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Abstract— In this paper, we present a new frequency
weighted balanced related technique which is based on a
parametrized combination of the unweighted balanced tech-
nique [10], [9] and the partial fraction expansion technique
[12]. The reduced order models which are guaranteed to be
stable in the case of double-sided weighting, are obtained by
either direct truncation or singular perturbation approxima-
tion. Simple, elegant and easily computable a priori error
bounds are also derived. Numerical examples and comparison
with other well-known techniques show the effectiveness of the
proposed technique.

I. INTRODUCTION

Enns [2] has presented a scheme for reducing a stable
high order model with frequency weighting, based on
a modification of balanced truncation [10]. The method,
known as frequency weighted balanced truncation, may
use input weighting, output weighting, or both. With only
one weighting present, stability of the reduced order model
is guaranteed. With both weightings present, the method
may yield unstable models. To overcome the potential
drawback of instability, Lin and Chiu [8] proposed a new
technique which yields stable models in case of double-
sided weighting. Their technique was later generalized to
include proper weights in [13]. However, as pointed out
recently by Varga and Anderson [14] that this method can
not be used in controller reduction applications due no pole-
zero cancellation assumption required in the method. A
modified method was proposed by Varga and Anderson [14]
to rectify this problem however, this method suffers from
the disadvantage that it yields proper reduced order models
even when the original system is strictly proper. Another
modification to Enns technique was proposed by Wang et al
[15] which not only guarantees stability in case of double-
sided weighting but also yields simple and elegant error
bounds. As pointed out by Sreeram in [11], this method is
realization dependent and hence yields different models for
different realizations of the same original system. Some in-
teresting results without explicitly predefining the frequency
weights are presented in [3], [4].

Another group of methods which is based on partial
fraction expansion was originally proposed by Latham and
Anderson [7]. A number of frequency weighted model
reduction methods have been proposed based on partial-
fraction-expansion idea (see [1], [5], [16], [17], [12]). Error
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bounds exists for some special type of weighting functions
[1], [12]. However the approximation error obtained us-
ing these methods are generally larger compared to Enns
method with the exception of the method by Zhou [17]
where in optimization is used to improve the approximation
error.

In this paper, we propose a parametrized method which
combines the advantages of the unweighted balancing [10],
[9] with the frequency weighted partial fraction expansion
technique [12]. This method has the following advantages:
(i) stability of models in case of double sided weighting,
(ii) simple, elegant and easily computable error bounds,
(iii) applicability to both continuous and discrete systems,
(iv) easily extendable to frequency weighted optimal Hankel
norm approximation, (v) choice of free parameters to reduce
the weighted error and error bounds, (vi) easily applicable
to controller reduction problems (unlike the technique of
Lin and Chiu [8], [12], [11]), and (vii) reduced order
models and the error bounds are invariant under similarity
transformation (unlike the technique of [15]).

II. PRELIMINARIES

In this section we review some of the well-known fre-
quency weighted balanced model reduction techniques.

A. Some Results on Frequency-weighted Balanced Trunca-
tion

Consider the transfer function of a linear time invariant
system:

G(s) = C(sI − A)−1B + D (1)

where {A,B, C, D} is its nth order minimal realization. Let
the transfer functions of the stable input and output weights
be given by equations (2) and (3) respectively:

V (s) = CV (sI − AV )−1BV + DV (2)

W (s) = CW (sI − AW )−1BW + DW (3)

where {AV , BV , CV , DV } and {AW , BW , CW , DW } are
their pth and qth order minimal realizations respectively.
The augmented systems given by

G(s)V (s) = C̄i(sI − Āi)−1B̄i + D̄i

W (s)G(s) = C̄o(sI − Āo)−1B̄o + D̄o

have the following minimal realizations:

Āi =
[

A BCV

0 AV

]
, B̄i =

[
BDV

BV

]

C̄i =
[

C DCV

]
, D̄i = DDV
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and

Āo =
[

A 0
BW C AW

]
, B̄o =

[
B

BW D

]

