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Abstract— We consider an integrated design problem of
structural and control systems. It is well known that even
the simplest formulation of this problem results in a kind
of a BMI problem. In this paper, a homotopy-like iterative
design method based on LMIs is proposed to obtain an optimal
plant and a controller simultaneously for a full-order output
feedback problem. We can deal with a multiobjective problem,
e.g., H2/H∞ control problem etc. in the proposed design
method. We can also optimize structural design parameters
appearing nonlinearly in the coefficient matrices of the plant
state-space form using the first order approximation of the
nonlinear dependence in the proposed algorithm. Several
design examples show that the proposed algorithm works quite
effectively for various integrated design problems.

I. INTRODUCTION

The control system design traditionally has been divided
into two phases: the design of control object and the
controller design, based on each design specification having
not been necessarily cooperative each other. The integrated
design framework aims to integrate the above two step
design scheme. We can expect that the integrated deign
methodology is able to achieve the higher performance in
both of the structural and the control senses because the
structure of the integrated design problem is clearly more
reasonable than that of the above two step design.

The study on the integrated design methodology has been
started since last two decades to achieve a tradeoff between
the strict specification about the weight and the required
property of damping, which is provided actively, for large
space structures[1].

Recently several iterative design methods guaranteeing
the convergence to a local optimal solution have been
proposed[2], [3], [4], [5]. Those studies also has shown the
negative result that the general integrated design problem
becomes a kind of BMI problem. This fact means that
we cannot obtain the global optimal solution with a rea-
sonable amount of computation[6]. This difficulty is the
biggest difference between the integrated design problem
and the simple structural or the controller design problem.
However, those integrated design methods can guarantee the
convergence to the local optimal solution only when the
coefficient matrices of the state-space or descriptor form
of the control objects are linear functions on the structural
design parameters. This limitation confines the range of the
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applications of the integrated design scheme to the general
and the practical control system design.

In this paper we propose an integrated design technique
which guarantees the local convergence even when the
coefficient matrices appearing in the state-space form of the
control objects are not linear functions on the structural de-
sign parameters. The proposed design method is an iterative
LMI based synthesis procedure which is employed in so-
called homotopy method [7], [8]. The LMI conditions are
obtained by approximating the nonlinear matrix inequality
describing the closed-loop norm constraints by neglecting
the second or the higher order terms on the structural
and the control design parameters. The result will greatly
enlarge the class of the problem to which we can apply the
integrated design method.

The rest of the paper is organized as follows: In Section
II, the integrated design problem of structural and control
systems is formulated. The homotopy like design algorithm
is presented in Section III. Two design examples to show
the effectiveness of the proposed design method are given
in Section IV. In Section V, the conclusion of this paper is
presented.

II. INTEGRATED DESIGN PROBLEM

The control object is represented as the following general
state-space form:⎧⎨

⎩
ẋ(t) = A(p)x(t)+B1(p)w(t)+B2(p)u(t)
z(t) = C1(p)x(t)+D11(p)w(t)+D12(p)(t)
y(t) = C2(p)x(t)+D21(p)w(t)

(1)

where x(t) ∈ Rnx, w(t) ∈ Rnw, u(t) ∈ Rnu, z(t) ∈ Rnz and
y(t) ∈ Rny are the state vector, the disturbance, the control
effort, controlled output and the measurement respectively.
Matrices A(p), B1(p), B2(p), C1(p), C2(p), D11(p), D12(p)
and D21(p) have conformable dimensions and are (not
necessarily linear) functions of np dimensional structural
design parameter vector denoted as p := [p1, . . . , pnp]T . In
mechanical systems to be controlled, the damping, the stiff-
ness and the sensor/actuator placement, etc. are supposed to
be an element of the vector p. In this paper the vector p
is assumed to be a real vector in a set P defined as the
following:

P := {p ∈ Rnp : pl ≤ p ≤ pu, pl , pu ∈ Rnp} (2)

where pl and pu are the lower and the upper bounds of the
vector p respectively.

