
Abstract—This paper explores the design of Walcott 
-Zak sliding mode observer (WZSMO) for a class of 
system satisfying some positive real conditions. A new 
sufficient and necessary existence condition only 
involving the original system parameters is proposed to 
simplify the design of WZSMO. The full freedom degree 
of the design of nonlinear injection of WZSMO is 
studied. The fact that the linear feedback can be 
designed independently is discovered. An optimizing 
design procedure of the nonlinear injection of SMO is 
proposed to sub-minimize the control cost of nonlinear 
injection. At last, a numerical example is presented to 
illustrate the proposed design procedure.

I. INTRODUCTION

liding mode observer (SMO) has received large 
attentions in recent years, since it owns more robust than 

linear Luenberger observer [7]. By injecting a nonlinear dis- 
continuous term, SMO makes the trajectory of the 
estimating error remain on a surface in the error space after 
finite time such that the estimating error system is 
completely insensitive to the disturbances. Due to this 
perfect feature, SMO has been utilized not only on state 
estimation [3] [9] [10] [14], but also on input estimation [2] 
and fault detection and isolation [4]. There are two kinds of 
SMO: one is the equivalent control based method and the 
other is Lyapunov based method. The former was first 
proposed by Utkin [11] and named Utkin SMO. As stated in 
[10] and [14], the Utkin SMO owns bounded estimation 
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error for bounded modeling errors. So the recently works 
mostly focused on the latter, which was first suggested by 
Walcott and Zak in [12] and named Walcott-Zak SMO 
(WZSMO) in [3]. However, WZSMO was formulated a 
constraint Lyapunov equation, which is difficult to solve. 
Corless and Tu [2] presented a sufficient and necessary 
condition for the existence of WZSMO that the system 
should satisfy some positive real conditions. They also 
developed a canonical form on which a solving method was 
given. But their method is based on an optimal solution of a 
non-strict linear matrix inequality which is very difficult to 
cope with in practice. Tan and Edwards [9] presented 
another canonical form on which a sufficient condition in 
terms of linear matrix inequality (LMI) is proposed. But 
thrice coordinates transformations which are not trivial, 
should be used to obtain the canonical form. Hence, their 
method is somewhat complex, although their method is 
explicit. Moreover, they did not discover the key action of 
nonlinear injection and not explore the freedom degree of 
design of nonlinear injection. The relation between linear 
feedback part and nonlinear injection was also not 
addressed.

In this paper, a new sufficient and necessary existence 
condition in terms of LMIs for WZSMO is presented. This 
condition only involves the original system matrices and 
endows the design of WZSMO with simpleness. The action 
and influence of linear feedback part and nonlinear injection 
of WZSMO is studied deeply. The nonlinear injection 
design as a key problem of WZSMO is explored with full 
freedom degrees. This was neglected in previous work [9]. 
An optimal procedure where the linear feedback part is 
designed independently and nonlinear injection is designed 
to sub-minimize the control cost is also concluded. The 
notations in this paper are standard. Both the Euclidean 
norm of a vector and the induced spectral norm of a matrix 
are given by • ; M  denotes the orthogonal complete 
matrix of full column rank of matrix M ; The abbreviation 
of ‘s.p.d.’ stands for symmetric positive definite. 

II. EXISTENCE CONDITION OF WZSMO 
Consider the following uncertain system 

( ) ( ) ( ) ( , , )x t Ax t Bu t Gd x u t ,
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( ) ( )y t Cx t ,                                  (1) 

where nx  is the state vector, mu  is the control 
input vector, py   is the output vector and qd
represents the uncertain term including internal/external 
disturbances  and model uncertainties. A , B , C  and G  are 
constant matrices of appropriate dimensions with 

( )rank C p  and ( )rank G q . The WZSMO for system (1) 
has the form: 

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( )) ( )l nx t Ax t Bu t K y t Cx t K v t ,   (2) 
where ˆ nx  is the estimator vector, lK  and nK  are linear 
feedback gain and nonlinear feedback gain, respectively, 

( )v t  is the nonlinear input lying on the uncertain term 
( , , )d x u t . The term ( )nK v t is called nonlinear injection. 

