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Abstract— This tutorial session describes how Mixed-integer
Programming (MIP) can be employed for feedback control.
MIP can be used to find optimal trajectories subject to
integer constraints, which can encode discrete decisions or
nonconvexity, for example. This optimization can be performed
online within Model Predictive Control (MPC) to implement
a feedback control law. The tutorial discusses how to model
systems using MIP, the implementation as a MPC, and
techniques for fast solutions of the optimizations to make them
suitable for real-time use.

I. INTRODUCTION

Mixed-integer programming (MIP) is a very general
framework for capturing problems with both discrete de-
cisions and continuous variables. This includes:

• Assignment problems [2]
• Control of hybrid systems [12]
• Piecewise-affine (PWA) systems (including approxi-

mations of nonlinear systems) [11]
• Problems with non-convex constraints (e.g., collision

avoidance) [7]

MIP methods naturally handle these types of problems
because the integer decision variables can be used to encode
discrete decisions, e.g. assignment decisions or “left” vs
“right” for collision avoidance [4], [5]. Having cast the
problem in MIP form, techniques from Model Predictive
Control (MPC) can be used to build a feedback control law
using the optimization online.

This tutorial will focus on the two major challenges
associated with using MIP/MPC for online control. The first
is to encode the problem as a MIP optimization that can be
embedded within MPC (see Figure 1). The second, often
harder, challenge is to develop modifications to the problem
statement to execute these optimizations in real-time. This
challenge arises because integer programming is in the class
of NP-complete problems and can require extensive com-
putation for problems with many integer variables. Further
pressure on computation time arises from the desire to apply
MIP/MPC to problems with fast dynamics. MPC has been
widely and successfully employed in the process industry
for problems with relatively long time scales, typically on
the order of hours. However, some forthcoming applications
for MIP/MPC, such as target assignment and path-planning
for Unmanned Aerial Vehicles [26], have time scales on
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Fig. 1. MPC with Output Feedback

the order of minutes or seconds. Thus a successful de-
ployment often requires judicious choice of approximation
and solution techniques. While the final installation details
are usually problem-specific, there are general approaches
and guidelines for suitable approximations. The first part
of the tutorial will focus on the problem formulation and
general implementation techniques. The following talks will
provide more specific implementation details and solution
techniques that have recently been developed:

1. Topics of the first talk include modeling systems
using MIP (assignment problems, non-convex con-
straints and PWA systems); using optimization for
real-time control (stability requirements, robustness);
and general approaches for online solutions (approx-
imations, constraint relaxation, cost-to-go functions)
by J. P. How (MIT) and A. Richards (Bristol).

2. Projected Variable Metric Algorithm for Mixed Inte-
ger Optimization Problem by Ali Ahmadzadeh (Univ.
of Pennsylvania), Bijan Sayyarrodsari (Pavilion Tech.
Inc), and Abdollah Homaifar (North Carolina A&T
State Univ.)

3. MILP Assignment Problems for Multi-Vehicle Sys-
tems by Matthew Earl and Raffaello D’Andrea (Cor-
nell Univ.)

4. Real-Time MILP Path-Planning for Tactical UAV Ap-
plications by Cedric Ma (Northrop Grumman Corp.)
and Robert H. Miller, (Univ. of Michigan)

5. Receding Horizon Implementation of MILP for Ve-
hicle Guidance by Yoshiaki Kuwata and Jonathan P.
How (Massachusetts Inst. of Tech.)

II. DEFINITION OF MILP

A Mixed-Integer Linear Program (MILP) is a special case
of a Linear Program (LP) in which some of the decision
variables are constrained to take only integer values. Given
matrices A1,A2 and vectors f1, f2,b, the general MILP is
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given by

min
x,z

fT
1 x + fT

2 z

subject to A1x + A2z ≤ b
z integer

This problem is inherently non-convex: if for some problem
z1 = 0 and z1 = 1 are both solutions, points in between
z1 ∈ (0, 1) violate the integer requirement on z1 and are
therefore infeasible. The problem is also in the class of NP-
complete problems [3], [4]. This means that there is no
algorithm that can guarantee solving any MILP problem in
a time that is a polynomial function of the problem size,
i.e., the number of decision variables and constraints1. How-
ever, with good software and modeling, many useful MILP
problems can be solved quickly enough to be of practical
use, even though the worst-case guaranteed solution time is
far longer.

