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Abstract— In this work, we develop a systematic method
for the construction of linear stochastic partial differential
equation (PDE) models for feedback control of surface rough-
ness in thin film deposition. The method is applied to a
representative deposition process and is successfully validated
through simulations.

I. INTRODUCTION

With the advancement of thin film technology, thin films
of advanced materials are used in a very wide range of
applications, e.g., microelectronic devices, optics, micro-
electro-mechanical systems (MEMS) and biomedical prod-
ucts. Various deposition methods have been developed and
widely used to prepare thin films such as physical vapor
deposition (PVD) and chemical vapor deposition (CVD).
However, the dependence of the thin film properties, such
as uniformity, composition and microstructure, on the depo-
sition conditions is a severe constraint on reproducing thin
film’s performance. Thus, real-time feedback control of thin
film deposition becomes increasingly important in order to
meet the stringent requirements on the quality of thin films
and reduce thin film variability.

Earlier research efforts focus on feedback control of
thin film deposition processes with emphasis on deposition
spatial uniformity control (see [25], [4] for results on
rapid thermal processing (RTP) and [1] on plasma-enhanced
chemical vapor deposition (PECVD)) and on thin film com-
position control (see [21] for experimental results on real-
time carbon content control in a PECVD process). More
recently, motivated by the growing industrial demands, there
have been significant research efforts focusing on modelling
and control of thin film growth in order to obtain thin films
with well-defined microstructure.

In a thin film growth process, the film is directly formed
from microscopic random processes (e.g., molecule adsorp-
tion, desorption, migration and surface reaction). Precise
control of film properties requires models that describe
these microscopic processes and directly account for their
stochastic nature. Examples of such models include: 1)
kinetic Monte-Carlo (kMC) methods [9], [6], [10], and 2)
stochastic partial differential equations (PDEs) [5], [28].

Kinetic Monte-Carlo methods can be readily developed
and can describe the microscopic growth processes to

atomistic details with multiple species and both short-range
and long-range interactions. Methodologies for estimation-
based control and model-predictive control using kinetic
Monte-Carlo models have recently been developed in [12],
[13] and [19], respectively. Furthermore, feedback control
using kMC models has been successfully applied to control
surface roughness in a GaAs deposition process using
experimentally determined model parameters [14]. Since
kinetic Monte-Carlo simulations provide realizations of a
stochastic process which are consistent with the master
equation which describes the evolution of the microscopic
probability distribution, a method to construct reduced-order
approximations of the master equation was also reported in
[7].

However, the fact that kMC models are not available in
closed-form makes very difficult to use them for system-
level analysis and the design and implementation of real-
time model-based feedback control systems. Motivated by
this, an approach was reported in [23], [2] to identify
linear deterministic models from outputs of kinetic Monte-
Carlo simulators and design controllers using linear control
theory to control the macroscopic variables which are low
statistical moments of the microscopic distributions (e.g.,
surface coverage, which is the zeroth moment of adspecies
distribution on a lattice). However, to control higher statis-
tical moments of the microscopic distributions, such as the
surface roughness (the second moment of height distribution
on a lattice), or even the microscopic configuration (such as
the surface morphology), linear deterministic models may
not be sufficient, because the effect of the stochastic nature
of the microscopic processes becomes very significant and
must be addressed both in the model construction and
controller design.

Stochastic PDE models, on the other hand, which are
available in closed-form, have been developed to describe
the evolution of the height profile for surfaces in cer-
tain physical and chemical processes such as epitaxial
growth [28] and ion sputtering [11]. More recently, Lou
and Christofides [16] presented a method for feedback
control of surface roughness in a thin film growth process
whose surface height fluctuation can be described by the
Edwards-Wilkinson equation [5], a second-order stochastic

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

ThB08.2

2540



parabolic PDE (see also [15] for results on control of
surface roughness in a sputtering process using the stochas-
tic Kuramoto-Sivashinsky equation). A feedback controller
was designed based on the stochastic PDE model and
successfully applied to the kMC model of the deposition
process regulating the surface roughness to desired values.
However, the construction of stochastic PDE models for thin
film growth processes directly based on microscopic process
rules [17], [22], [27] is a very difficult task. This issue has
prohibited the development of stochastic PDE models, and
subsequently the design of model-based feedback control
systems, for realistic deposition processes which are, in
general, highly complex.