The gain matrix lK  should satisfy the following equations 
[13]: 

( ) ( )T
l lP A K C A K C P Q ,

TG P FC ,                                  (3) 
where P  and Q  are s. p. d. matrices, F  is a matrix 
variable and will be used later to determined the nonlinear 
input ( )v t .

The difficulty in finding the solution of (3) limited the use 
of WZSMO. In [13], the solution of (3) is assumed to be 
found a prior. Corless and Tu [2] pointes out that the 
feasibility of (3) amounts to some positive real condition, 
which is recalled as follows

Lemma 1[2]: There exists s. p. d. matrices P  and Q ,
matrices  lK  and F  satisfying (3) if and only if  ( )rank CG

( )rank G  and the triplet , ,A G C  is minimum phase. 

Remark 1: The equations (3) and Lemma 1 are also thought 
as the existence condition of WZSMO. 

Based on a canonical form, Tan and Edwards [9] gave a 
LMI approach for WZSMO design, but the canonical form 
needs thrice transformations, which brings some 
complexities on design and limits the extensions of their 
results. In the following, we shall present a novel condition, 
which is much simpler than before, for the solution of (3). 

Theorem 1: The following propositions are equivalent: 
P1) There exist s. p. d. matrices P  and Q , matrices lK

and F  satisfying (3). 
P2) ( ) ( )rank CG rank G  and the triplet , ,A G C  is 

minimum phase. 
P3) There are symmetric matrices ( ) ( )

1
n q n qW  and 

2
p pW  and matrix n pY  such that the 

following inequalities hold. 

1 2 0T TG W G C W C ,                    (4) 

1 2

1 2( ) 0

T T

T T T

G W G A C W CA YC

G W G A C W CA YC
.         (5) 

Moreover, one can get the solution of equations (3) are: 
1 2

T TP G W G C W C ,                      (6) 
1

1 2( )T T
lK G W G C W C Y ,             (7) 

2
T TF G C W ,                                   (8) 

Proof: Lemma 1 shows P1) P2), so we only need to 
prove P1) P3). Suppose P3) holds. Substituting (6)~(8) 
into (3), it is straightforwardly seen that the equation (3) 
holds.

Suppose P1) holds. Define a matrix ( )n n q p  as 
TG C . Note that

0

T TT
n q

T T T
I G CG

G G C
,                      (9) 

G G  is nonsingular, and ( )rank CG q , it follows that 

( )rank n . Then it can be easily done to draw out 

( )n p  columns from G  to construct the matrix 
( )n n pH  such that the matrix TH C  is nonsingular. 

Hence, one can express any s. p. d. matrix P  by 

1 3

3 2

T
T

T

P P H
P H C

P P C
,                  (10) 

where ( ) ( )
1

n p n pP , 2
p pP  and ( )

3
n p pP . From 

the second equation of (3), and noting 0TG H , we have 

3 2
T T T T T TG C P H G C P C FC ,               (11) 

which is equivalent to 

3 2 0
T

T T T T T HG C P G C P F C .        (12) 

Since the matrix TH C  is nonsingular, the following 

equations can be derived from (12), 

3 1
T TC P G ,                        (13) 

where ( ) ( )
1

n q n p . Note that the matrix H  can be also 
expressed by 

2H G  ,                            (14) 

where ( ) ( )
2

n q n p . Now using (13) and (14), one can 
expand (10) by 

2 1 2 1 2 2 1 2( )T T T T TP G P G C P C .    (15) 
Let 1 2 1 2 1 2 2 1

T TW P  and 2 2W P , then 1W

and 2W  are obviously symmetric. Set 1( TY G W G

2 )T
lC W C K , then (4)~(8) can be straightforwardly 

obtained from (3). This completes the proof. 
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Remark 2: There are many choices for possible orthogonal 
complement of the matrix G . It does not matter to choose 
any one of them as G  because 1W  is used as design 
parameter.  
Remark 3: The formula (4) and (5) are standard LMIs, 
which can be straightforwardly solved by the present 
well-built LMI-tools [6]. It can be seen that only original 
system parameters are involved in (4) and (5) without any 
coordinates transform. This simplifies the synthesis 
procedure of WZSMO. 
Remark 4: Noting P2) P3), Theorem 1 implies a simple 
and tractable LMI judge for strict positive real transform 
function. This judge is novel and first explored.  