III. MODELING USING MILP

This section briefly illustrates by examples the capabili-
ties of MILP for modeling complex problems. The common
feature throughout is the encoding of discrete decisions
using the integer variables.

A. Resource Allocation

Many resource allocation problems are inherently dis-
crete. For example, the manufacture of items commonly
concerns only integer quantities of items. Also, the assign-
ment of tasks to agents is discrete.

Consider a simple task assignment problem in which N
tasks are to be assigned to N agents. All the tasks must
be assigned, and no agent can perform more than one task,
hence every agent must be assigned a task. The tasks are
discrete: they cannot be shared between agents. The cost of
assigning agent i to task j is cij . To solve this problem by
optimization, define the decision variable zij = 1 if task i is
assigned to agent j and 0 otherwise. Therefore the problem
can be written as

min
z

N∑

i=1

N∑

j=1

cijzij

subject to
N∑

i=1

zij = 1∀j ∈ {1 . . . N}
N∑

j=1

zij = 1∀i ∈ {1 . . . N}

zij ∈ {0, 1}∀i, j

It turns out that the problem above is a special case and can
be solved using only LP [6]. If the integer constraints zij ∈
{0, 1} are replaced with simple bounds 0 ≤ zij ≤ 1,
then the vertices of the constraint set are all at integer
values of zij , and since the LP solutions are at the vertices,

1This statement is unproven, although backed by much evidence and
experience. The formal study of complexity is a large subject in its own
right and beyond the scope of this tutorial.

these solutions will solve the integer problem too. However,
suppose there is some resource required to perform each
task, and define rij as the amount of resource consumed by
agent j in performing task i. If the total resource available
is R, the following constraint must be added

N∑

i=1

N∑

j=1

rijzij ≤ R

The LP solution can no longer be used, and the problem
must be posed and solved as a MILP.

Many other common resource allocation problems can
be expressed in MILP form, including job shop schedul-
ing [15], the traveling salesman problem [13], and the
vehicle routing problem [14].

B. Piecewise Affine Functions

Any continuous nonlinear function can be arbitrarily well
approximated using a Piecewise Affine (PWA) function [4].
In turn, a piecewise affine function can be encoded using
MILP [12], [11]. The advantage of the MILP approach
over a nonlinear optimization method lies in the handling
of non-convexity. Some MILP solution methods guarantee
globally-optimal solutions (see Section IV), whereas most
nonlinear methods have no such guarantee, and may become
“trapped” by local minima.

Consider a continuous PWA function f(y) defined on the
interval Y1 ≤ y ≤ YN with specified values at intermediate
points f(Yi) = Fi and a linear interpolation between those
points [3]. The minimization of f(y) can be written in MILP
form as

min
x

N∑

i=1

xiFi

subject to
N∑

i=1

xi = 1

xi ≥ 0 ∀i ∈ {1 . . . N}
x1 ≤ z1

xi ≤ zi−1 + zi ∀i ∈ {2 . . . N − 1}
xN ≤ zN−1

N−1∑

i=1

zi = 1 , zi ∈ {0, 1}

where the binary variable zi = 1 if Yi ≤ y ≤ Yi+1,
effectively “choosing” which interval the solution lies in,
and then constraining the cost function to be a linear combi-
nation, using multipliers xi and xi+1, of the function values
at the ends of that interval, i.e., f(y) = xiFi + xi+1Fi+1

corresponding to y = xiYi + xi+1Yi+1.

C. Disjunctions and Non-convex Sets

Consider a problem in which one of two constraints must
be satisfied, for example, either aT

1 x ≤ b1 or aT
2 x ≤ b2.

