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Abstract— In this work we consider optimization problems
for transport-reaction processes, when the cost function and/or
equality constraints necessitate the consideration of phenom-
ena that occur over widely disparate length scales. Initially,
we develop multiscale process models that link continuum
conservation laws with microscopic scale simulators. Subse-
quently, we combine nonlinear order reduction techniques for
dissipative partial-differential equation systems with adaptive
tabulation methods for microscopic simulators to reduce the
computational requirements of the process description. The
optimization problem is subsequently solved using standard
search algorithms. The proposed method is applied to a
representative thin film deposition process, where we compute
optimal surface temperature profiles that simultaneously max-
imize deposition-rate uniformity (macroscale objective) and
minimize surface roughness (microscale objective) across the
film surface.

I. INTRODUCTION

Numerous processes of industrial relevance require prod-
uct quality specifications that are characterized by phe-
nomena that evolve on disparate length scales. In general,
a single mathematical description may not be applicable
over the entire span of admissible length scales and in
many cases appropriate closed-form descriptions may not
be available for the whole domain. There may be regions
inside the process domain where the only available de-
scriptions are in the form of “black-box” timesteppers.
These timesteppers may represent microscopic/mesoscopic
evolution rules such as kinetic Monte-Carlo (kMC), Lattice-
Botzmann (LB) or Molecular Dynamics (MD), or they may
represent proprietary computational packages which interact
only through input and output and whose inner details
are unknown. Multiscale process models, that seamlessly
combine available (closed form or black-box) descriptions
at each length scale have to be developed when interplay
between phenomena that occur at widely separated length
scales need to be accounted for. Such models have been
developed for fluid flows [11], [18], [22], [9]), moving
contact line [14], transient fluid flows with heat transfer
[7], crack propagation [5] and chemical vapor deposition
[15], [28] to name a few. In most of these multiscale frame-
works the inner (microscopic) and the outer (macroscopic)
models evolve concurrently and interact through exchange
of particles such that mass, momentum and energy remain
conserved.
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Lately, considerable emphasis has been given to em-
ploy detailed process models for optimization and con-
troller design. These process models are derived from
dynamic conservation equations and usually take the form
of parabolic/elliptic partial differential equations (PDEs)
and constitute the equality constraints for subsequent pro-
cess optimization analysis. These PDE equality constraints
cannot be directly implemented, while employing standard
optimization algorithms, and have to be discretized in space
(and possibly time) to end up with algebraic equality
constraints. Standard methods of discretization, such as
finite differences/elements, can be utilized followed by
sparse linear algebra based techniques to solve the resulting
nonlinear program (NLP) [27]. However, one disadvantage
of this method is that the NLPs thus formed are large in
size, if accurate spatiotemporal behavior of the underlying
PDEs has to be captured, and then their computational and
storage requirements may be challenging. To overcome this
difficulty, nonlinear order reduction strategies [3], [4], [1],
[2] have been employed for the case of spatially distributed
elliptic and parabolic PDEs, where spatial discretization
takes advantage of the (few) dominant spatial patterns that
appear in the solution of these PDEs [25]. These dom-
inant (slow evolving and possibly unstable) eigenmodes,
either obtained analytically (if possible) or empirically (e.g.
through Karhuenen-Loéve expansion), can be utilized as
basis functions during discretization using the method of
weighted residuals. The NLPs, thus formulated, are signifi-
cantly smaller in size. When such closed-form descriptions
are unavailable, optimization methodologies using “black-
box” functions have also been developed [17], [21]. The
reader may also refer to [19], [20], where kMC methods
were utilized for feedback control of surface roughness of
thin films, and [10] where a model reduction approach for
kMC simulations is applied to control surface roughness
during thin film deposition. However, efficient optimization
frameworks with multiscale process equality constraints and
cost functionals are lacking.

Such methods will be advantageous to many processes
including thin film deposition. A common issue with vapor
phase epitaxy processes is that under nominal operating
conditions the transport and reaction limitations severely
affect the film deposition rate uniformity across the sub-
strate. The quality of the film, determined by its electrical
and magnetic properties, is also dependent on its crystal
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structure1. Mathematical models for these quality control
measures should span from macroscopic length scales (to
account for reactor scale phenomena) to microscopic length
scales (to account for phenomena that occur on the surface
of the deposited film) [13].