In this work, we develop a systematic method for the
construction of linear stochastic PDE models for feedback
control of surface roughness in thin film deposition. A linear
stochastic PDE model is constructed for a generic thin
film deposition process and is used to design a real-time
feedback controller to control the thin film surface rough-
ness. We initially reformulate a general linear stochastic
PDE into a system of infinite stochastic ordinary differential
equations (ODE) by using modal decomposition and derive
the analytical expressions of the first and second statistical
moments of the ODE states. Then, we use a kMC code
to generate surface snapshots for different instants during
process evolution to obtain values of the state vector of
the stochastic ODE system. Subsequently, the eigenvalues
and the covariances of the stochastic ODE system that
correspond to the deposition process are computed based
on the kMC simulation results. Finally, a linear stochastic
PDE model is determined by least-square fitting the pre-
derivative coefficients to match the spectrum of the stochas-
tic PDE system to the identified spectrum of the stochastic
ODE system. The dependence of the model parameters of
the stochastic PDE on the process parameters is investi-
gated and the least-square-optimal form of the stochastic
PDE model with model parameters expressed as functions
of the process parameters is determined. Furthermore, an
optimization-based feedback controller is designed using
the constructed stochastic PDE model and applied to the
kMC simulation of the deposition process to control the
surface roughness. Closed-loop system simulation results
demonstrate that the model is adequately accurate and that
the controller is capable of controlling the surface roughness
of the thin film.

II. PRELIMINARIES

In this work, we consider a thin film growth process of
deposition from vapor phase on a 1-dimensional lattice, in
which, the formation of the thin film is governed by two
microscopic processes that occur on the surface as shown in
Fig.1, i.e., the adsorption of vapor phase molecules on the
surface and the migration of surface molecules (see [20]
for the extension of this work to a 2-dimensional growth
process with molecule desorption). This process is, in fact, a
very common thin film growth process that can be traced in

most chemical vapor deposition processes. A kinetic Monte-
Carlo simulation code following the algorithm reported in
[26] is used to simulate the deposition process and obtain
surface snapshots.
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Fig. 1. The thin film growth process.

As we discussed in the introduction, although there exist
many first principles-based simulation codes for simulating
the microscopic processes, most of them are computation-
ally very expensive. Therefore, closed-form stochastic PDE
models are favored for applications in which computation
efficiency is essential, such as, for the purpose of model-
based real-time feedback control.

Without any a priori knowledge of the deposition
process, we assume that there exists a one-dimensional
linear stochastic PDE of the following general form that
can adequately describe the evolution of the surface of the
thin film during the deposition:

∂h

∂t
= c+c0h+c1

∂h

∂x
+c2

∂2h

∂x2
+· · ·+cw

∂wh

∂xw
+ξ(x, t) (1)

where x ∈ [0, π] is the spatial coordinate, t is the time,
h(x, t) is the height of the surface at position x and time
t, and ξ(x, t) is a Gaussian noise with zero mean and
covariance:

〈ξ(x, t)ξ(x′, t′)〉 = ς2δ(x − x′)δ(t − t′) (2)

where δ(·) is the Dirac function. Furthermore, the pre-
derivative coefficients c and cj in Eq.1 and the parameter ς2

in Eq.2 depend on the process parameters (gas flow rates,
substrate temperature, etc.) pi(t):

c = C[p1(t), p2(t), · · · , pd(t)]

cj = Cj [p1(t), p2(t), · · · , pd(t)] j = 0, · · · , w
ς2 = Cξ[p1(t), p2(t), · · · , pd(t)]

(3)

where C(·), Cj(·) and Cξ(·) are nonlinear functions to be
determined.