While each of these is a linear constraint, there is no way of
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writing “or” in a standard LP [5]. However, the constraints
can be expressed in MILP form as

aT
1 x ≤ b1 + Mz1 (1a)

aT
2 x ≤ b2 + Mz2 (1b)

z1 + z2 ≤ 1 (1c)

where z1 and z2 are additional binary variables and M is
a very large positive number. If z1 = 1, then the right
hand side of (1a) is a very large positive number, and if M
was chosen sufficiently large, this constraint is effectively
relaxed. Then, since z1 = 1, the logical constraint (1c)
requires z2 = 0, and the second constraint (1b) must be
enforced in its original form, i.e. no M term. Similarly, if
z2 = 1, the constraint (1b) is relaxed, but (1c) requires z1 =
0, hence (1a) is applied without the M term. This can be
viewed as another discrete decision: the binary variables
encode a choice of which constraint to apply, and the logical
constraint ensures that at least one of them is applied.

The formulation in (1) is an example of what is com-
monly referred to as a “big-M” form (some authors use
“big-D”, “big-R” or others but the principle is the same).
The binary variables act as “switches” on the continuous
constraints, appearing with a large weighting, and are also
subject to logical constraints. This is a very powerful
method that can capture many useful logical constructs [9],
[10]. However, the large weighting M can cause condition-
ing problems and makes the MILP solution process harder.
Many useful problems can be solved using big M methods,
but it is always worth spending some time looking for a big-
M -free representation: if it exists, it could be more efficient.

The disjunction method can be extended to consider an
arbitrary non-convex set constraint by approximating the set
as a union of convex polytopes

S :=
N⋃

i=1

Pi

Pi := {x : Aix ≤ bi}

Then the constraint x ∈ S can be thought of as a disjunc-
tion: either x ∈ P1, x ∈ P2 . . . or x ∈ PN . Using the
same approach as in (1), this can be written in MILP form

Aix ≤ bi + 1Mzi ∀i ∈ {1 . . . N}
N∑

i=1

zi ≤ N − 1

D. Avoidance

A particularly useful variation of the disjunction con-
straint can be applied to collision avoidance for vehicle
path-planning [7]. Suppose a point on a trajectory is re-
quired to be outside a polytope x �∈ P where P := {x :
Ax < b}. This exclusion constraint can be written as a

disjunction
either aT

1 x ≥ b1

or aT
2 x ≥ b2

...
or aT

Nx ≥ bN

where ai is the ith row of A. Then using the big-M
approach gives the following MILP constraints

aT
i x ≥ b1 − Mzi ∀i ∈ {1 . . . N}

N∑

i=1

zi ≤ N − 1

This method has been applied to obstacle avoidance prob-
lems in two and three dimensions for spacecraft and aircraft,
and can be extended to prevent inter-vehicle collisions and
impingement from thruster plumes [8].

IV. SOLVING MILP PROBLEMS

It is not necessary to have a deep understanding of MILP
solution algorithms to successfully apply MILP for problem
solving. A variety of solvers are readily available [1]. For
large problems, commercial packages such as CPLEX [16]
include efficient heuristics and solve many problems rapidly.
Noncommercial software for solving MILP’s are discussed
in detail in Ref. [19]. Mathematical programming languages
like AMPL [17] can simplify the implementation of com-
plicated formulations 2.

The remainder of this section is devoted to a brief dis-
cussion of algorithms for solving general MILP problems.
Note that there are other methods for discrete optimization
that are applicable to more specific problem classes. For
example, the knapsack problem [3] is a type of resource
allocation problem that can be posed and solved as a MILP,
but it can also be efficiently solved using dynamic program-
ming (DP) [18]. While DP can be applied to many dynamics
problems that can also be expressed in MILP form, it is
not a solution algorithm for general MILP problems, so it
is not discussed here. General MILP algorithms fall into
two classes: heuristic and branching. Heuristic methods are
only briefly discussed here. Branching methods are more
attractive for many applications because of the guaranteed
global optimality of solutions.

A. Branch and Bound

The branch-and-bound algorithm is the most popular
choice for solving MILP problems [4], [3], [27]. CPLEX is
based on this algorithm. The great advantage of the branch-
and-bound method is that, when it terminates, the solution is
known to be globally optimal. This is the great benefit of the
MILP approach: it can achieve globally optimal solutions
for non-convex problems.

