observations with the goal of maxi-
mizing some cost. The complicating factor is that de-
cisions can only be made to depend on some specified
subset of the observations. That is, the complete set
of observations can be thought of as the state of the
environment. Each decision is made on the basis of an
incomplete observation of the state, although the cost
incurred depends on the entire state and set of deci-
sions. Such problems are common in engineering and
economics. Much of the early work on team decision
problems was motivated by economic problems [3]. In
certain engineering problems, such as the design of dis-
tributed detection schemes and distributed data trans-
mission protocols, the key difficulty lies in the design of
good rules for interacting decision makers to follow.

Here we consider a fairly general discrete version of
this problem, where the sets of possible observations
and decisions are finite. The problem considered is
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a static decision problem, where a single set of deci-
sions is made in response to a single set of observations.
Given the probabilities of all sets of observations, the
goal is to choose decentralized decision rules which max-
imize the expected cost. This problem is shown in [8]
to be NP-hard, even for the case of two decision mak-
ers. Therefore, the goal of this paper is to determine
effective methods of computing good suboptimal solu-
tions to this problem. Here we show that this problem
can be equivalently formulated as a maximization of a
polynomial subject to linear constraints. Relaxations of
this polynomial optimization problem can then be effi-
ciently solved. From these relaxations, we obtain upper
bounds on the maximum achievable value for the orig-
inal problem, as well as suboptimal decision rules. We
also show that policies computed from this relaxation
are guaranteed to be within a fixed bound of optimal.

2 Previous work

Much of the previous work on decentralized decision
problems can be roughly categorized as complexity re-
sults, tractable special cases, and applications. Some of
the earliest work on decentralized decision problems is
the work of Radner and Marschak [3, 5]. Along with in-
troducing the team decision problem, they have shown
that for concave differential costs, person-by-person op-
timality is sufficient for global optimality. A nice survey
of the early work in the field of decentralized decision
problems, including extensions to dynamic problems,
can be found in [1]. In [8], it is shown that the general
static decentralized decision problem with finite state
and action spaces is NP-hard.

A great deal of work on the team decision problem
has been done for the application of decentralized de-
tection. The decentralized detection problem was intro-
duced in [6], where it was shown that under certain inde-
pendence assumptions, optimal decentralized detection
rules take the form of likelihood ratio tests. However, it
is shown in [8] that the problem of decentralized detec-
tion, a special case of the team decision problem, is also
NP-hard. Therefore, most approaches to the problem
of decentralized detection focus on determining person-
by-person optimal detection rules. Surveys of the field
of decentralized detection can be found in [7] and the
book [9].
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3 Motivating example

In this section we motivate the study of the general
problems discussed in this paper by a specific appli-
cation. The problem of decentralized detection is an
example of a decentralized stochastic decision problem.
Here we present a very brief overview of this subject.
Detailed surveys can be found in [7] and [9].

In a detection problem, we have several hypotheses
on the underlying state of our environment, and we
would like use measurements of our environment to de-
cide which hypothesis is true.

h1 , . . . , hM

D1 D2 DN

y1
yNy2

u1 u2 uN

Figure 1: The correct hypothesis H ∈ {h1, . . . , hM} is
to be detected. In this figure, N independent detectors
produce decisions ui based on their measurements yi.

Classical detection methods assume all measurements
are available to a single detector, which estimates the
true hypothesis based on all measurements. Such a
detection scheme is called centralized. When minimiz-
ing the probability of error, optimal decision rules in
centralized schemes are given by the well-known MAP
(maximum a-posteriori probability) detector. In a de-
centralized detection scheme, each sensor is responsible
for making a decision based only on its own measure-
ment. The goal is to choose decision rules for all sensors
which are optimal with respect to some system-wide
cost function.

For example, suppose we have a collection of sensors
each monitoring various elements of an industrial pro-
cess. We would like the sensors to sound an alarm when
some part of the process is malfunctioning. In this case
we may wish to maximize the probability that the alarm
sounds when there is a malfunction and does not sound
when there is no malfunction. One option is to trans-
mit all sensor measurements to a central location, where
a decision to sound the alarm is made on the basis of
all measurements. An alternative is to equip each sen-
sor with its own decision rule and the ability to sound
the alarm. When the loss of performance associated
with employing the second alternative is small, such a
scheme is preferable due to the reduced implementa-

tion complexity associated with the elimination of the
communication requirements.