C̄o =
[

DW C CW

]
, D̄o = DW D

The frequency weighted Gramians

P̄i =
[

P11 P12

PT
12 PV

]
, Q̄o =

[
Q11 Q12

QT
12 QW

]

satisfy the following Lyapunov equations:

ĀiP̄i + P̄iĀ
T
i + B̄iB̄

T
i = 0 (4)

ĀT Q̄o + Q̄oĀo + C̄T
o C̄o = 0 (5)

B. Enns [2] Method

Expanding the (1,1) blocks of the above Lyapunov equa-
tions ((4) and (5)) yield the following:

AP11 + P11A
T + PE = 0 (6)

AT Q11 + Q11A + QE = 0 (7)

where

PE = BCV P12 + PT
12C

T
V BT + BDV DT

V BT (8)

QE = CT BT
W QT

12 + Q12BW C + CT DT
W DW C (9)

Simultaneously diagonalizing the weighted Gramians, we
get

T−T Q11T
−1 = TP11T

T =
[

ΣE1 0
0 ΣE2

]

where ΣE1 = diag{σ1, σ2, . . . , σr}, ΣE2 =
diag{σr+1, . . . , σn}, σi ≥ σi+1, i = 1, 2, . . . , n − 1
and σr > σr+1. Now transform and partition the original
system as below:

T−1AT =
[

A11 A12

A21 A22

]
T−1B =

[
B1

B2

]

CT =
[

C1 C2

]
D = D

where A11 ∈ Rr×r. The reduced order model Gr(s) is
given by

Gr(s) =
[

A11 B1

C1 D

]

Enns method is based on simultaneously diagonalizing the
solution of Lyapunov equations (6) and (7). Since the
matrices PE and QE in these equations may not be positive
semidefinite, the models obtained by Enns technique may
not be stable. Several modifications to Enns technique are
proposed in the literature to overcome the stability problem.

C. Wang et al’s Technique

The stability problem is solved in Wang et al’s technique
[15] by making the matrices PE (8) and QE (9) positive
semidefinite. In this technique, the new controllability and
observability Gramians obtained as the solution to Lya-
punov equations:

APW + PW AT + BW BT
W = 0

AT QW + QW A + CT
W CW = 0

are diagonalized. The matrices BW and CW in the above
Lyapunov equations are fictitious input and output matrices
determined from:

BW = U |SX |1/2

CW = |RY |1/2V

The terms on RHS of the above equations, U, SX , V,
and RY are obtained from the following orthogonal eigen
decomposition of symmetric matrices

PE = USXUT

QE = V RY V T

Since

PE ≤ BW BT
W ≥ 0

QE ≤ CT
W CW ≥ 0

and (A,BW , CW ) is minimal, the stability of the reduced
order model in case of double-sided weighting is guaran-
teed.

Remark 1: The following error bounds hold:

‖W (s)(G(s) − Gr(s))V (s)‖∞ = ktrΣ2

where k = 2‖W (s)L‖∞‖KV (s)‖∞ with L and K being
constant matrices which depend on the weights and the
original system.

Remark 2: When PE ≥ 0 and QE ≥ 0,Wang et
al’s technique is equivalent to Enns Technique. However,
in general, these matrices are indefinite, then the model
reduction error and error bounds are not invariant under
similarity transformation, and can be very large also[11].

D. Lin and Chiu Technique

In Lin and Chiu’s technique [8], [13], instead of diago-
nalizing Gramians P11 and Q11, the following Gramians

PLC = P11 − P12P
−1
V PT

12

QLC = Q11 − QT
12Q

−1
W Q12

are simultaneously diagonalized:

T−T QLCT−1 = TPLCTT =
[

ΣLC1 0
0 ΣLC2

]

where ΣLC1 = diag{σ1, σ2, . . . , σr}, ΣLC2 =
diag{σr+1, . . . , σn}, σi ≥ σi+1, i = 1, 2, . . . , n − 1
and σr > σr+1.
Note that the Gramians P11 − P12P