The branch-and-bound algorithm begins by solving a re-
laxed form of the problem, replacing integrality constraints
with simple bounds, and then “branching” on a chosen

2Example codes available at http://hohmann.mit.edu/milp/
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variable: that variable is fixed at various integer settings,
each generating a new relaxed sub-problem and a better
bound on the optimal solution. This procedure continues,
searching a “tree” with different integer settings for each
branch. If the result of a relaxed subproblem satisfies the
integrality constraints, that branch does not need to be
searched any further, and its solution is a feasible solution to
the original MILP. If the solution to an relaxed subproblem
is not integral, but has a cost worse than the best MILP
solution found already, that branch can be terminated, or
“fathomed,” as further branching will only increase the
cost. The search terminates when all branches have been
searched.

In general, the branch-and-bound method cannot be guar-
anteed to terminate without searching the entire tree, giving
a computation time limit that is exponential in the number
of variables. This is consistent with the NP-completeness
of the problem. However, when implemented with good
heuristics to decide the branching and searching strategy,
globally-optimal solutions can be found to many large,
difficult problems in times small enough to be useful.

B. Heuristic Methods

Heuristic methods are typically based on some ran-
dom search procedure. This is attractive for non-convex
problems, as the randomness reduces the susceptibility of
the methods to getting “stuck” in local minima. Several
methods dominate: simulated annealing, genetic algorithms,
and Tabu search.

Simulated annealing mimics the cooling of atoms in a
metal. At an initial high “temperature,” the solution can
make large “jumps” at random across the search space. As
the metal “cools,” the probability of jumping reduces, and
the method becomes more like a random local search.

Genetic algorithms mimic evolution [21] in that a “pop-
ulation” of solutions is chosen and evolved through “gen-
erations,” each involving combining the features of pairs of
individual solutions and introducing random variations. In
both simulated annealing and genetic algorithms, because
movements in the search are randomized, they can easily
be chosen to use only integer solutions.

Tabu search has also proven to be an effective heuristic
for solving combinatorial optimization problems such as
scheduling, telecommunications, transportation and network
problems [20]. The Tabu method searches a neighborhood
of a given solution for a better feasible solution. The
neighborhood of a solution is defined to be all solutions that
can be reached in a single move, where the definition of a
move is problem specific, but typically includes changing
one “bit” in the solution from 1 to 0, or swapping the
position of two elements in the solution vector. The problem
with most neighborhood methods of this type is that they
can get trapped in a local minimum. To prevent this looping
between the same solutions, Tabu search uses the concept
of memory and a Tabu list.

V. USING MILP FOR CONTROL

This section describes how MILP can be employed online
for feedback control.

A. Model Predictive Control

Model Predictive Control (MPC) [22], [23], also known
as receding-horizon control, can be summarized in the
following algorithm.

1. Using numerical optimization, design a control se-
quence for a finite time ahead (the “horizon”) begin-
ning from the current state

2. Implement an initial portion of that optimized3 control
sequence

3. Go to 1

This is a feedback control system: because the optimization
in Step 1 uses the current state as its initial condition, the
optimized control sequence is a function of the state and
therefore the control is a function of the state, implying
feedback action. It also involves feedforward, as the pre-
diction within the optimization anticipates future behavior.

The major benefit of MPC is its natural ability to
handle constraints. The constraints can be applied within
the optimization in Step 1, and numerical optimization
subject to constraints is readily done. MPC with constrained
optimization results in a controller that is explicitly designed
with both performance and constraints in mind. This is
favorable compared to many other approaches combining an
optimized controller, ignoring constraints, with additional
de-tuning or supervisory control to account for the con-
straints.

B. Properties of Model Predictive Control

When designing a feedback controller, it is always nec-
essary to check that the resulting closed-loop system is
stable. Other properties of interest include robustness and
convergence [24]. For MPC with constraints, feasibility
is also a key concern: since the control law is based on
the solution to an optimization, the system should have
some guarantee that a solution can be found. This section
discusses how to establish these useful properties for MPC.