In this paper we address the issue of optimization of
processes where optimization objectives are separated by
several orders of magnitude in length scale and hence neces-
sitate multiscale process models. We focus on formulation
of consistent multiscale and more importantly reduced-
order-multiscale models, which conserve physical quanti-
ties across the interface of macroscopic and microscopic
domains, in order to efficiently deal with the optimization
objectives. We consider a conceptual vapor phase epitaxy
process and calculate optimal substrate temperature profiles
such that the grown thin films have a high degree of spatial
uniformity and, simultaneously, low surface roughness. The
macroscopic process description is obtained from steady-
state conservation equations which assume the form of ellip-
tic PDEs. The effect of possible parameter variations on the
microstructure of the film is ascertained through mesoscale,
kMC based, simulators that describe their evolution and
have been coupled with PDE based macroscale models.

The paper is structured as follows. We begin with the
description of a general multiscale process and the for-
mulation of the optimization problem. We then proceed
with a brief description of nonlinear order reduction of the
macroscopic model and efficient tabulation of kMC solution
data followed by a general algorithm to formulate a hybrid
continuum/discrete multiscale model for the solution of the
optimization problem. Subsequently, we apply the proposed
methodology to a conceptual chemical vapor deposition
process and optimize the substrate temperature profile to
simultaneously maximize deposition rate uniformity and
minimize roughness of the film.

II. PROBLEM FORMULATION

We consider a process for which distinct description
at two different length scales is required. At the macro-
scopic level, the steady-state process description is given by
spatially-distributed, elliptic PDEs and at the microscopic
level, the time evolution of the process is given by a black-
box function. We assume that the domains of definition of
the macroscopic and the microscopic model, Ω1 and Ω2

respectively, do not overlap and share a common interface
γ. Mathematically, the process is described as:

0 = A(x) + f(x, d), on Ω1 (1)

xm(ti) = Π(xm(ti−1), δt, x|γ), on Ω2

δt = ti − ti−1
(2)

g(x,
dx

dη
) = 0, on Γ \ γ (3)

1Here we consider surface roughness of the film as a representative
measure of the defects in its microstructure which, in turn, affect its quality.
However, roughness is only a crude way of estimating crystal defects.

h(x̄s, x,
dx

dη
) = 0, on γ (4)

where x(z) ∈ IRn denotes the vector of macroscopic state
variables, xm(ti) is the vector of microscopic state variables
at time-instant ti, z = [z1, z2, z3]∈ Ω1 ⊂ IR3 is the vector of
spatial coordinates and Γ is the boundary of the macroscopic
domain Ω1. A(x) is a second order dissipative, possibly
nonlinear, spatial differential operator, f(x, d) is a nonlinear
vector function which is assumed to be sufficiently smooth
with respect to its arguments, d ∈ IRp is the vector of

design variables, g(x,
dx

dη
) is a nonlinear vector function

which is assumed to be sufficiently smooth, and η is the
spatial direction perpendicular to the boundary Γ.

The black-box function, Π, describes the evolution of the
microscopic process in the time interval [ti−1, ti] which,
using the microscopic state at time ti−i, xm(ti−1) and
the macroscopic state at the interface γ, x|γ , provides the
final state xm(ti). Here it must be emphasized that this
function interacts only through an input/output structure and
it may be unknown in closed-form. The vector function

h(x̄s, x,
dx

dη
) represents the boundary conditions at the com-

mon interface between the macroscopic and microscopic
domains, γ, and x̄s represents the stationary-state of the
“coarse” realization, x̄, of xm. It is assumed that such
stationary state exists and is independent of the initial
microscopic state, i.e. xm(t = 0).

Coarse variables, x, are defined through the following
restriction operator:

x = L(xm) (5)

The inverse of restriction, termed as lifting, is defined by
the following non-unique operator:

xm = l(x̄) (6)

Note that the lifting operation leads to a number of
possible xm for a given x̄. For a detailed analysis the reader
may refer to [12]. A general optimization problem for the
multiscale system described by Eqs.1-4 can be formulated
as follows:

min

∫
Ω1∪Ω2

G(x, x̄s, d)dz

s.t A(x) + f(x, d) = 0,

g(x,
dx

dη
) = 0 on Γ

h(x̄s, x,
dx

dη
) = 0, on γ

p(x, x̄s, d) ≤ 0, ∀ z ∈ Ω1

(7)

where
∫
Ω1∪Ω2

G(x, x̄s, d)dz is the objective functional and
measures the process performance at both macroscopic and
microscopic levels and p(x, x̄s, d) is the vector of inequality
constraints which may include bounds on state and design
variables.
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III. SOLUTION OF OPTIMIZATION PROBLEM