−1
V PT

12 and
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Q11 − QT
12Q

−1
W Q12 are the Schur compliments of

the (1,1) blocks of the matrices P̄i and Q̄o and satisfy the
following Lyapunov equations:

APLC + PLCAT + BLCBT
LC = 0

AT QLC + QLCA + CT
LCCLC = 0

where

BLC = BDV − P12P
−1
V BV

CLC = DW C − CW Q−1
W Q12

Since the realization {A,BLC , CLC} is minimal and the
diagonalized Gramians satisfy the Lyapunov equation, Lin
and Chiu’s technique yields stable models in the case of
double-sided weighting.

E. Varga and Anderson’s Technique

The main weakness of Lin and Chiu’s technique, as
pointed out in [14], is the requirement that no pole-zero
cancellation occur when forming the augmented systems
K(s)V (s) and W (s)K(s). This prevents the applicability
of this method when solving controller reduction problems
involving weights of the form:

W (s) = (I + G(s)K(s))−1G(s)
V (s) = (I + G(s)K(s))−1

where G(s) and K(s) are the transfer functions of the
system and its controller respectively.
To overcome this drawback, Varga and Anderson proposed
simultaneously diagonalizing the following Gramians:

PV A = P11 − α2P12P
−1
V PT

12

QV A = Q11 − α2QT
12Q

−1
W Q12

where 0 ≤ α ≤ 1. Note that when α = 0, we get Enns
method and when α = 1, we have Lin and Chiu’s technique.

Remark 3: An obvious drawback of this technique is
that the reduced order models are proper even though the
original system is strictly proper. Moreover, there are no
error bounds for this technique.

F. Partial Fraction Expansion Technique

In the partial fraction expansion technique [1], [12], [17],
instead of diagonalizing Gramians P and Q, the following
Gramians PPF and QPF are simultaneously diagonalized.

T−T QPF T−1 = TPPF TT

= diag {σ1, σ2, . . . , σr, σr+1, . . . , σn}
where σi ≥ σi+1, i = 1, 2, . . . , n − 1 and σr > σr+1 and

PPF = P11 − P12X
T − XPT

12 + XPV XT

QPF = Q11 − Q12Y − Y T QT
12 + Y T QW Y

The matrices X and Y satisfy the following matrix equa-
tions

AX − XAV + BCV = 0 (10)

Y A − AW Y + BW C = 0 (11)

Remark 4: Note that the solutions X and Y are unique
when G(s) has no pole in common with V (s) and W (s)
respectively.

The Gramians PPF and QPF satisfy following Lyapunov
equations:

APPF + PPF AT + BPF BT
PF = 0

AT QPF + QPF A + CT
PF CPF = 0

where

BPF = BDV − XBV (12)

CPF = DW C − CW Y (13)

Since the realization {A,BPF , CPF } is minimal and the
Gramians diagonalized satisfy the Lyapunov equations, the
partial fraction expansion technique yields stable models in
the case of double-sided weightings.

Remark 5: As pointed out in [5], [16], [17], the
approximation error ‖W (s)[G(s) − Gr(s)]V (s)‖∞ using
this method can be reduced significantly by using maximum
phase weighting functions. In other words if the weighting
functions, V (s) and W (s) are minimum phase, then by
using the maximum phase weighting functions V (−s) and
W (−s) in the above frequency weighted model reduction
technique, we obtain lower order model, Gr(s) with lower
approximation error.

III. MAIN RESULTS

The proposed frequency weighted balanced related tech-
nique is based on a combination of the unweighted balanced
technique ([10] or [9]) and partial-fraction based frequency
weighted balanced reduction technique [12].