One might initially assume that good decentralized
decision rules can be obtained by allowing each sensor
to use a MAP detection rule. While this is true in some
special cases, it is not true in general. Unlike the cen-
tralized case, the general problem of computing optimal
decentralized detection rules is NP-hard [8]. Also, de-
centralized decision rules can appear considerably more
complex than their centralized counterparts. For ex-
ample, optimal decentralized decision rules typically in-
volve hedging among the sensors, a strategic element
which is not present when simply using MAP rules at
each detector.

Due to the complexity of this problem, most exist-
ing methods for computing decentralized detection rules
produce locally optimal equilibrium policies. Such poli-
cies are said to be person-by-person optimal ; for a set
of such decision rules, no improvement can be obtained
by adjusting the decision rule for any given sensor while
leaving the others fixed. In general, a single prob-
lem instance may have many equilibrium policies. The
globally optimal policy is clearly an equilibrium policy.
However, for any given equilibrium policy, we have no
way of knowing how this policy relates to the globally
optimal policy. In particular, we have no way of know-
ing how much improvement we could obtain by using
the globally optimal policy. In the next section we will
show by a simple example that an equilibrium policy
can perform arbitrarily poorly compared to the optimal
policy. The methods that we present in this paper are
relaxations. In addition to generating an equilibrium
policy, they return an upper bound on the maximum
achievable cost by any decentralized policy. When the
bound is exact, we have a proof that our computed pol-
icy is globally optimal. Even when the bound is not
exact, we still have a measure of the suboptimality of
the computed policy.

4 Main results

4.1 Formulation and complexity

In this section we consider a general static decentral-
ized decision problem, also commonly referred to as a
team decision problem [1, 5]. For notational simplicity,
we only discuss problems involving two decision mak-
ers. Extensions of the results to the general case of N
decision makers is straightforward.

The distributed detection problem of the previous
section is an example of the class of problems to be con-
sidered in this paper. The objective of the detector can
be specified by an objective function to be minimized or
maximized over the set of decentralized policies. For ex-
ample, consider a problem with two detectors where we
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would like to determine the decentralized policy which
maximizes the probability that all detectors are correct.
This is carried out by maximizing the objective function

J(γ1, γ2) =∑
y1,y2

∑
i

ri(γ1(y1), γ2(y2), hi)p(y1, y2|hi)p(hi),

over all decentralized policies, where p(hi) is the a-priori
probability of truth of each hypothesis, p(y1, y2|hi) is
the conditional probability of observing (y1, y2) given
that hi is the correct hypothesis, and

ri(u1, u2, hi) =

{
1 if u1 = u2 = hi

0 otherwise.

The objective function above is often referred to as the
Bayes risk function.

In its most general form, the specific problem considered
in this paper is the following:

Team Decision Problem: Given finite sets Y1, Y2,
U1, U2 and a cost function c : Y1 ×Y2 ×U1 ×U2 → R+,
find policies γi : Yi → Ui, i = 1, 2 which maximize the
cost

J(γ1, γ2) =
∑
y1,y2

c(y1, y2, γ1(y1), γ2(y2))

This problem is presented in [8]. There, the problem
considered was that of maximizing expected cost given
a cost function ĉ : Y1 × Y2 × U1 × U2 → R and prob-
ability mass function p : Y1 × Y2 → R. It is eas-
ily shown that these two formulations are equivalent
by taking our cost function to be c(y1, y2, u1, u2) =
ĉ(y1, y2, u1, u2)p(y1, y2). It was shown in [8] that this
problem is NP-hard. Unless P=NP, we cannot hope to
find an efficient algorithm capable of always producing
globally optimal policies. In fact, even the restricted
class of problems where |U1| = |U2| = 2 is still NP-
hard. Efficient methods for computing policies must
aim to find good suboptimal solutions. This problem is
particularly interesting since the centralized version is
trivial. For the centralized problem, the optimal policy
simply chooses the decisions u1 and u2 which maximize
c(y1, y2, u1, u2) for each (y1, y2).