The stochastic PDE of Eq.1 is subjected to the following
periodic boundary conditions:

∂jh

∂xj
(0, t) =

∂jh

∂xj
(π, t) j = 0, · · · , w − 1 (4)

and the initial condition:

h(x, 0) = h0(x) (5)
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To study the dynamics of Eq.1, we initially consider the
eigenvalue problem of the linear operator of Eq.1, which
takes the form:

Aφn(x) = c0φn(x) + c1
dφn(x)

dx
+ c2

d2φn(x)
dx2

+ · · ·
+cw

dwφn(x)
dxw

= λnφn(x)
djφn

dxj
(0) =

djφn

dxj
(π) j = 0, · · · , w − 1; n = 1, · · · ,∞

(6)
where λn denotes an eigenvalue and φn denotes an eigen-
function. A direct computation of the solution of the above
eigenvalue problem yields:

λn = c0 + I2nc1 + (I2n)2c2 + · · · + (I2n)wcw

φn(x) =

√
1
π

eI2nx n = 0,±1, · · · ,±∞ (7)

where λn denotes the nth eigenvalue, φn(x) denotes the
nth eigenfunction and I =

√−1.
To present the method that we use for parameter identi-

fication of the stochastic PDE of Eq.1, we first derive an
infinite stochastic ODE representation of Eq.1 using modal
decomposition and parameterize the infinite stochastic ODE
system using kMC simulation. We first expand the solution
of Eq.1 in an infinite series in terms of the eigenfunctions of
the operator of Eq.6 as follows (i.e., the Fourier expansion
in the complex form):

h(x, t) =
∞∑

n=−∞
zn(t)φn(x) (8)

where zn(t) are time-varying coefficients. Substituting the
above expansion for the solution, h(x, t), into Eq.1 and
taking the inner product, the following system of infinite
stochastic ODEs is obtained:

dzn

dt
= λnzn + czn + ξn(t) n = 0,±1, · · · ,±∞ (9)

and the initial conditions:

zn(0) = zn0 n = 0,±1, . . . ,±∞ (10)

where czn = c

∫ π

0

φn(x)dx (apparently cz0 = c
√

π and

czn = 0 ∀ n �= 0), ξn(t) =
∫ π

0

ξ(x, t)φn(x)dx and zn0 =∫ π

0

h0(x)φn(x)dx.

The covariances of ξn(t) can be computed by using the
following result:

Result 1: If (1) f(x) is a deterministic function, (2) η(x)
is a random variable with 〈η(x)〉 = 0 and covariance

〈η(x)η(x′)〉 = σ2δ(x − x′), and (3) ε =
∫ b

a

f(x)η(x)dx,

then ε is a random number with 〈ε〉 = 0 and covariance

〈ε2〉 = σ2

∫ b

a

f∗(x)f(x)dx [3].

Using Result 1, we obtain 〈ξn(t)〉 = 0 and
〈ξn(t)ξ∗n(t′)〉 = ς2δ(t− t′) (ξ∗n is the complex conjugate of

ξn, the superscript star is used to denote complex conjugate
in the remainder of this manuscript). We note that ξn(t) is
a complex Gaussian random variable and the probability
distribution function of the Gaussian distribution, P (ξn, t),
on the complex plane with zero mean and covariance
ς2δ(t − t′) is defined as follows:

P (ξn, t) =
1√

2πςδ(t − t′)
e

ξnξ∗n
2ς2δ(t − t′) (11)

To parameterize this system of infinite stochastic ODEs,
we first derive the analytic expressions for the statistical
moments of the stochastic ODE states, including the ex-
pected value and covariance. By comparing the analytical
expression to the statistical moments obtained by multiple
kMC simulations, the parameters of the stochastic ODE
system (i.e., λn and ς) can be determined.

The analytic solution of Eq.9 is obtained as follows to
derive the expressions for the statistical moments of the
stochastic ODE states:

zn(t) = eλntzn0+
(eλnt − 1)czn

λn
+

∫ t

0

eλn(t − µ)ξn(µ)dµ

(12)
Using Result 1, Eq.12 can be further simplified as fol-

lows:

zn(t) = eλntzn0 +
(eλnt − 1)czn

λn
+ θn(t) (13)

where θn(t) is a complex random variable of normal
distribution with zero mean and covariance 〈θn(t)θ∗n(t)〉 =

ς2 e(λn + λ∗
n)t − 1

λn + λ∗
n

. Therefore, the expected value (the first

stochastic moment) and the covariance (the second stochas-
tic moment) of state zn can be expressed as follows:

〈zn(t)〉 = eλntzn0 +
(eλnt − 1)czn

λn

〈zn(t)z∗n(t)〉 = ς2 e(λn + λ∗
n)t − 1

λn + λ∗
n

+ 〈zn(t)〉〈zn(t)〉∗

n = 0,±1, · · · ,±∞
(14)

Eq.14 holds for any initial condition zn0. Since we are able
to choose any initial thin film surface for simulation, we
choose zn0 = 0 (i.e., the initial surface is flat, h(x, 0) =
0) to simplify our calculations. In this case, Eq.14 can be
further simplified as follows (note that czn = 0,∀n �= 0):

〈zn(t)〉 = 0

〈zn(t)z∗n(t)〉 = ς2 e(λn + λ∗
n)t − 1

λn + λ∗
n

= ς2 e2Re(λn)t − 1
2Re(λn)

n = ±1, · · · ,±∞
(15)

where Re(λn) denote the real part of λn, and for z0(t), it
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follows from Eq.14 with λ0 = 0 that

〈z0(t)〉 = lim
λ0→0

(eλ0t − 1)cz0

λ0
= tcz0 = t

√
πc

〈z2
0(t)〉 = ς2t + t2πc2

(16)

It can be seen in Eq.15 that the statistical moments of
each stochastic ODE state depend only on the real part of
the corresponding eigenvalue, and therefore, to determine
the imaginary part of the eigenvalue we construct an extra
equation related to the expected value of Re[λn(t)]2 (not
shown here due to space limitations). We note that λn

would be a complex number if the linear operator A is
not self-adjoint when odd-partial-derivatives are present in
the stochastic PDE (see Eq.7).

III. MODEL CONSTRUCTION

Based on the results shown in the previous section,
we propose a systematic procedure to construct a linear
stochastic PDE for the deposition process described in
Section 2.1. This procedure can be readily extended to other
stochastic processes. In this work, we use a kinetic Monte-
Carlo code to simulate the deposition process and generate
surface snapshots.

The proposed procedure includes the following steps:
First, we design a set of simulation experiments that cover
the complete range of process operation; second, we run
multiple simulations for each simulation experiment to
obtain the trajectories of the first and second statistical
moments of the states (i.e., Fourier coefficients) computed
from the surface snapshots; third, we compute the eigenval-
ues of the linear operator and covariance of the Gaussian
noise based on the trajectories of the statistical moments
of the states for each simulation experiment, and determine
the model parameters of the stochastic PDE (i.e., the pre-
derivative coefficients and the order of the stochastic PDE);
finally, we investigate the dependence of the model parame-
ters of the stochastic PDE on the process parameters and
determine the least-square-optimal form of the stochastic
PDE model with model parameters expressed as functions
of the process parameters.

A. Eigenvalues and covariance

Because there are only two process parameters consid-
ered in the deposition process studied in this work, the
growth rate W and the substrate temperature T , the simula-
tion experiment design is straightforward. Specifically, dif-
ferent W values and T values are evenly selected from the
range of process operation of interest and simulation exper-
iments are executed with every selected W value for each
selected T value. Therefore, we start our demonstration of
the model construction methodology with the identification
of the eigenvalues and covariance. Also, we note that the
trajectories of the statistical moments for each simulation
experiment are computed based on 100 simulation runs
taking place with the same process parameters.

In the previous section we have shown that for a depo-
sition process with a flat initial surface, the covariance of
each state 〈zn(t)z∗n(t)〉 should be able to be predicted by
Eq.15, therefore, we can fit ς2 and Re(λn) in Eq.15 for the
profile of 〈zn(t)z∗n(t)〉.