In the case of MPC, all of these properties are established
using a common approach, based on a recursion. It begins
by assuming that a feasible solution is known at some
time t0. Then that solution is used to construct a candidate
solution for the subsequent planning problem at time t0+∆.
That candidate solution is then proven to be feasible,
i.e. to satisfy the constraints of the planning problem at
time t0+∆, for all initial conditions and times. In the case of
robustness properties, the recursion must also be proven for
all realizations of uncertainty between times t0 and t0 +∆,
e.g. all realizations of the plant or all disturbances. The
recursion can also be expressed in set form: if the state is

3This may be the optimal solution to the optimization, but that does not
mean that it is the optimal feedback control law, hence we use “optimized”
here instead of “optimal”.
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in some state at time t0, it is in that set at time t0 + ∆.
These two forms are equivalent.

Once proven, the recursion implies feasibility of all the
optimizations to be solved. If feasibility at time t0 implies
that a particular solution exists at t0 +∆, then the planning
problem at t0 + ∆ must be feasible, hence feasibility is
maintained at all times. By some definitions, this can imply
stability, as feasibility of a constrained optimization can
imply invariance of the feasible set.

If a stronger form of stability is required, the cost of
the optimization can be used as a Lyapunov function. If
a particular solution is known to be feasible at time t0 +
∆, its cost is an upper bound on the optimal cost at that
time. Hence the recursion can be used to establish V (t0 +
∆) < V (t0) where V (t) is the optimal cost of the plan at
time t. If V also meets the requirements for a Lyapunov
function, which is common as optimizations typically have
positive definite cost functions, then stability is proven [24].
Note that properties based on the monotonicity of the cost
function typically require optimal solutions to be found at
each step, whereas some other properties dependent only
on constraints require only feasible solutions.

The nominal stability of MILP-based MPC has been
proven for systems involving both integer and continuous
states and inputs [9]. Where MILP has been employed
for problems with nonconvex constraints, robust feasibility
and convergence has been proven [26]. Stability has also
been proven for a MILP-based control with an approximate
terminal cost [25] (see Section VI-C for details).

C. Simple MPC Example

Consider the problem of controlling a linear time-
invariant system

x(k + 1) = Ax(k) + Bu(k)

subject to state and control constraints

x(k) ∈ X , u(k) ∈ U

which may include integrality constraints, i.e. some states
and controls are integers representing decisions) or non-
convex constraints using techniques from Section III. The
objective is to minimize a one-norm cost function

min
∞∑

k=0

(|u(k)| + |x(k)|)

A nominally stable MPC is achieved by using the following
optimization in Step 1 of the algorithm in Section V-A

V (k) = min
u,x,y

N∑

j=0

(|u(k + j|k)| + |x(k + j|k)|) (2a)

subject to ∀j ∈ {0 . . . N}
x(k + j + 1|k) = Ax(k + j|k) + Bu(k + j|k)(2b)

x(k|k) = x(k) (2c)

x(k + N + 1|k) = 0 (2d)

x(k + j|k) ∈ X (2e)

u(k + j|k) ∈ U (2f)

The remainder of this section discusses the features of this
optimization, the design features included, and how it can
be extended for better performance.

• The double index notation (k + j|k) denotes a pre-
diction of a value j steps ahead from time k.

• N is the planning horizon. The optimization (2)
approximates the original problem by solving only
over this finite horizon and effectively constraining
the plan to zero beyond.

• (2b) is the system dynamics model used for the
predictions.

• (2c) is the initial condition constraint, ensuring that
the plan starts from the current state.

• (2d) is the terminal constraint, required for stabil-
ity [24]. This enforces that there is a feasible plan
continuing on beyond the horizon, in this case all
zero.

• (2e) and (2f) are the constraints applied to the plan.

This is a very simple MPC formulation that is generally-
applicable. The optimization is a MILP, using slack vari-
ables to implement the minimization of the one-norm
cost [3]. The stability of this MPC is proven using
the recursion described in Section V-B. If a solution
{u(k0|k0),u(k0 + 1|k0), . . . ,u(k0 + N − 1|k0),u(k0 +
N |k0)} is feasible at time k0, then the candidate solution
{u(k0 + 1|k0), . . . ,u(k0 + N − 1|k0),u(k0 + N |k0),0}
must be feasible at time k0 + 1. This implies feasibility
of all optimizations and, because the stage cost includes a
positive definite term in the state |x|, stability [9].