One way of formulating the team decision problem in-
volves expressing policy i as a |Yi|×|Ui| Boolean matrix
for each i:

Ki
yiui

=

{
1 if γi(yi) = ui

0 otherwise

Similarly, we can express the system cost as a |Y1||Y2|×
|U1||U2| matrix Cyu = c(y1, y2, u1, u2). Here, the matrix

is indexed according to an order on the pairs y = (y1, y2)
and u = (u1, u2). The static decentralized decision
problem can be equivalently formulated as

maximize:
∑

y,u CyuKyu

subject to: Kyu = K1
y1u1

K2
y2u2

Ki ≥ 0 i = 1, 2

Ki1 = 1 i = 1, 2

Kyu ∈ {0, 1} for all y, u

(1)

This problem is clearly a nonconvex optimization prob-
lem due to the Boolean constraints and the bilinear con-
straint. However, we can eliminate the Boolean con-
straints and show that the resulting problem is equiva-
lent to (1):

Theorem 1. The optimization problem

maximize:
∑

y,u CyuKyu

subject to: Kyu = K1
y1u1

K2
y2u2

Ki ≥ 0 i = 1, 2

Ki1 = 1 i = 1, 2

(2)

always has an optimal solution satisfying Kyu ∈ {0, 1}
for all y, u.

Proof: Suppose K1 and K2 are optimal for (2). Note
that K1 and K2 may have non-integer entries. The
problem

maximize:
∑

y1,u1

(∑
y2,u2

CyuK2
y2,u2

)
K1

y1,u1

subject to: K1 ≥ 0

K11 = 1

is a linear program in the variable K1. An optimal

solution K̂1 to this LP satisfies∑
y,u

CyuK̂1
y1u1

K2
y2u2

≤
∑
y,u

CyuK1
y1u1

K2
y2u2

Also, it is clear that K̂1 can be chosen to have 0-1 en-
tries. Now consider the linear program

maximize:
∑

y2,u2

(∑
y1,u1

CyuK̂1
y1,u1

)
K2

y2,u2

subject to: K2 ≥ 0

K21 = 1

Again, an optimal solution K̂2 satisfies∑
y,u

CyuK̂1
y1u1

K̂2
y2u2

≤
∑
y,u

CyuK̂1
y1u1

K2
y2u2
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and can be chosen to have 0-1 entries. Therefore, K̂1,

K̂2, and K̂ = K̂1 ⊗ K̂2 constitute an optimal 0-1 solu-
tion to (2). �

When the optimal solution in (2) is not unique, there
may be a mixed optimal solution. However, the above
theorem shows that there is always a Boolean solution
which achieves the same objective value.

Although we were able to eliminate the Boolean con-
straints, finding a globally optimal solution to (2) is still
a difficult problem. The most common approach for
handling this problem is to employ an iterative scheme
for finding a person-by-person optimal solution [1, 5, 9].
This type of scheme starts by initially choosing an arbi-
trary pair of policies. Policies are then modified by al-
ternately optimizing each policy while leaving the other
policy fixed (as in the proof of Theorem 1). Since there
are a finite number of policies, and each step never re-
sults in a decrease in the objective, this method leads to
an equilibrium solution in a finite number of steps. The
problem with such methods is that problems may have
many equilibria, and it not clear if any given equilib-
rium solution is necessarily a good one. In fact, we can
show by a simple example that an equilibrium policy
can be arbitrarily poor compared to the optimal policy.

Consider a trivial case where |Y1| = |Y2| = 1, |U1| =
|U2| = 2. In this case, there is only one state, and
each decision maker can choose between two decisions.
Consider the cost function

c(y1, y2, u1, u2) =

⎧⎨⎩ ρ for u1 = u2 = 1
2 for u1 = u2 = 2
1 for u1 �= u2

Consider the decentralized policy where γ1(y1) = 2 and
γ2(y2) = 2. This policy achieves a cost of J(γ1, γ2) = 2.
Leaving one decision rule fixed while changing the other
always achieves a cost less than 2. Therefore, this pol-
icy is person-by-person optimal. However, the globally
optimal decentralized policy in this case achieves a cost
of J(γ∗

1 , γ∗
2 ) = ρ. Since ρ is arbitrary, we can choose

its value so that a suboptimal person-by-person opti-
mal policy achieves a cost arbitrarily worse than the
globally optimal cost.