In order to obtain the profile of 〈zn(t)z∗n(t)〉, we need
to generate snapshots of the thin film surface during each
deposition simulation and compute the values of zn(t).
Since the lattice consists of discrete sites, we let h(kL, t)
be the height profile of the surface at time t with lattice
constant L (k denotes the coordinate of a specific surface
site), and compute zn(t) as follows:

zn(t) =
∫ π

0

h(x, t)φ∗
n(x)dx

=
kmax∑
k=0

h(kL, t)
∫ (k+1)L

kL

φ∗
n(x)dx

(17)

where kmaxL = π (i.e., the lattice is mapped to the domain
[0,π]). Substituting Eq.7 into Eq.17, we can derive the
following expression for zn(t):

zn(t) =
kmax∑
k=0

h(kL, t)e−2kLnI

2
√

πnI
(1 − e−2LnI )

n = ±1, · · · ,±∞
(18)

and for z0(t), we have,

z0(t) =
kmax∑
k=0

h(kL, t)
L√
π

=
√

πt

kmax∑
k=0

h(kL, t)

kmaxt
= t

√
πW

(19)

Fig. 2. Covariance profiles of z10, z20, z30 and z40.

To capture the dynamics of both the fast states and
slow states simultaneously in the same simulation run with
few surface snapshots, the snapshots are generated in a
variable-time-step fashion in which the intervals between
two snapshots are increased with time. This procedure is
motivated by the fact that the dynamics of the fast states
can be detected only at the beginning of each simulation
run, and therefore, the evolving surface should be sampled
more frequently in the beginning than the remainder to cope
with the small time scale of these fast states.

Fig.2 shows the typical covariance profiles of different
states in a growth process. It can be seen that despite the
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very different time scales of the states, our method can still
generate very smooth profiles for both the fast states (such
as z40, whose time scale is less than 50 s) and the slow
states (such as z10, whose time scale is larger than 1000 s).

Fig. 3. Eigenvalue spectrums of the infinite stochastic ODE systems
identified from the kMC simulation of the deposition process with different
lattice size: kmax = 100, kmax = 500, kmax = 1000 and kmax =
2000.

Fig.3 shows the eigenvalues identified from thin film
depositions occurring under the same operating conditions
but simulated with different lattice size (we note that the
identified eigenvalues are considered real since the imag-
inary part of the eigenvalues identified turned out to be
very small). It can be seen that the identified spectrums
are very close to each other when n is rescaled with the
corresponding lattice size. This is expected, since, φn(x)
is a basis of the domain of operator A, and is a complex
function of the frequency n. Accordingly, n/kmax is the
length scale of the surface fluctuation described by φn(x)
when a lattice of size kmax is mapped to the domain of
[0, π] (we note that, for the same reason, the covariance
values should be scaled with the inverse of the lattice size,
1/kmax, in order to carry out a meaningful comparison).

It can also be seen in Fig.3 that the eigenspectrums are
very close to the parabolic reference curve, which implies
that a second-order stochastic PDE system of the following
form would be able to describe the evolution of the surface
height of this deposition process:

∂h

∂t
= c + c2

∂2h

∂x2
+ ξ(x, t) (20)

in which c, c2 and the covariance of the Gaussian noise ξ,
ς , all depend on the microscopic processes and operating
conditions.

B. Dependence on the process parameters

We proceed now with the derivation of the parameters
of the stochastic PDE of Eq.20. From Eq.16 and Eq.19,
we can see that c = W for all cases. However, c2 and
ς2 identified for different deposition settings can be very
different, therefore, we need to investigate their dependence
on the deposition parameters to obtain their analytical
expressions. c2 and ς2 are evaluated for assorted deposition
conditions and a lattice size of 1000 (i.e., kmax = 1000) is
used for all the simulation runs in our study.

Fig. 4. Eigenvalue spectrums identified from simulated deposition
processes with a growth rate W = 0.5ML/s for different substrate
temperatures: T = 600K, T = 650K and T = 680K.

Fig.4 shows the eigenspectrums identified from deposi-
tions with the same growth rate (W = 0.5 monolayer·s−1)
for different substrate temperatures. It can be seen that
the magnitude of the eigenvalues decreases faster with
increasing n at higher substrate temperature. This implies
that a higher substrate temperature corresponds to a larger
c2 in the stochastic PDE model and vice versa.

Fig. 5. Covariance spectrums identified from simulated deposition
processes with a growth rate W = 0.5ML/s for different substrate
temperatures: T = 600K, T = 650K and T = 680K.