Solution of the infinite dimensional program of Eq. 7,
cannot be obtained directly through standard search al-
gorithms. Equality and inequality constraints can be dis-
cretized in space to generate an approximate finite dimen-
sional Nonlinear Program (NLP), which can be solved using
standard gradient based or direct search algorithms. Brute-
force spatial discretization of constraints employing finite
differences or finite elements result in a large set of alge-
braic equations, and subsequent storage and computational
requirements of NLP may become prohibitive requiring
the use of large-scale optimization algorithms. Multiscale
models that couple expensive black-box simulators further
increase the computational demand. To address this issue,
we couple nonlinear order reduction techniques for PDEs
[3], [4] with in situ adaptive tabulation [23] to formulate
reduced-order-multiscale models that can be employed to
efficiently solve multiscale optimization problems.

A. Nonlinear order reduction of elliptic PDEs

A vast majority of the transport-reaction processes are
described at macroscopic level by elliptic or parabolic
PDEs. One important feature of elliptic PDEs is that their
eigenspectrum is characterized by a finite number of domi-
nant eigenmodes [6], [25]. These dominant eigenmodes can
be identified empirically using Karhuenen-Loéve expansion
on an appropriate ensemble (for details about construction
of ensemble the reader may refer to [1], [2] and references
therein) of PDE solution data. These eigenmodes, known
as empirical eigenfunctions, can be subsequently employed
as basis functions with the method of weighted residuals,
to derive systems of algebraic equations, which are signif-
icantly lower in dimension than those derived using either
finite differences or finite elements.

B. Adaptive tabulation of microscopic simulations

Usually calculation of coarse stationary states, x̄s,
through black-box timesteppers is a computationally ex-
pensive task. In order to facilitate efficient incorporation of
black-box simulators, stationary-state coarse solution data
(i.e. x̄s) of black-box timestepper can be tabulated offline
for the entire realizable region spanned by x|γ . Necessary
interpolation between the tabulated data can be done, as
required by the macroscopic solver. To further reduce the
computational requirements for the solution of the optimiza-
tion problem, we employ adaptive tabulation and tabulate
only the accessed region, which may not be known a priori.
The table is constructed on demand, if interpolation based
on previously tabulated data cannot be done accurately. The
efficiency of adaptive tabulation increases if the accessed
region is a small subset of the realizable region and contains
domains with relatively large gradients. The details of the
algorithm are omitted for brevity; interested author may
refer [23]

C. Multiscale Solution Algorithm

In this section, we outline a solution algorithm that is ap-
plicable to a broad class of multiscale processes modeled by
Eqs.1-4. Because Eq.4 involves variables from two distinct
models, we formulate the following iterative procedure:

1) Start with an arbitrary (but physically consistent)
initial condition xm(t = 0) and x|γ , and evolve
the black-box timestepper till x reaches a stationary
value (denoted as x̄s). (We have already assumed that
such a stationary state exists and is independent of
xm(t = 0)).

2) Solve Eq. 1 subject to boundary conditions given by
Eqs. 3 and 4, either analytically or numerically to
obtain new x|γ denoted as x′

i.
3) Repeat steps 1 and 2 to obtain x′

i+1 until | x′
i−x′

i+1 |
is below an acceptable tolerance.

Subsequently, the reduced order model can be incor-
porated into standard search algorithms such as succes-
sive quadratic programming (SQP), Luus-Jaakola, BFGS or
Hooke-Jeeves to obtain the optimal solution [16].

Wafer

Heaters

Microscopic

simulations

Continuum

simulations

Effluent stream

Rotating pedestral

Feed stream

Fig. 1. Schematic of the reactor with split inlet configuration.

IV. APPLICATION TO THIN FILM GROWTH

The proposed optimization methodology is applied to a
conceptual thin-film growth process, where we search for
optimal substrate temperature profiles that simultaneously
minimize deposition rate nonuniformity and surface rough-
ness of the deposited film. Figure 1 depicts the schematic
of the reactor and the domains of macroscopic and micro-
scopic models. The bulk of the reactor can be accurately
modeled using PDEs derived from continuum conservation
principles, however, molecular motions at the surface of
the substrate cannot be resolved using continuum PDEs
and are thus modeled using kMC simulations. It should be
noted that the microscopic domain is infinitesimally thin.
Substrate temperature profiles can be manipulated using
three circular heaters as shown in the figure. Assuming the
specific reactor to be axisymmetric, macroscale descriptions
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involving 2-dimensional elliptic PDEs in axial and radial di-
rections are sufficient. Table I tabulates the reactor geometry
and process conditions.