There are two straightforward extensions to this formu-
lation. The first is the use of a more general terminal
constraint, replacing (2d) with x(k + N + 1|k) ∈ XF ,
where XF is a control invariant set [24]. This is clearly
more complicated than using the origin, but is is much less
restrictive. Stability is retained, and the set of feasible initial
states is enlarged. This may also be thought of as enlarging
the domain of attraction of the controller.

The second extension is to account for uncertainty by
employing constraint tightening [26], [36]. This approach
replaces (2e) with a time-varying constraint x(k + j|k) ∈
X (j) where X (j) is a sequence of sets that is monotonically
non-increasing with j. A similar change is made to the
control constraints (2e). These modifications have the effect
of retaining a “margin” for the action of uncertainty and,
under some assumptions, stability and constraint satisfaction
can be guaranteed despite the action of disturbances.
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VI. SOLVING MILP ONLINE

Section III showed that MILP can be used to model many
useful forms of optimization problem, especially planning
problems with discrete decisions or nonconvex constraints.
Section V showed that by employing these optimizations
online within MPC, feedback control can be realized with
useful, meaningful properties such as stability and robust-
ness. This section considers the remaining challenge: how
to solve the MILP sufficiently quickly to apply the result
in real-time.

Section IV described some general ways of solving
MILPs. This section discusses further enhancements that
are specific to the employment of MILP for online control
problems. The principle is to use knowledge of the control
problem to simplify the MILP before starting the optimizer,
e.g. CPLEX, which has no knowledge of the structure of
the problem.

A. Approximation

This section describes additional approximations that can
be used to simplify the problems given previously in order
to reduce the solution time. The most useful approach is
to use prior knowledge to identify redundant or inactive
constraints. These can then be removed from the problem,
which typically leads to a faster solution time. Several
strategies are presented for identifying these removable
constraints, each is well suited to a particular class of
problems.

Removal of Constraints. In some cases, it is possible to pre-
dict that the optimal solution of a constrained optimization
will have a particular form for which some constraints will
be inactive and thus can be removed from the problem. For
example, minimum fuel spacecraft maneuvering problems
with plume and avoidance constraints are still typically of
the “bang-off-bang” form, so the plume constraints will be
inactive during the coast phase [8]. This prior knowledge
can be exploited to omit some of the plume constraints
during the anticipated coasting phase before solving the
problem. The reduced number of binary variables and con-
straints typically leads to a faster solution time. However,
it is then necessary to verify that no plume impingement
occurred at the steps where the constraints were removed.
This can be done quickly, and if no impingement is found,
the result is also the optimal solution to the completely
constrained problem. Similar work has been done for col-
lision avoidance [29]. In general, an iterative scheme is
employed: constraints are removed initially. Then, at each
iteration, feasibility of the solution to the relaxed problem is
checked, and constraints are re-applied for the next iteration.
Under the right circumstances, solving a number of relaxed
problems is faster than solving the complete problem once.

Time-Step Grouping. When binary variables are replicated at
each time step, for example as binary states or in avoidance
constraints, the computation can be simplified by “sharing”
the variables across adjacent time steps. For example, in a

collision avoidance problem, as vehicles and obstacles move
past each other, the interactions typically last for several
time-steps at least, due to the comparatively large avoidance
regions. Consequently, the binary variable settings for those
regions will typically be identical over a long sequence of
steps. For example, if a vehicle is on one “side” of an
avoidance region at a certain time-step, it is likely to be
on the same side at adjacent time-steps. This prediction can
be used by “sharing” binary variables across small groups
of adjacent time-steps. This essentially equates the binary
variables across groups, and these extra constraints add
conservatism to the problem. However, the prior assumption
of equal binary settings predicts that the solution to the
original problem would also satisfy these new constraints,
so the expected fuel penalty is small. Time-step grouping
does significantly reduce the problem size [8].