Instead of simultaneously diagonalizing PPF and QPF

as in [12], we propose to simultaneously diagonalize

PX = α2P + PPF

QY = β2Q + QPF

where α > 0, β > 0 and P and Q are the unweighted
Gramians satisfying:

AP + PAT + BBT = 0
AT Q + QA + CT C = 0

and PPF and QPF are the partial fraction expansion
frequency weighted Gramians satisfying:

APPF + PPF AT + BPF BT
PF = 0

AT QPF + QPF A + CT
PF CPF = 0

where BPF and CPF are given by eqns. (12) and (13)
respectively. It is straightforward to see that the Gramians
PX and QY satisfy the following Lyapunov equations:

APX + PXAT + BXBT
X = 0

AT QY + QY A + CT
Y CY = 0
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where

BX =
[

αB BPF

]
CY =

[
βC
CPF

]

Remark 6: Note that when α = 0 and β = 0, the new
fictitious input and output matrices are equal to BPF and
CPF respectively, i.e.,

BX |α=0 = BPF

CY |β=0 = CPF

To establish the relationship between the input and output
matrices (B and C), and the new fictitious input and output
matrices (BX and CY ), we define two constant matrices:

K =
[

I
α
0

]
, L =

[
I
β 0

]

The following relationship holds:

B = BXK

C = LCY

Theorem 1: The realization {A,BX , CY } is stable and
minimal.

Proof: When α > 0 and β > 0, the stability and mini-
mality of {A,BX , CY } follows directly from the stability
and the minimality of {A,B, C}.

Given the original system realization, {A,B, C, D} and
the weights {AW , BW , CW , DW } and {AV , BV , CV , DV },
the proposed technique is based on balancing the realization
{A,BX , CY }. The reduced order models are obtained either
by direct truncation or by singular perturbation approxima-
tion.

Algorithm I: In this Algorithm, the reduced order models
are obtained by direct truncation.

1) Given a stable minimal realization {A,B,C, D},
and minimal realizations {AV , BV , CV , DV }, and
{AW , BW , CW , DW }, compute X and Y by solving
the equations:

AX − XAV + BCV = 0
Y A − AW Y + BW C = 0

2) Compute the matrices BPF and CPF as follows:

BPF = BDV − XBV

CPF = DW C − CW Y

3) Compute the fictitious input and output matrices:

BX =
[

αB BPF

]
CY =

[
βC
CPF

]

4) Solve the Lyapunov equations:

APX + PXAT + BXBT
X = 0

AT QY + QY A + CT
Y CY = 0

5) Calculate the transformation T , which simultaneously
diagonalizes the positive definite matrices PX and
QY , such that

T−T QY T−1 = TPXTT

= diag {σ1, σ2, . . . , σr, σr+1, . . . , σn}
where σi ≥ σi+1, i = 1, 2, . . . , n−1 and σr > σr+1.

6) Compute the frequency weighted balanced realiza-
tion.

Â = T−1AT, B̂ = T−1B, Ĉ = CT

7) Partition {Â, B̂, Ĉ} as follows:

Â =
[

A11 A12

A21 A22

]
, B̂ =

[
B1

B2

]
,

Ĉ =
[

C1 C2

]
where A11 ∈ Rr×r, B1 ∈ Rr×p, C1 ∈ Rq×r and
r < n.

8) The reduced order model is Gr(s) = C1(sI −
A11)−1B1 + D.

Algorithm II: In this Algorithm , the reduced order
models are obtained via singular perturbation approxima-
tion.

1) - 7) Same as Algorithm I.

8) The reduced order model is GSPA(s) = CSPA(sI −
ASPA)−1BSPA + DSPA where

ASPA = A11 − A12A
−1
22 A21

BSPA = B1 − A12A
−1
22 B2

CSPA = C1 − C2A
−1
22 A21

DSPA = D − C2A
−1
22 B2

Theorem 2: The reduced order models obtained via
Algorithm I and Algorithm II are stable.

The proof follows immediately from the proof of stability
of the unweighted cases [10], [9], and therefore omitted
here.

Remark 7: The proposed Algorithm I produces proper
models for proper original system, and strictly proper
models for strictly proper original systems. However, the
proposed Algorithm II produces proper models even for
strictly proper original systems.