TABLE I

PROCESS CONDITIONS AND REACTOR GEOMETRY.

Reactor radius 2 in
Substrate radius (Rs) 1.5 in
Number of inlets 2
inner inlet outer radius 0.5 in
outer inlet outer radius 1.5 in
Substrate to inlet distance (z0) 3 in
Reactor Pressure 0.1 atm
Reactor wall Temperature 300 K
Inlet Temperature 300 K
Inlet velocity 80 cm/s
Substrate temperature (Ts) 900-1300K
XA

∗ 0.4×10−2

XB
∗ 0.6

∗Inlet mass fractions of reactants

Gaseous species A and B represent the precursors of
a and b (components of compound semiconductor ab),
respectively, and are assumed to undergo the following gas-
phase reactions in the bulk of the reactor and gas-surface
reactions on the wafer surface, shown in Table II.

TABLE II

GAS PHASE AND GAS-SURFACE REACTIONS

Reaction k0 E
(G1) A → A′ + C 1 × 1014 39.9
(S1)A′ → a(s) + D 0
(S2) B → b(s)

Reaction G1 represents the thermal decomposition of
precursor A into A′ which adsorbs on the substrate (reaction
S1). Rate of surface reaction S1 (or the rate of adsorption
of A′) is assumed to follow that of an ideal gas with sticking
coefficient s0

ka = s0

√
RT

2πM
(8)

The rate of adsorption of B (reaction S2) is assumed
to be equal to S1 so that the stoichiometry of the film is
preserved. In addition to adsorption, diffusion and desorp-
tion of adsorbed species are other significant processes that
affect the structure of the surface. The rate of desorption of
surface species into the gas phase and the rate of surface
diffusion is calculated as:

kn
d = kd0e

−Ed0+n∆E

kBT

kn
m = kBT

h e
−E+n∆E

kBT

(9)

where h is Planck’s constant, E and Ed0 are the energy
barriers for surface diffusion and desorption respectively,
∆E is the interaction energy between two neighboring
adsorbed species and n ∈ {0, 1, 2, 3, 4} is the number of
nearest neighbors. The values of E, Ed0, ∆E and kd0 are
taken as 2.5 eV , 2.5 eV , 0.5 eV and 1×1013, respectively.

The macroscopic description of the process under con-
sideration is given by the following conservation equations:

� · (ρu) = 0; � · (ρu u) −� · T − ρg = 0

� · (ρuT )] = −� ·q −
∑

k

hkWkω̇k

� · (ρuYk) = −� ·jk + Wkω̇k,

k ∈ {1, 2, 3, 4}

jk = −Dkρ � Yk − DT,k
�T

T

(10)

where ρ is the gas-phase density, u is the fluid velocity
vector, T is the stress tensor, Cp is the specific heat capacity,
T is the temperature, q is the heat flux due to conduction
and hk, Wk and Yk are the partial specific enthalpy,
molecular weight and the mass fractions of gas species.
ω̇k and jk are the net production rate due to homogeneous
reactions and mass flux respectively of species k. Dk and
DT,k in the flux equation correspond to mass diffusion and
thermal diffusion coefficients, respectively.

The above conservation equations along with the associ-
ated boundary conditions, complete the macroscopic model.
The flux boundary condition at the deposition surface is
given by:

j = Rad (11)

where Rad is the net rate of adsorption and surface
temperature, Ts, is the design variable. We assume the
rate of surface reaction S1 to be independent of surface
configuration and express Rad as [28]

Rad = kaCA′ |s− < kd > f(Ca.s, T, wA′A′) (12)

where < kd >, CA′ |s and Ca.s are the effective desorption
rate, concentration of A′ over the substrate and average
surface concentration of adsorbed a(s), respectively. Func-
tion f describes the influence of lateral interactions on
the desorption rate, which cannot be ascertained without
knowledge of surface structure. We employ kMC to account
for the surface structure and estimate the right hand of Eq.
11, which links the two levels of descriptions.

kMC approximates the solution of the stochastic master
equation [8] through Monte-Carlo sampling

∂P (σ, t)
∂t

=
∑
σ′

W (σ′ → σ)P (σ′, t)−
∑
σ′

W (σ → σ′)P (σ, t)

where σ and σ′ are system configurations and P (σ, t) is
the probability that the system is in state σ at time t, and
W (σ → σ′) is the probability per unit time of transition
from σ to σ′. It is assumed that at any instant, only a single
event (out of all possible events) occurs, according to its
relative probability. After each event, time is incremented
by δt, given as:

δt = − lnr∑
i Ψi

(13)
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where r is a random number between 0 and 1 and Ψi is
the propensity function of event i. The summation in the
denominator is carried over all possible events and transition
probabilities are adjusted after each event. For the present
case, Eq.13 becomes

δt = − lnr

kaNT +
∑4

n=0 km,nNn

(14)

where NT is the total number of surface sites and Nn is the
number of sites with n nearest neighbors. The roughness of
the film is computed from [24], [19]:

R = 1
2N2

∑
i,j(|hi+1,j − hi,j | + |hi−1,j − hi,j |)+

1
2N2

∑
i,j(|hi,j+1 − hi,j | + |hi,j−1 − hi,j |)

(15)
where hi,j is the number of atoms adsorbed at the (i, j)th

surface site.
Uniformity in the rate of deposition of species a and

minimization of the surface roughness of the film are the
two important process objectives during thin film deposi-
tion. We investigate the effect of substrate temperature on
them and search for the optimal temperature profile that
simultaneously achieves the two objectives. Mathematically,
the optimization problem is formulated as:

min F =w1

∫ R0

0

{
Rdep(r) − R̄dep

}2
dr

+w2

∫ R0

0

R(r)dr + w3

∫ R0

0

(R(r) − R̄)2dr

s.t.

Rdep = kaCA′ at γ

R̄dep =
1

R0

∫ R0

0

Rdep(r)dr

900K ≤ Ts ≤ 1300K
(16)

where F is the objective functional, Rdep is the deposition
rate of the thin film, R is the surface roughness of the
deposited film and Ts is the surface temperature. R0 is the
cutoff radius, which is taken to be a fraction of the substrate
radius, thus discounting the unavoidable edge effects. The
objective function penalizes non-uniformities in the deposi-
tion rate (macroscopic objective) and the surface roughness
across the substrate, as well as high values of the spatially-
averaged roughness of the film (microscopic objectives).
Additional constraints on the optimization problem arise
from the reduced order process model, whose explicit form
is omitted for brevity.

The design variable for the above optimization problem,
Ts, was assumed to take the following form:

Ts = u1δd(0) + u2δd(r − R0/2) + u3δ(r − R0) (17)

where u1, u2 and u3 are the magnitudes of actuation and
δd is the Dirac delta function.

Remark 1: In practice, depending upon the specific process
under consideration, additional constraints may be consid-
ered. For example, temperature gradient constraints over
the wafer surface may be imposed to prevent the film
degradation due to nonuniform thermal expansion. Such
constraints can be readily incorporated into the optimization
problem formulation outlined above.

A. Reduced order model

In this section we first describe the coupling scheme of
the macroscopic PDEs with the kMC simulator for the
solution of the multiscale process model. As mentioned
earlier, the link is provided by the right hand side of Eq. 11.
The general algorithm employed for steady-state multiscale
calculations, is presented below:

1) Solve the macroscopic model, using maximum flux
boundary condition at the surface (i.e. Eq. 12 with
< kd >= 0) to obtain an initial estimate of concen-
tration of adsorbing species over the surface.

2) Calculate the steady-state net surface flux by running
kMC simulations for sufficiently long time.

3) Solve the macroscopic model using the flux calculated
in step 2 as RHS of the Eq. 11, and obtain modified
concentration profiles of all species over the surface.

4) Using the concentrations obtained in step 3, repeat
steps 2 and 3 till the concentrations used in step 2
and the concentration obtained in step 3 are within
the acceptable tolerance.

An ensemble of solution data (“snapshots”) was gener-
ated by varying the substrate temperature (through u1, u2

and u3) and solving the resulting system according to the
algorithm presented above. For the generation of snapshots,
the macroscopic domain, Γ1, was discretized using finite
differences into 6201 nodes and the resulting system of
nonlinear algebraic equations was solved using a Newton-
Krylov-based solver. Specifically, an ensemble of 729 snap-
shots was generated. Karhuenen-Loéve expansion identified
3, 25 and 40 eigenfunctions, respectively, for temperature
and mass fraction profiles of A and A′ across the reactor,
which captured more than 99.999% of the energy of the
ensemble. The reduced order model, hence, comprised of
68 (as opposed to 6201×3) nonlinear algebraic equations.
Coarse data of kMC simulations was tabulated employing
in situ adaptive tabulation, described earlier, which fa-
cilitated efficient linking of the two scales (from a com-
putational perspective). The resulting reduced optimization
problem was solved using Hooke-Jeeves search algorithm.