Fig.5 shows the covariance spectrums identified from de-
positions with the same growth rate (W = 0.5 monolayer ·
s−1) for different substrate temperature. Although it follows
from Eq.11 that the covariance of the stochastic noise
should be the same for all states, it is not so for high-
order states in the high substrate temperature regime (e.g.,
T = 680 K). However, because these high order states
correspond to the surface fluctuations of small length scales,
and at the same time, such small length scale surface
fluctuations are almost negligible in the high substrate tem-
perature regime due to the significant surface diffusion, the
contribution from these high-order states at high substrate
temperature becomes very small. Therefore, given that such
discrepancy would not significantly affect the accuracy of
the model, we compute ς2 only based on the low-order
states. From the covariance of the low-order states shown
in Fig.5, we may also consider ς2 to be independent of
substrate temperature.

Fig.6 shows the eigenspectrums identified from deposi-
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Fig. 6. Eigenvalue spectrums identified from simulated deposition
processes with a substrate temperature T = 650K for different growth
rates: W = 0.5ML/s, W = 1.0ML/s and W = 2.0ML/s.

tions occurring under the same substrate temperature (T =
650K) and different thin film growth rates. It can be seen
that, at this substrate temperature, the eigenvalues die out a
bit slower with increasing growth rate, which implies that
a higher growth rate corresponds to a smaller c2 in the
stochastic PDE model and vice versa.

Fig. 7. Covariance spectrums identified from simulated deposition
processes with a substrate temperature T = 650K for different growth
rates: W = 0.5ML/s, W = 1.0ML/s and W = 2.0ML/s.

Fig.7 shows the covariance spectrums identified from
depositions occurring under the same substrate temperature
(T = 650K) and different thin film growth rates. It can
be seen that a higher growth rate corresponds to a larger
covariance value.

Fig. 8. Profile of c2 as a function of substrate temperature T and thin
film growth rate W .

Fig. 9. Profile of ς2 as a function of substrate temperature T and thin
film growth rate W .

To derive explicit expressions for c2 and ς2 as functions
of T and W , we evaluate these values for different T and W
and the results are shown in Fig.8 and Fig.9. From Fig.8,
we can see that ln c2 has a quasi-linear relationship with
both T and W , and thus, the following expression can be
obtained for c2 as a function of T and W through least
square fitting:

c2(T,W ) = e−45.8176 + 0.0511T − 0.1620W

=
e−32.002 + 0.0511T − 0.1620W

k2
max

(21)

From Fig.9 we can see that ς2 depends almost linearly
on both T and W , and thus, the following expression can
be obtained for ς2 as a function of T and W through least
square fitting as well:

ς2(T, W ) = 5.137 × 10−8T + 3.2003 × 10−3W

≈ πW

kmax
(22)

Therefore, the linear stochastic PDE model identified for
the deposition process is as follows:

∂h

∂t
= W + (

e−32.002 + 0.0511T − 0.1620W

k2
max

)
∂2h

∂x2

+ξ(x, t);
∂h

∂x
(0, t) =

∂h

∂x
(π, t), h(0, t) = h(π, t)

(23)
where 〈ξ(x, t)ξ(x′, t′)〉 = (5.137 × 10−8T + 3.2003 ×
10−3W )δ(x − x′)δ(t − t′).

C. Validation of stochastic PDE model

We now proceed with the validation of the stochastic
PDE model of the thin film deposition process (Eq.23).
Validation experiments are conducted for a number of
deposition conditions which have not been used for the
model construction. We generate surface profiles using both
the stochastic PDE model and the kinetic Monte-Carlo code.
Fig.10 shows the surface profile at the end of a deposition
with substrate temperature T = 550 K, thin film growth
rate W = 0.1 monolayer · s−1, deposition duration of
1000 s and lattice size kmax = 2000; Fig.11 shows the
surface profile at the end of a deposition with substrate
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Fig. 10. Final thin film surface profiles generated by kMC simulation and
stochastic PDE model for a 1000s deposition with substrate temperature
T = 550K, thin film growth rate W = 0.1 monolayer · s−1 and lattice
size kmax = 2000.

Fig. 11. Final thin film surface profiles generated by kMC simulation
and stochastic PDE model for a 400s deposition with substrate temperature
T = 700K, thin film growth rate W = 2.5 monolayer · s−1 and lattice
size kmax = 2000.

temperature T = 700 K, thin film growth rate W = 2.5
monolayer · s−1, deposition duration of 400 s and lattice
size kmax = 2000; we can see that both at low and high
substrate temperatures, and for different growth rates, the
linear stochastic PDE model constructed for the deposition
process is very consistent with the kinetic Monte-Carlo
simulation.