III. NONLINEAR INJECTION DESIGN

After the linear feedback gain lK  was chosen, the error 
system will be reduced to 

0( ) ( ) ( , , ) ( )ne t A e t Gd x u t K v t ,         (16) 

where 0 lA A K C  and ˆ( ) ( ) ( )e t x t x t is the error 
vector. Since only the output error ye Ce  is known 
information, the remained problem to design the nonlinear 
injection of WZSMO can be thought as sliding mode output 
feedback control (SMOFC) problem but the input 
distribution is a designed parameter not fixed one. In [9], the 
nonlinear gain nK  is assumed to be of fixed form a prior. In 
the following, we will explore the freedom degree of design 
of nK  from the viewpoint of SMOFC.  

According to the intrinsic robust property of sliding mode 
control theory, one had better set the rank of nK  as high as 
possible. But due to the limitation of known information, the 
reachable highest dimension of nK  is p , the dimension of 
output vector. To make the closed-loop system (16) 
insensitive to the uncertain term ( , , )d x u t , it is necessary 
that the matching condition holds, i.e., there is a matrix 

3
p q  such that 3nG K . By the theory of SMOFC 

[1], there exists a sliding mode control to make the 
closed-loop error system (16) asymptotically stable if and 
only if there are s. p. d. matrix n nP  and positive scalar 

 satisfying  
0 0 0T T

n nA P PA PK K P , T
nK P C .         (17) 

From the above statements, the formula for the nonlinear 
gain matrix nK  is summarized as follows:  

1 T
nK Q C  with Q  satisfying 

0 0 0T TQA A Q C C , 3
T TG Q C .            (18) 

It can be seen that (18) is similar to (3) with 3
TF . Thus, 

the technique developed in Theorem 1 can be directly 
extended to solve (18). 

Theorem 2: For WZSMO (2), assume that the uncertain 
term ( , , )d x u t  is bounded by  

( , , ) ( , , )d x u t t u y ,                        (19) 

where ( , , )t u y  is a known scalar-value function. If the 
nonlinear injection part is chosen as  

1 T
nK Q C ,                                 (20) 

3( ) ( , , ) y
y

y

e
v t e t u y

e
,          (21) 

where is a positive scalar, Q  is the solution of the 
following LMIs over the variables ( ) ( )

3 3
T n q n qW W  , 

4 4
T p pW W  and :

3 4 0T TQ G W G C W C ,                    (22) 

0 0 0T TQA A Q C C ,                      (23) 
and 3 4

T TG C W , then the error system (16) can be forced 
into the sliding surface 0ye  in finite time and remained 
on it subsequently, and the closed-loop error system is 
asymptotically stability. 

Proof: Consider the Lyapunov function TV e Qe . Its 
derivative with respect to time along the system (16) is  

0 0

0 0

( ) 2 ( , , )
2 ( ) ( ) 0

T T T

T T T T
n

V e QA A Q e e QGd x u t
e QK v t e QA A Q C C e .      (24) 

This shows that the closed-loop system is asymptotically 
stable. Then consider another Lyapunov function for sliding 
surface, 1 1( )T T

y y yV e CQ C e . Its derivative along the error 
system (16) is  

1 1
0

1 1
2 ( )
2 ( ) ( , , ) 2 ( )

T T
y y

T T T
y y

V e CQ C CA e
e CQ C CGd x u t e v t .           (25) 

Substituting (21) into (25) and noting 1
3

TCG CQ C ,
one can get that  

1 1
02 ( ) 2T

y yV e CQ C CA e .        (26) 

Let 0 2 . Because of the asymptotically stability 
of the closed-loop error system, after finite time, the error 
system will enter into the domain 

1 1
0: ( ) 2Te CQ C CA e          (27) 

in which y yV e . This implies the siding surface 

0ye  can be reached in finite time and remained 
subsequently. Proof is complete. 
Remark 6: Although the first term of ( )v t  is a linear 
feedback, we yet put it into the nonlinear injection because it 
is one part of the input forcing the system to trend into the 
sliding surface and its action is to cope with the unmeasured 
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part of error vector. In fact, there are various control 
strategies for nonlinear injection ( )v t  on SMOFC design [5] 
and many of them don’t include linear feedback part. For 
example, if  is chosen large enough, then the initial error 
vector will be contained in the sliding surface attracting 
domain  and thus the first term of ( )v t  can be dropped 
hence.