For the control object possessing the adjustable design
parameters given in (1) a following full order feedback
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controller is synthesized:{
ẋK(t) = AKxK(t)+BKy(t)
u(t) = CKxK(t) (3)

where xK(t) ∈ Rnx is the state vector of the controller and
all coefficient matrices in (3) have appropriate dimensions.
Let the transfer function matrix of the controller as K(s).
Note that those coefficient matrices also can be considered
as functions on the structural design parameter vector p.

The closed-loop system with the plant in (1) and the
controller in (3) is given as{

ẋcl(t) = Aclxcl(t)+Bclw(t)
z(t) = Cclxcl(t)+Dclw(t) , (4)

Define the transfer function matrix of the closed-loop sys-
tem as Gcl(s). For the closed-loop system given in (4) we
define a scalar performance index J as

J := ‖Gcl(s)‖•, (5)

where ‖H(s)‖• denotes a norm of a transfer function matrix
H(s). We can assign the performance index J as various
type of norms of Gcl(s), e.g., H2, H∞ and L∞ norm etc. or
the weighted sum of such closed-loop norms (multiobjective
case). Now the integrated design problem of the structural
and control systems is formulated as the following:� �

Integrated design problem of structural and con-
trol systems: Find the structural design parameter
popt ∈ P and the controller Kopt(s) which minimize
J or satisfy J ≤ Ju (Ju > 0) where Ju is a scaler
representing the performance specification determined
by the designer.

� �
Remark 1: In the case of the multiobjective problem, it

is often the case minimizing a norm of closed-loop transfer
function from the components of w(s) := L (w(t)) to those
of z(s) := L (z(t)) subject to inequality constraint on other
norms of another closed-loop transfer matrix from (other)
components of w(s) to (other) ones of z(s). The formulated
problem is also able to handle this kind of problem.

III. HOMOTOPY LIKE DESIGN ALGORITHM

A. LMI conditions for controller design

The problem formulation in the previous section does
not assume the specific norm of the closed-loop system.
Actually we can deal with any kinds of norms if the
optimal controller synthesis conditions are given as LMIs
on controller design parameters, e.g., [9]. In this subsection
we introduce LMI conditions for the optimal H2 and H∞
controller as examples to describe the following homotopy
like method concretely. Furthermore we show the principle
for a design of a multiobjective controller, say, H2/H∞
controller, in the sense of a sufficient condition by taking
common Lyapunov matrices appearing in LMI conditions
on single objective problem, i.e., each of H2 or H∞.

H2 norm:[9] A controller K2(s) yielding the ‖Gcl(s)‖2
2 <

γ2 (γ2 > 0) exists if and only if following LMIs have solution
matrices X2 = XT

2 ,Y2 =Y T
2 ∈Rnx×nx, Q = QT ∈Rnz×nz, Â2 ∈

Rnx×nx, B̂2 ∈ Rnx×ny and Ĉ2 ∈ Rnu×nx exist:⎡
⎣ Θ11 ΘT

21 ΘT
31

Θ21 Θ22 ΘT
32

Θ31 Θ32 Θ33

⎤
⎦ < 0, (6)

⎡
⎣ Λ11 ΛT

21 ΛT
31

Λ21 Λ22 ΛT
32

Λ31 Λ32 Λ33

⎤
⎦ > 0, (7)

trace(Q) < γ2, Dcl = 0 (8)

where

Θ11 = AX2 +X2AT +B2Ĉ2 +(B2Ĉ2)T ,

Θ21 = Â2 +AT ,

Θ22 = ATY2 +Y2A+ B̂2C2 +(B̂2C2)T ,

Θ31 = BT
1 , Θ32 = (Y2B1 + B̂2D21)T , Θ33 = −I,

Λ11 = X2, Λ21 = I, Λ22 = Y2, Λ31 = C1X2 +D12Ĉ2,

Λ32 = C1, Λ33 = Q

H∞ norm:[9] A controller K∞(s) yielding the
‖Gcl(s)‖∞ < γ∞ (γ∞ > 0) exists if and only if following
LMIs have solution matrices X∞ = XT