In this paper, we consider an alternate approach to
searching for equilibrium policies. We treat this prob-
lem as a polynomial optimization problem, and ap-
ply lifting methods to obtain convex relaxations. Such
methods either produce a globally optimal solution, or
produce a suboptimal solution along with a bound on
its suboptimality.

4.2 A relaxation for the static problem

Consider the problem (2) with additional valid con-
straints added by taking products of the original linear

constraints:

maximize:
∑

y,u CyuKyu

subject to: Kyu = K1
y1u1

K2
y2u2∑

u1
Kyu = K2

y2u2
for all y1, y2, u2∑

u2
Kyu = K1

y1u1
for all y1, y2, u1

Ki1 = 1 i = 1, 2

K ≥ 0

The additional constraints Ki ≥ 0 and K1 = 1 are
implied by the linear constraints, so they are left out
for brevity. By dropping the bilinear constraint, we
obtain the linear programming relaxation:

maximize:
∑

y,u CyuKyu

subject to:
∑

u1
Kyu = K2

y2u2
for all y1, y2, u2∑

u2
Kyu = K1

y1u1
for all y1, y2, u1

Ki1 = 1 i = 1, 2

K ≥ 0

(3)

Solving this linear program produces an upper bound
on the maximum value achievable by a decentralized
policy, as well as suboptimal policies described by K1

and K2. When the relaxation is not exact, the poli-
cies K1 and K2 may not be person-by-person optimal.
However, we can apply the iterative scheme described at
the end of the previous subsection using these policies
as a starting point to obtain improved person-by-person
optimal policies. In the next section, we will show that
applying such a scheme leads to policies which are guar-
anteed to be within a fixed bound of optimal.

4.3 Guaranteed suboptimality bounds

In the previous section, it was shown that by solving a
relaxation, we produce suboptimal policies and bounds
on the optimal achievable value for instances of Team
Decision Problem. In this section, we show that by
solving the relaxation and applying a person-by-person
optimization scheme using the policies obtained from
the relaxation as a starting point, we obtain policies
which are guaranteed to be within a fixed bound of
optimal. This is in contrast to the person-by-person
optimization scheme with an arbitrary initial policy,
where we saw in Section 4.1 that computed policies may
achieve a value arbitrarily far from the optimal value.

Here we consider the following algorithm:
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Algorithm 1.

1. Solve the relaxation (3) to obtain K2.

2. Choose K̂1 with entries

K̂1
y1u1

=

⎧⎪⎨⎪⎩1 if u1 = argmax

{ ∑
y2,u2

CyuK2
y2u2

}
0 otherwise.

3. Choose K̂2 with entries

K̂2
y2u2

=

⎧⎪⎨⎪⎩1 if u2 = argmax

{ ∑
y1,u1

CyuK̂1
y1u1

}
0 otherwise.

The policies described by K̂1 and K̂2 have the following
property:

Theorem 2. Let the optimal decentralized policy be de-
scribed by K1 and K2. The policies produced by Algo-
rithm 1 satisfy∑

y,u

CyuK̂1
y1u1

K̂2
y2u2

≥ 1

|U1|
∑
y,u

CyuK1
y1u1

K2
y2u2

,

where it is assumed, without loss of generality, that
|U2| ≥ |U1|.

Proof: Let K, K1, and K2 be the optimal solutions to
the relaxation (3). Clearly∑

y,u

CyuKyu ≥
∑
y,u

CyuK1
y1u1

K2
y2u2

.

From the constraints of (3), K2
y2u2

=
∑

u1
Kyu for all

y1, y2, and u2. Since the elements of K are nonnegative,
K2

y2u2
≥ Ky1y2u1u2

for all y1, y2, u1, and u2. Therefore,∑
y,u

CyuK2
y2u2

≥
∑
y,u

CyuK1
y1u1

K2
y2u2

.

For each y1,

max
u1

{ ∑
y2,u2

CyuK2
y2u2

}
≥ 1

|U1|
∑
y2,u

CyuK2
y2u2

.

Therefore,∑
y,u

CyuK̂1
y1u1

K̂2
y2u2

≥ 1

|U1|
∑
y,u

CyuK2
y2u2

≥ 1

|U1|
∑
y,u

CyuK1
y1u1

K2
y2u2

.