We also generate expected surface roughness profiles
using both the stochastic PDE model and the kinetic Monte-
Carlo simulation (average of 100 runs) for the deposition
process. For simplicity, the surface roughness is evaluated
in a root-mean-square fashion as follows:

r(t) =

√
1
π

∫ π

0

[h(x, t) − h̄(t)]2dx (24)

where h̄(t) =
1
π

∫ π

0

h(x, t)dx is the average surface height.

We note that for more detailed description of the surface
morphology, the height-height correlation function may be
used to evaluate the surface roughness [24].

Fig.12 shows the expected roughness profile of a de-
position with substrate temperature T = 550 K and thin
film growth rate W = 0.1 monolayer · s−1; Fig.13
shows the roughness profile of a deposition with substrate
temperature T = 700 K and thin film growth rate W = 2.5
monolayer · s−1; we can see that the linear stochastic
PDE model constructed for the deposition process is also

Fig. 12. Expected surface roughness profiles generated by kMC sim-
ulation and stochastic PDE model for a 1000s deposition with substrate
temperature T = 550K, thin film growth rate W = 0.1 monolayer·s−1

and lattice size kmax = 2000.

Fig. 13. Expected surface roughness profiles generated by kMC sim-
ulation and stochastic PDE model for a 400s deposition with substrate
temperature T = 700K, thin film growth rate W = 2.5 monolayer·s−1

and lattice size kmax = 2000.

very consistent with the kinetic Monte-Carlo simulation in
terms of surface roughness, at both low and high substrate
temperatures, for different growth rates.

IV. FEEDBACK CONTROL

Thin Film 
Deposition 

Process 

Roughness 
Calculation 

(RMS) 

Surface 
Measurements

ODE State 
Evaluation (Fourier 

Transform) 

Optimization-based Controller 

<rfinal> 

rset

min J=[r2
set- <rfinal>

2]2

   T

rset r(t) 

h(x,t) zn(t)

T(t) 

Fig. 14. Block diagram of the closed-loop system.

We now proceed with the design of the feedback con-
troller. Since the thin film deposition is a batch process, the
control objective is to control the final surface roughness
of the thin film to a desired level at the end of each
deposition run. Therefore, we use an optimization-based
control problem formulation. Fig.14 shows the block di-
agram of the closed-loop system. When a real-time surface
profile measurement is obtained, the states of the infinite
stochastic ODE system, zn, are computed. Then, a substrate
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temperature T is computed based on states zn and the
stochastic PDE model and applied to the deposition process.
The substrate is held at this temperature for the rest of
the deposition until a different value is assigned by the
controller. The value of T is determined at each time t by
solving, in real-time, an optimization problem minimizing
the difference between the estimated final surface roughness
and the desired level. A standard procedure based on the
active set method [8] is used to solve the optimization
problem. A kMC code with a lattice size kmax = 1000
is used to simulate the thin film deposition process, and
the substrate temperature is restricted within 300 K to
900 K. The measurement interval, as well as the control
interval, is set to be 1 s. We limit the maximum number
of states to be used (in our case, to m = 500) to guarantee
the maximum possible computation time for each control
action is within certain requirement, however, for most of
the time the number of states needed by the controller is
much smaller.

Fig. 15. Surface roughness and substrate temperature profiles of a 1000
s closed-loop deposition process with thin film growth rate W = 0.5
monolayer · s−1 and final roughness setpoint rset = 1.0 monolayer.

Fig.15 shows the surface roughness and substrate tem-
perature profiles of a closed-loop deposition process with
thin film growth rate W = 0.5 monolayer · s−1. The
control objective is to drive the final surface roughness of
the thin film to 1.0 monolayer at the end of the 1000 s
deposition. It can be seen that the final surface roughness is
controlled at the desired level while an open-loop deposition
with the same initial deposition condition would lead to a
100% higher final surface roughness as shown in Fig.15.
In addition, results on process disturbance rejection can be
found in our full paper [18].
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