∞ ,Y∞ = Y T
∞ ∈ Rnx×nx,

Â∞ ∈ Rnx×nx, B̂∞ ∈ Rnx×ny and Ĉ∞ ∈ Rnu×nx exist:⎡
⎢⎢⎣

Ξ11 ΞT
21 ΞT

31 ΞT
41

Ξ21 Ξ22 ΞT
32 ΞT

42
Ξ31 Ξ32 Ξ33 ΞT

43
Ξ41 Ξ42 Ξ43 Ξ44

⎤
⎥⎥⎦ < 0, (9)

[
X∞ I
I Y∞

]
> 0 (10)

where

Ξ11 = AX∞ +X∞AT +B2Ĉ∞ +(B2Ĉ∞)T ,

Ξ21 = Â∞ +AT ,

Ξ22 = ATY∞ +Y∞A+ B̂∞C2 +(B̂∞C2)T ,

Ξ31 = BT
1 , Ξ32 = (Y∞B1 + B̂∞D21)T , Ξ33 = −γ∞I,

Ξ41 = C1X∞ +D12Ĉ∞, Ξ42 = C1, Ξ43 = D11, Ξ44 = −γ∞I

In both of the above cases, the coefficient matrices of the

controller Ki(s) :=
[

(AK)i (BK)i

(CK)i 0

]
(i = 2 or ∞) is given

as

(CK)i = ĈiM
−T
i ,

(BK)i = N−1
i B̂i, (11)

(AK)i = N−1
i (Âi −Ni(BK)iCXi −YiB(CK)iM

T
i −YiAXi)M−T

i ,

where matrices Mi ∈Rnx×nx and Ni ∈Rnx×nx are nonsingular
square solutions to a following decomposition problem:

I −XiYi = MiN
T
i , i = 2 or ∞ (12)

Note that the above decomposition problem always has
solution matrices Mi and Ni (i = 2 or ∞) if LMIs for each
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controller design problem is feasible. Both of the above
LMIs can be solved efficiently with a standard LMI solver
[10].

In the case of multiobjective problem of the above two
criteria, i.e., H2/H∞ problem, the necessary and sufficient
condition for the existence of the controller K2/∞(s) yielding
‖Gcl(s)‖2

2 < γ2 and ‖Gcl(s)‖∞ < γ∞ is given by taking the
common matrix variables as Â2 = Â∞ := Â2/∞, B̂2 = B̂∞ :=
B̂2/∞ and Ĉ2 = Ĉ∞ := Ĉ2/∞ in (6)-(8) and (9)1. However
those matrix inequality conditions are no longer LMIs in
this case and the optimal H2/H∞ controller design problem
is still an open problem. As a sufficient condition to exist
the controller satisfying ‖Gcl(s)‖2

2 < γ2 and ‖Gcl(s)‖∞ < γ∞
are obtained with the above variables changing and taking
common Lyapunov matrices, i.e., X2 = X∞ = X2/∞ and Y2 =
Y∞ =Y2/∞ [5], [9]. Then matrix inequality conditions in (6)-
(8) and (9) are LMIs on each matrix variable and can be
solved with the LMI solver. The resulted controller may
be conservative depending on the given problem, however,
this method currently can be said to be a reasonable way
to obtain the multiobjective controller because of following
reasons:

• We can obtain the controller taking multiple closed-
loop criteria (although it is not necessarily the optimal
controller) efficiently because the conditions are given
as LMIs on variable matrices.

• The order of the controller is always same as the plant
in contrast to the method based on coprime factor
technique [11]. The property of the controller order
is favorable in real applications.

In this paper we take the above common Lyapunov matrix
strategy in the case of a multiobjective problem even
when other closed-loop norm constraints (e.g., L∞ or other
quadratic constraints) are considered.

B. Homotopy like design algorithm

In this subsection we propose a homotopy like integrated
design method based on the LMI conditions in the previous
subsection. We show the algorithm only in the case of the
H∞ problem. The method itself is totally same when we
consider the H2 problem or the mutiobjective one.