�

Theorem 2 tells us that Algorithm 1 always produces
policies that achieve an objective value within a fac-
tor of 1/|U1| of optimal. For the special case where
|U1| = |U2| = 2, which is still NP-hard, computed poli-
cies achieve a value within a factor of 1

2 of the optimal
value.

5 Numerical example

Here we illustrate some of the concepts discussed in this
paper with a numerical example. Consider a decentral-
ized detection problem with four hypotheses and two
detectors. Let H denote the current hypothesis. The
a-priori probabilities for each hypothesis are given by:

Prob{H = hi} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.39 for i = 1

0.31 for i = 2

0.16 for i = 3

0.14 for i = 4

The measurements M1 and M2 are made by each de-
tector are each quantized to one of ten measurements.
The conditional probabilities of each possible pair of
measurements given each hypothesis are illustrated by
the figure below.
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Prob(y1, y2 |H=h1) Prob(y1, y2 |H=h2)

Prob(y1, y2 |H=h3) Prob(y1, y2 |H=h4)

y2

y1 y1

y1 y1

y2

y2 y2

Figure 2: Conditional probabilities of each pair of mea-
surements given each hypothesis. Dark areas on the
plots represent low probabilities.

Each detector will estimate the hypothesis based only
on its own observation. We would like to find decen-
tralized detection rules which maximize the probability
that at least one detector is correct.
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We can formulate a relaxation of this problem as the
linear program (3). In this case, the costs are

Cyu=Prob{(H �=u1) ∩ (H �=u2) ∩ (M1=y1) ∩ (M2=y2)}

Solving the relaxation, we obtain the globally optimal
detection rules:

γ∗
1(y1) =

{
1 for y2 ≤ 7

4 otherwise

γ∗
2(y2) =

{
3 for y1 ≤ 3

2 otherwise

For this particular example, the optimal strategy
achieves Prob{at least one correct} = 0.77.

It is interesting to compare the optimal strategy to
the one obtained by using a maximum a-posteriori de-
tection rule for each detector. The MAP strategy is
identical for both detectors and is given by

γMAP
i (yi) =

{
1 for yi ≤ 6

2 otherwise

In this example, the MAP strategy achieves
Prob{at least one correct} = 0.62. The key dif-
ference between the optimal strategy and the MAP
strategy is the element of hedging employed by the
optimal strategy. That is, the first hypothesis is
the most likely, and it is most reliably detected by
the first detector. In the optimal strategy, the second
detector never guesses the first hypothesis. This is done
to maximize the probability of guessing the correct
hypothesis when the first detector guesses incorrectly.
In the MAP strategy, both detectors are often both
guessing the first hypothesis. When one is incorrect,
the other is likely to be incorrect as well.

6 Conclusions

In this paper, we considered the problem of determining
optimal decentralized decision rules in stochastic deci-
sion problems. It was shown that a general discrete de-
cision problem has an equivalent formulation as a poly-
nomial optimization problem. We obtain a relaxation
of this polynomial optimization problem which can be
used to compute suboptimal policies as well as bounds
on the optimal achievable value. We also show that
policies computed from this relaxation are guaranteed
to be within a fixed bound of optimal.

In this paper, we restricted our focus to problems in-
volving two decision makers. Of course, most practical
problems where decentralization is a required property
of the decision strategies will consist of many decision
makers. We only consider problems with two decision

makers for several reasons. First, it is known that prob-
lems with two decision makers are computationally in-
tractable. Therefore, these problems are the simplest
cases which are still affected by the inherent difficul-
ties of decentralized decision making. All of the results
presented here will extend in a straightforward way to
cases involving many decision makers, but we present all
results in terms of the two decision maker case for sim-
plicity. Secondly, for the general problem formulation
considered in this paper, the input complexity required
to specify a problem instance scales exponentially with
the number of decision makers. In other words, speci-
fying a cost function for a particular instance requires a
number of parameters which is exponential in the num-
ber of decision makers. To discuss algorithms which are
efficient in some meaningful way for problems involving
many decision makers, we must restrict our attention
to cost functions which admit a representation which
scales gracefully with the number of decision makers.
Similar issues are faced in the theory of multi-player
games. There, it has been observed that cost functions
in many real problems have special structure, such as
symmetry or graphical structure [2]. We believe that
the results of this paper can be extended in a way which
exploits similar structures in the cost function, although
we have not pursued this issue here.
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