Remark 2: Depending upon the structure of the kMC
simulator, the flow of information across the interface of the
continuum and the discrete domains can be unidirectional
or bidirectional. For the current case, numerical simulations
established that inclusion of desorption into the kMC model
had negligible effect on the macroscopic solution of the
multiscale system. Hence, in the reduced-order process
model desorption was not included. Under this assumption
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the flow of information was unidirectional and did not re-
quire multiple iterations. For further details on the proposed
method, refer to [26].

V. RESULTS

Choice of the size of lattice for kMC involves tradeoff
(similar to the choice of grid size in case of finite elements),
since large lattice sizes increase the computational demand.
Conversely, kMC with small lattice size has significant
stochastic uncertainty. Figure 2, compares the time evolu-
tion of surface roughness computed using 50×50, 75×75
and 100×100 lattices. We observe that the results from
all the three lattice sizes are comparable. Hence we chose
75×75 lattice for the rest of the computations. The pertinent
simulation parameters are listed in the figure caption.
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Fig. 2. Surface roughness as a function of time for various lattice sizes
(Ts=1100K; adsorption rate=10 atoms/site-sec).

In Figure 3, surface deposition rate profiles of species
a are presented for Ts = 900K and Ts = 1300K
and compared against that of optimal surface temperature
profiles obtained from the solution of the problem of Eq.16
by accounting first only for the macroscopic objective
(i.e., w2 = w3 = 0), and secondly for the combined
macroscopic-microscopic objective (i.e., w1, w2 �= 0, w3 =
0). Deposition rate non-uniformity is defined as:

[Rdep(r = 0) − min(Rdep(r))]/Rdep(r = 0)

and is computed to be 37.86%, 26.05%, 6.79% and 13.21%
for Ts = 1300K, Ts = 900K and the two optimal cases,
respectively. The corresponding optimal temperature and
surface roughness profiles are shown in Figures 4 and 5
respectively. For constant substrate temperature operation,
the concentration of the adsorbed species and hence the
deposition rate reduces across the substrate radius, except
near the edge where due to high convective mass transfer the
deposition rate increases sharply. This unavoidable “edge”
effect is not presented in the figure. We observe that, tem-
perature gradients near the substrate induced by radial vari-
ations in substrate temperature cause preferential diffusion

of species radially, which lead to modified deposition rates.
The solution of the optimization problem demonstrates that
optimal variation of the substrate temperature (by control-
ling the magnitude of actuation) can lead to significant
improvement in the uniformity of the grown film. Higher
overall surface temperature is required if reduction of aver-
age surface roughness is a concurrent optimization objective
(see Figure 4), since increased surface diffusion at high
temperatures leads to smoothening of the deposited film.
However, the modified temperature gradients (especially
near the substrate) may not favor axial thermal diffusion to
the desired extent and consequently deposition rate unifor-
mity may be compromised. The optimal temperature profile
with respect to the above concurrent objective reduces the
average surface roughness from 9.26 (for macroscale-only
case) to 6.59, increasing the nonuniformity in deposition
rate from 6.79% to 13.21%. It should be noted that process
operation with substrate temperature near 1300K results in
notable reduction in surface roughness, however, it is not
optimal with respect to the deposition rate uniformity.
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Fig. 3. Comparison of deposition rate profiles with macroscale (Optimal
1) and macroscale-microscale optimization objectives (Optimal 2).

VI. CONCLUSION

Nonlinear order reduction techniques for elliptic partial
differential equations were employed together with adaptive
tabulation method for microscopic/mesoscopic simulators
to derive reduced-order continuum-discrete hybrid models
for computationally efficient solution of optimization prob-
lems when the cost function and/or equality constraints
necessitate the consideration of phenomena that occur over
widely disparate length scales. The proposed methodology
was applied to a conceptual thin film growth process to si-
multaneously maximize deposition rate uniformity and min-
imize average surface roughness by varying the temperature
across the wafer substrate. A hybrid model was developed
from conservation laws for heat, mass and momentum for
the gas phase and kMC simulations were used to describe
the film growth.
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Fig. 4. Optimal substrate temperature profiles across the wafer surface.
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Fig. 5. Surface roughness profiles with macroscale (Optimal 1) and
macroscale-microscale optimization objectives (Optimal 2).
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