Define ∆p := [∆p1, . . . , ∆pnp]T ∈ Rnp, ∆Â∞ ∈ Rnx×nx,
∆B̂∞ ∈ Rnx×ny, ∆Ĉ∞ ∈ Rnu×nx, ∆X∞ = ∆XT

∞ ∈ Rnx×nx, ∆Y∞ =
∆Y T

∞ ∈ Rnx×nx and a scalar ∆γ∞ as perturbations of p, Â∞,
B̂∞, Ĉ∞, X∞, Y∞ and γ∞ in (9) and (10) respectively. With
those perturbations define the perturbed version of (9) and
(10) as follows:⎡

⎢⎢⎣
Φ11 ΦT

21 ΦT
31 ΦT

41
Φ21 Φ22 ΦT

32 ΦT
42

Φ31 Φ32 Φ33 ΦT
43

Φ41 Φ42 Φ43 Φ44

⎤
⎥⎥⎦ < 0, (13)

[
X∞ +∆X∞ I

I Y∞ +∆Y∞

]
> 0, (14)

1In this case the condition in (10) is automatically accomplished if the
condition in (7) is feasible.

where

Φ11 = A(p+∆p)(X∞ +∆X∞)+(X∞ +∆X∞)A(p+∆p)T

+B2(p+∆p)(Ĉ∞ +∆C∞)+(Ĉ∞ +∆C∞)T B2(p+∆p)T ,

Φ21 = Â∞ +∆Â∞ +A(p+∆p)T ,

Φ22 = A(p+∆p)T (Y∞ +∆Y∞)+(Y∞ +∆Y∞)∞A(p+∆p)

+(B̂∞ +∆B̂∞)C2(p+∆p)T +C2(p+∆p)T (B̂∞ +∆B̂∞)T ,

Φ31 = B1(p+∆p)T , Φ32 = {(Y∞ +∆Y∞)B1(p+∆p)

+(B̂∞ +∆B̂∞)D21(p+∆p)}T , Φ33 = −(γ∞ +∆γ∞)I,

Φ41 = C1(p+∆p)(X∞ +∆X∞)+D12(p+∆p)(Ĉ∞ +∆Ĉ∞),
Φ42 = C1(p+∆p), Φ43 = D11(p+∆p),
Φ44 = −(γ∞ +∆γ∞)I (15)

In the case that all coefficient matrices in (1) are linear
functions on p, the perturbed coefficient matrices, say,
A(p + ∆p), B1(p + ∆p) and B2(p + ∆p) etc. are given
explicitly as

�(p+∆p) = �+
np

∑
j=1

∆p j
∂�
∂ p j

, (16)

where the symbol � denotes the component of each co-
efficient matrix in (1). If a component of those coefficient
matrices are nonlinear function on p, the equation in (16)
is satisfied approximately if ∆p is sufficiently small such
that the linear approximation obtained by taking the first
order term of the infinite series expansion of the nonlinear
function has a certain accuracy. The (approximated) pertur-
bations of the coefficient matrices in (1) are denoted as ∆A,
∆B1, ∆B2, ∆C1, ∆C2, ∆D11, ∆D12 and ∆D21 respectively.
Then, (15) can be expanded in the form of the second order
equations on the terms of the perturbations. Obviously (13)
is a BMI problem on those perturbations and is difficult to
solve. However, if we assume all perturbations are small, it
is valid that we can approximate those BMIs as LMIs by
ignoring the second order product of perturbation matrices.
We take those approximated LMIs for the integrated design.
The linear approximation of BMI in (13) is given as the
following: ⎡

⎢⎢⎣
Ψ11 ΨT

21 ΨT
31 ΨT

41
Ψ21 Ψ22 ΨT

32 ΨT
42

Ψ31 Ψ32 Ψ33 ΨT
43

Ψ41 Ψ42 Ψ43 Ψ44

⎤
⎥⎥⎦ < 0, (17)

where Ψi j (i, j = 1, . . . ,4) is the linear approximation of Φi j

in (15) obtained by neglecting the second-order terms on ∆.
Equations (17) and (14) are LMIs on all perturbation ma-
trices and we can obtain the feasible perturbation matrices
satisfying (17) using the LMI solver.