IV. ERROR BOUNDS

In this section we derive the error bounds for the reduced
order models obtained using the two algorithms proposed.

Theorem 3: Let G(s) be a proper stable transfer function
of order n , and V (s) and W (s) be proper weighting
functions. If Gr(s) is a proper stable, reduced order model
obtained using Algorithm I, then the following error bound
holds:

‖W (s)(G(s) − Gr(s))V (s)‖∞ ≤ γ
n∑

i=r+1

σi
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where γ = 2
αβ ‖W (s)‖∞ ‖V (s)‖∞, α and β are real

numbers greater than zero to be chosen.
Proof: Partitioning

BX =
[

BX1

BX2

]
, CY =

[
CY 1 CY 2

]

and substituting

B1 = BX1K, C1 = LCY 1

We have

‖W (s)(G(s) − Gr(s))V (s)‖∞
=

∥∥W (s)(C(sI−A)−1B

−C1(sI−A11)−1B1)V (s)
∥∥
∞

=
∥∥W (s)(LCY (sI − A)−1BXK

−LCY 1(sI − A11)−1BX1K)V (s)
∥∥
∞

=
∥∥W (s)L(CY (sI − A)−1BX

−CY 1(sI − A11)−1BX1)KV (s)
∥∥
∞

≤ ‖W (s)L‖∞
∥∥(CY (sI−A)−1BX

−CY 1(sI −A11)−1BX1)
∥∥
∞ ‖KV (s)‖∞

≤ 1
β
‖W (s)‖∞

∥∥(CY (sI−A)−1BX

−CY 1(sI −A11)−1BX1)
∥∥
∞

1
α
‖V (s)‖∞

Since

[
A BX

CY D

]
is a balanced realization and[

A11 BX1

CY 1 D

]
is its reduced order model, we have from

[2]

∥∥(CY (sI−A)−1BX−CY 1(sI−A11)−1BX1)
∥∥
∞≤2

n∑
i=r+1

σi

Let γ = 2
αβ ‖W (s)‖∞ ‖V (s)‖∞, then

‖W (s)(G(s) − Gr(s))V (s)‖∞ ≤ γ
n∑

i=r+1

σi

where σi is obtained from step 5 of the Algorithm.
Remark 8: The error bound formula for the reduced

order models obtained using Algorithm II is identical to
the one shown in Theorem 3. The proof of this formula is
slightly different, due to a direct component term, but is very
similar to the proof shown above, and is therefore omitted.

Corollary 1: In the case of input weighting only, the
error bound is given by

‖(G(s) − Gr(s))V (s)‖∞ ≤ 2
α
‖V (s)‖∞

n∑
i=r+1

σi

Similarly, in the case of output weighting only, we have

‖W (s)(G(s) − Gr(s))‖∞ ≤ 2
β
‖W (s)‖∞

n∑
i=r+1

σi

Remark 9: Note that the proposed error bound formula
is not only much simpler but also can be made much tighter
(by varying α and β) than the Wang et al’s technique [15].
In Wang et al’s technique, the matrices L and K have to be
computed before evaluating the infinity norms ‖W (s)L‖∞
and ‖KV (s)‖∞. Here, because of the special structure of
the L and K matrices, we have

‖KV (s)‖∞ =
1
α
‖V (s)‖∞

‖W (s)L‖∞ =
1
β
‖W (s)‖∞

V. EXAMPLES

In the both the examples considered below, to reduce
the approximation error (‖W (s)[G(s) − Gr(s)]V (s)‖∞),
we have used maximum phase weighting functions V (−s)
and W (−s) in our proposed algorithms (please see Remark
5).

A. Example I

Consider the fourth order system used in [8], [13], [15],
[14]

A =

⎡
⎢⎢⎣

−1 0 0 0
0 −2 0 0
0 0 −3 0
0 0 0 −4

⎤
⎥⎥⎦

B =

⎡
⎢⎢⎣

0 −5
1/2 −3/2
1 −5

−1/2 1/6

⎤
⎥⎥⎦ , C =

[
1 0 1 0

4/15 1 0 1

]

with the following input and output weights:

V (s) = W (s) = {−4.5I2, 3I2, 1.5I2, I2}
where I2 denotes an identity matrix of second order.