Making the Problem Completely Well-Posed. In Ref. [10],
Bemporad and Morari discuss the notion of a well-posed
problem in which binary variables are completely deter-
mined by the settings of the corresponding continuous
variables. This concept helps identify inefficient modelling
formulations. If a problem is not completely well-posed, it
could indicate that there are unnecessary binary variables in
the model. Experience has suggested, however, that there
are some cases where taking a problem that is not well-
posed and constraining it further to make it well-posed can
slow down the solution process.

B. Feasible Initialization

Section V-B discussed how the fundamental properties of
MPC were established using a recursion. If a solution was
found at time t0, then a candidate solution was guaranteed
to be feasible at time t0 + ∆. If this candidate solution can
be constructed explicitly and quickly, as is commonly the
case, then it can be used in two ways to assist real-time
operation.

The first method is to simply apply a time limit to the
optimization and use the best solution found in the time
available. If no better solution was found, then the candidate
solution can be employed. This allows MPC to be operated
as an “anytime” algorithm: an arbitrarily short computation
time limit can be applied.

The second method uses the candidate solution to ini-
tialize the branch-and-bound procedure. Recall from Sec-
tion IV-A that the algorithm would stop searching a par-
ticular branch when it was clear that no solution would be
found that improved upon the current best. By giving the
algorithm an integer solution at initialization, the “current
best” starts lower, and branches can be terminated earlier,
leading to faster computation.

The level of benefit from both of these methods is
strongly dependent on the quality of the candidate solu-
tion. If the candidate solution is very close to the global
optimum, then there is little degradation in performance if
the candidate is used when a time limit is hit, and the
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Fig. 2. Example of Cost-to-Go Method for

branch-and-bound method is accelerated a great deal by
knowledge of a tight bound on the optimal cost. However,
the candidate solution is by definition sub-optimal: if the
optimal solution could be constructed, there would be no
need for the MILP/MPC at all.

C. Approximate Cost-to-Go

Another way of simplifying the optimization is to shorten
the planning horizon and employ an approximate cost-
to-go to represent the plan beyond the horizon. If the
cost-to-go were exactly known, then by the principle of
optimality, receding horizon control would yield globally
optimal solutions. However, the exact cost-to-go is typically
too complex to calculate and in some cases uncertain. The
cost-to-go method has the intuitive benefit of concentrating
the detailed computation on areas where uncertainty is
low, i.e. the near future, within the horizon, and reducing
computation effort where uncertainty is high, beyond the
horizon. The challenge then is to employ cost functions
that are fast to compute and give good performance when
applied in the uncertain environment.

Fig. 2 shows an example of this technique applied to a
trajectory design problem with obstacle avoidance [28]. The
controller uses a detailed trajectory model in the near term
and an approximate path in the long term. This approach
has been proven to guarantee the arrival at the target
in bounded time. The approximation uses graph search
techniques to generate a path composed of straight lines,
ignoring dynamics constraints but cognisant of the presence
of obstacles. This combination gives a good estimate of
the cost-to-go and greatly reduces the computational effort
required to design the complete trajectory. Discrepancies in
the assumptions made in the two models are handled by
ensuring that the planning horizon is sufficiently long [25].

VII. EXAMPLES

Recent examples of applications of MILP for real-time
control include:

• UAV flight control [30]
• Aircraft scheduling problem [31]

• Helicopter Flight Control [33]
• Rover trajectory design [34], [32], [29]
• Spacecraft control (rendezvous and docking and for-

mation flying) [8]
• Heat exchanger control [35]

The other talks in this tutorial session describe some of
these applications in detail.

VIII. CONCLUSIONS

MIP has been shown to provide a modelling framework
for systems involving both discrete and continuous deci-
sions. Feedback control for such systems can be imple-
mented by employing MIP for online control within MPC.
With some additional constraints on the optimization model,
MIP/MPC can be shown to be stable, feasible and robust. A
key concern for implementing this type of controller is the
computation time required to solve the optimization. Some
general techniques have been described for achieving good
solutions in real-time. The remaining talks in this tutorial
give further details of specific MIP/MPC applications.
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