As mentioned before the linear approximation of BMIs
is reasonable only if the perturbations are small. Hence,
we need to confine the amount of those perturbations in
some senses. In this paper we take a norm constraint on
the perturbation matrices given by

‖∆∗‖ < ε‖∗‖ (ε > 0) (18)
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where the symbol ∗ denotes any variable matrices, e.g., p,
X∞ and Y∞ etc.. The norm constraint in (18) is also given
as following LMIs:

[
ε‖∗‖I ∆∗
(∆∗)T ε‖∗‖I

]
> 0 (19)

Therefore, we can obtain the small amount of the optimal
perturbations by combining LMI conditions (17), (14) and
(19). With the above linearized LMIs we propose a follow-
ing integrated design algorithm:

Step 0:Define the iteration number i = 0. Set the initial
value of the structural design parameter vector
p0 ∈ P . In the following we define the symbols
with the superscript i denote the one of the i-th
iteration of this algorithm.

Step 1:Set ε > 0 in (18). For the plant derived for the
fixed pi obtain the optimal H∞ controller Ki(s)
and the performance index Ji := γ i

∞ for the fixed
plant with LMI conditions (9) and (10).

Step 2:The optimal perturbation matrices, e.g., ∆pi, ∆Âi
∞

and ∆B̂i
∞ etc. minimizing the perturbation of

the performance index ∆γ i
∞ subject to constraints

∆γ i
∞ < 0 and pi + ∆pi ∈ P satisfying (approx-

imated) LMIs in (17), (14) and (19). If such
perturbations can not be obtained, then set the
optimal structural vector popt = pi and Kopt(s) :=
Ki(s) and stop. Otherwise, update pi+1 ← pi +∆pi

and go to the next step.
Step 3:Obtain the optimal H∞ controller Ki+1(s) and the

performance index Ji+1 := γ i+1
∞ again for the plant

having the new structural design parameter vector
pi+1. If Ji+1−Ji ≥ 0 then ε ←ηε where 0 < η < 1
and go to Step 2. Otherwise Update pi ← pi+1 and
go to Step 1.

We can clearly see that the design parameters converge
at least to a local optimal solution with the proposed
algorithm. Note also that we can deal with other closed-
loop specifications, e.g., H2 or multiobjective specifications
without any difficulties in the proposed algorithm.

IV. DESIGN EXAMPLES

A. 2DOF System

Let us consider an active control of a 2DOF system
depicted in Fig. 1, where q1(t), q2(t), w(t) and u(t) are
the displacement of m1, m2, the disturbance force and
the control force respectively. The spring and the damper
denoted by ki and di (i = 1,2) connect the fixed wall and
m1, and m1 and m2 respectively. The disturbance and the
control force are applied to the mass m1. The displacement
of the mass m2 is measured to suppress the vibration of
the same mass. By taking the state vector x(t) as x(t) :=

d1

k1 k2

d2

m1 m2

u(t), w(t)

q1(t) q2(t)

Fig. 1. Active control of 2DOF System

Iteration number

J m

0 1 2 3 4
600

800

1000

1200

1400

Fig. 2. The optimization history for the performance index Jm

[q1(t) q2(t) q̇1(t) q̇2(t)]T , the state-space form in (1) is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t)+ [B1
1 B2

1]
[

w(t)
v(t)

]
+B2u(t)

z(t) =
[

z1(t)
z2(t)

]
=

[
C1

1
01×4

]
x(t)+

[
0
1

]
u(t)

y(t) = C2x(t)+ [0 10−3]
[

w(t)
v(t)

] , (20)

B2
1 := 04×1, C1

1 = [0 103 0 0], C2 = [0 1 0 0].