In the Table I, the data in the 2nd, 3rd, 5th, and
6th columns represents the errors obtained using Enns’
technique [2], Varga and Anderson’s technique [14], and
Algorithm I and II respectively. The data in the last column
represents the error bounds obtained via the proposed
techniques. It is well known that the Enns’ technique [2]
yields strictly proper models when the original system is
strictly proper, whereas the Varga and Anderson’s technique
[14] yields proper models. Algorithm I produces strictly
proper models when the original system is strictly proper,
whereas Algorithm II produces proper models. To make
a fair comparison, we compare the results of Algorithm I
with the Enns’ technique [2] and Algorithm II with Varga
and Anderson’s technique [14]. It is clear that our method
produces lower approximation error in the respective com-
parisons. Moreover, Enns’ technique [2] and the Varga and
Anderson’s technique [14] do not have any a priori error
bounds.

Observe that for large values of α and β, the results
obtained using the proposed Algorithms I and II approach
the results of unweighted balanced truncation [10] and
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TABLE I

THE ERRORS AND ERROR BOUNDS FOR THE MODELS.

r Enns VA α=β A-I A-II Error
[2] [14] Bound

1 2.1291 1.405 1 2.1269 1.4089 10.2672
2 2.1662 1.3630 4.7588
5 2.2682 1.3182 3.2024

2 0.2660 0.250 0.35 0.2655 0.2509 11.7471
1 0.2754 0.2469 1.8835
3 0.2990 0.2478 0.6516
5 0.3064 0.2482 0.5516

3 0.1131 0.069 1 0.1125 0.0653 0.4390
3 0.1205 0.0621 0.1714
5 0.1274 0.0613 0.1494

TABLE II

THE ERRORS AND ERROR BOUNDS FOR THE MODELS.

r Enns α A-I Error
[2] Bound

1 320.752 1 20.1362 8226
3 20.1362 8226

2 0.1313 1 0.1165 1.5490
3 0.1167 1.5283
5 0.1167 1.5266

3 0.0669 1 0.1271 0.4589
3 0.1265 0.4424
5 0.1265 0.4411

4 9.1745 × 10−4 .3 9.5211 × 10−4 0.0071
1 10.7282 × 10−4 0.0046
3 11.5303 × 10−4 0.0042
5 11.5953 × 10−4 0.0042

unweighted balanced singular perturbation approximation
[9], respectively. This is because increasing the scaling
factors (α and β) increases the weighting of the unweighted
Gramians when compared to the weighting of the partial
fraction frequency weighted Gramians. It was observed
that the weighted error may not necessarily decrease with
increase in α and β, or vice versa. Further work is necessary
to determine the optimal values of α and β.

B. Example II

Consider the controller reduction example of Kim et al
[6] where the stable controller transfer function K(s) has
poles at s = {−1.5, − 0.7± j0.71414, − 0.01, − 0.001}
and zeros at s = {−2, − 0.8}. The stable input weighting
is given in the form:

V (s) =
K(s)−1

(s + 1)2(s + 2)

In the Table II, the approximation errors and the error
bounds obtained via Algorithm I are compared with Enns’
method [2]. It can be seen that Algorithm I produces lower
approximation errors in most cases.

VI. CONCLUSION

A frequency weighted balanced related technique based
on a combination of unweighted balancing and frequency
weighted balanced partial fraction expansion [12] is pro-
posed. By varying the free parameters, it is possible to

obtain lower approximation errors and tighter error bounds
than other well known techniques. The models obtained
are guaranteed to be stable in the case of double-sided
weighting. The proposed method can be applied to both
continuous and discrete systems and can also be easily
extended to optimal Hankel norm approximation.
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