where v(t) is the measurement noise.
We consider a multiobjective problem where the perfor-

mance index Jm is defined by

Jm := J∞ +αJ2,α > 0, (21)

where J∞ and J2 are upper bounds of the closed-loop H∞
and the square of H2 norms from [w(t) v(t)]T to z1(t)
and z2(t) respectively. The scalar α > 0 is a weighting
parameter between the above two performance indeces.
For the fixed plant, the controller optimizing Jm can be
obtained by taking X2 = X∞ = X , Y2 =Y∞ =Y , Â2 = Â∞ = Â,
B̂2 = B̂∞ = B̂ and Ĉ2 = Ĉ∞ = Ĉ in LMIs given in (6)-(8)
and (9) and minimizing the γ∞ +αγ2.We take the structural
design parameter vector p as the following:

p :=
[

d1 k1
]T

(22)

We set the lower and the upper bounds of the vector p as
pl := 10−2 × [dn

1 kn
1]

T and pu := 10× [dn
1 kn

1]
T , where dn

1 =
0.01 [Ns/m] and kn

1 = 1 [N/m] respectively. In this example
the matrix A is a linear function of each component of the
vector p. The other physical design parameters are defined
as m1 = m2 = 1 [kg], d2 = dn

1 and k2 = kn
1 respectively.

By taking ε = 0.2 (in (18)) and α = 1, the proposed
integrated design algorithm is applied to the problem. The
initial value of the vector p is p0 := [dn

1 kn
1]

T . Optimization
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Iteration number

d 1
[N

s/
m

] d1
u

0 1 2 3 4

0.04

0.08

0.12

Fig. 3. The optimization history for the damping coefficient d1

Iteration number

k 1
[N

/m
]

k1
u

0 1 2 3 4

4.00

8.00

12.00

Fig. 4. The optimization history for the spring constant k1

histories for the performance index Jm, the structural design
parameters d1 and k1 are shown in Figs. 2, 3 and 4
respectively.

Those values are converged only four times iterations.
The damping coefficient d1 and the spring constant k1

converge to their upper bounds. To check the quality of the
obtained solution, we carry out the search for the whole
design space P := {p : pl ≤ p ≤ pu} by computing the
optimal controller for 2500 plants obtained by gridding
of each range (d1 : [10−4,0.1], k1 : [10−2,10]) of structural
design parameters to 50 points. The 3D plot of the result of
the exhaustive search is shown in Fig. 5. Clearly, in this case
we could successfully find out the global optimal solution
with the proposed homotopy based method. This result also
means that we could find out the global optimal solution of
the current BMI problem.

B. Sensor/Actuator Placement

Let us consider an active vibration control system of
a simply supported beam with a circular cross section in
Fig. 6. The length, the diameter, the density and Young’s
modulus of the beam are denoted by L [m], d [m], ρ
[kg/m3] and E [N/m2] respectively. The moment of inertia
of area is obtained by I := πd4

64 . Two actuators producing
control forces u1(t) and u2(t) are installed at ξ = ξ 1

a , ξ =
ξ 2

a , respectively. Two sensors are equipped for measuring
displacements q(ξ 1

s , t) and q(ξ 2
s , t). A disturbance force

w(t) is injected at ξ = ξw. We obtain the optimal sensor
and actuator placement in this problem with the proposed
method. The structural design parameter vector and its
lower and the upper bounds are defined as follows:

p := [ξ 1
a ξ 2

a ξ 1
s ξ 2

s ]T , pl = 04×1, pu = L× [1 1 1 1]T (23)

0

2
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6

8

10

0
0.02

0.04
0.06

0.08
0.1

600

700

800

900

1000

1100

1200

1300

1400

1500

k1 [N/m]
d1 [Ns/m]

Jm

⊗

min(Jm)=659.17
(k1=10, d1=0.1) 

Fig. 5. The actual performance index Jm

ξ 

q(ξ,t) 

O

u1(t) w(t) u2(t)

ξa
1 

ξw 
ξa

2 

ξz
1 

ξs
1 ξz

2 ξs
2 

d

L

Fig. 6. Simply Supported Beam System

We assume that the displacement q(ξ , t) can be approxi-
mated by

q(ξ , t) �
3

∑
j=1

q j(t)φ j(ξ ), (24)

where q j(t) is the j-th modal displacement of the beam.
The function φ j(ξ ) is given as the following normalized
j-th modal shape of a simply supported beam given as

φ j(ξ ) =

√
2
L

sin

(
jπξ
L

)
. (25)

Then the (approximated) modal equation of motion of the
beam system is obtained as

q̈ f (t)+2ZΩq̇ f (t)+Ω2q f (t) = Lww(t)+Lau(t), (26)

where q f (t) := [q1(t) q2(t) q3(t)]T is the (approximated)
modal displacement vector and u(t) := [u1(t) u2(t)]T

respectively. Matrices Z := diag(ζ1,ζ2,ζ3) and Ω :=
diag(ω1,ω2,ω3), (ω j := ( jπ)2

√
EI

ρSL4 , j = 1,2,3, S = πd2

4 )

are modal damping matrix and normal frequency matrix
respectively. We take a controlled output z(t) as

z(t) := [q(0.3L, t) q(0.6L, t) r1u1(t) r2u2(t)]T , (27)

where r1 and r2 are the positive scalar weightings. By
assuming the proportional damping, i.e., Z = βΩ (0 < β �
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TABLE I

PARAMETER VALUES

Value
Length L [m] 1.00
Diameter d [m] 5.00×10−3

Density ρ [kg/m3] 6.21×103

Young’s modulus E[N/m2] 6.06×106

Proportional constant β 10−3

Weighting r1 and r2 1

Iteration number

J b

0 100 200 300 400 500
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Fig. 7. The optimization history for the performance index Jb

1) and taking the state vector x(t) := [q f (t) q̇ f (t)]T , we
derive the state-space form of the beam system as (1).

In this case matrices B2 and C2 are nonlinear functions
on the vector p in (23). We take the performance index
(denoted by Jb) as the closed-loop H∞ norm from w(t) to
z(t). The optimal controller can be obtained for a fixed p
by minimizing γ∞ in LMIs in (9) and (10). The values of
physical parameters are depicted in Table I.

By taking ε = 5 × 10−3, the proposed optimal design
method is applied to the sensor/actuator placement problem.
To obtain the better locally optimal solution, we conduct the
optimization several times from different initial placements.
In most cases both actuator placements converge to the
place where the disturbance is applied (ξ = 0.4L). A typical
result is presented in Figs. 7 and 8. In this problem, it is
found that the performance index Jb is quite insensitive to
the sensor placements ξ 1

s and ξ 2
s . This result also suggests

we do not need to equip two actuators but need only one
actuator at the place where the disturbance is injected.

We do not check whether the obtained solutions are
the globally optimal or not in this example because the
amount of the computation is too large to obtain the
global optimal solution with the extensive search of the
whole design parameter space. However we can claim that
the obtained result is quite reasonable from the physical
viewpoint because it is the efficient way to suppress the
effect of the disturbance force by collocating actuators.

The results in this section show that the proposed in-
tegrated design method works quite effectively even for
the problems, which earlier proposed BMI based integrated
design approaches [4], [5] cannot deal with. The results of
design examples indicates the capability of the proposed de-
sign scheme for more general and complex design problems
in real applications.
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Fig. 8. The optimization history for the sensor/actuator ξ i
a and ξ i

s (i = 1,2)

V. CONCLUSION

We have investigated the homotopy based integrated
design method in this paper. An iterative design algorithm
based on the homotopy method has been proposed. In this
method we can utilize all LMI conditions for controller
synthesis to the integrated design problem. This fact means
that we can deal with the multiobjective problem, which
currently LMI based approach is recognized as one of the
most effective solution method, in the integrated design
problem. The proposed method also can be applied to the
case where the coefficient matrices of the plant state-space
(descriptor) form are nonlinear functions on their structural
design parameters by taking the linear approximation of
the nonlinear dependence and limiting the amount of the
updates of design parameters. The proposed iterative algo-
rithm is guaranteed to converge at least to a local optimal
solution. With design examples we could have shown the
capability of the proposed design methodology.
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