IV. RELATION BETWEEN lK  AND nK

Theorem 3 shows that the nonlinear injection of WZSMO 
is formulated as LMIs (22)(23). But the formula (23) 
involved the linear feedback gain lK , it is interesting 
whether or not lK  influences the nonlinear part design. In 
this section, we consider the problem from the two aspects: 
one is the feasibility of the LMIs (22)(23); the other is the 
characteristics of the sliding mode motion. 

Theorem 3: The LMIs (22) and (23) is feasible if and only if 
( ) ( )rank CG rank G  and the triplet 0 , ,A G C  is 

minimum phase.  
Proof: Necessary is obvious from Theorem 1. Now we 

prove the Sufficiency.
By Theorem 1, there exists There are symmetric matrices 

( ) ( )
3

n q n qW  and 4
p pW , matrix n pK , and 

small enough positive scalar  such that the following 
inequalities hold. 

3 4 0T TQ G W G C W C ,                    (28) 

0 0 0T T TQA A Q QKC C K Q I .             (29) 
For arbitrary positive scalar , the following inequality 
holds,

1T T T TQKC C K Q C C QKK Q .            (30) 
Thus, for large enough , we have

0 0 0T TQA A Q C C ,                     (31) 
from which it follows that the pair 1 1

3 4( , )W W  is the 
feasible solution of LMIs (22) and (23). This completes the 
proof.

Remark 7: Since the property that the triplet 0 , ,A G C  is 

minimum phase don’t vary for any linear feedback gain lK ,
the feasibility of LMIs (22) and (23) is independent of lK .

Another important aspect of WZSMO is specifying the 
sliding motion dynamic characteristics. Define a 
transformation matrix  

TC QT C ,                              (32) 

where Q  is the solution of LMIs (22) and (23). Applying 

1

y

e
e Te , the sliding motion dynamic function restricted 

on the siding surface 0ye  is
1

1 0 1
1

1

( )
                     ( )

T T

T T
e C QA C C QC e

C QAC C QC e ,           (33) 

which means that the sliding motion dynamics 
characteristics is also independent of lK  an only relies on 

nK .

In view of the above statements, we can conclude that the 
design of lK  is not restricted by nK . So for lK , one can 
achieve the optimal design by the linear quadratic Gaussian 
(LQG) theory [8] not sub-optimal in [9], where the design of 

lK  is combined with the sliding motion dynamics design. 

The LQG optimal observer design method is to solve the 
following algebraic Ricatti equation (ARE), 

1 0T T
are are are areAQ Q A Q C V CQ W .          (34) 

The optimal linear gain is 1T
l areK Q C V . Here, the s. p. 

d. matrices n nW  and p pV are the performance 
weighting matrix of the observer and the co-variance matrix 
of system’s sensor noise, respectively, 

Despite that lK  does not influence the sliding motion 
characteristic and the existence of nK , it enlarges the 
domain of the solution ( , )Q of the LMIs (23), which 
determines the nonlinear injection of WZSMO. For example, 
if we fix the scalar  by 0 , the LMI (23) is infeasible 
for unstable system matrix A , but it is feasible for 0A . So 
when one wants to get the optimal design for nK , the used 
procedure should rely on 0A  not A . But this do not 
influence the design of lK , which still can be designed 
independently. 

It is a rational requirement that we should minimize the 
cost of nonlinear injection when the sliding motion 
dynamics characteristics are ensured. But there are many 
variables in the nonlinear injection ( )nK v t , it is difficult to 
achieve its minimal cost. If we introduce a constraint 
condition that 4

T TG C W , where  is a positive scalar, 

then we have ( ) (0) ( , , )n yv t K e t u y .

According to the initial output error (0)ye  and the value of 

the bound of the uncertain term ( , , )t u y , we can set to a 
suitable weighting value 0 . After these setting, 

minimizing nK  limits the maximal cost of nonlinear 
injection and in some sense is a sub-optimal design method 
to minimize the control cost of nonlinear injection. Noting 
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1
max ( )nK Q C , the index min( )nK  can be 

approximately replaced by min( )  with 1Q I . The 
formal statement of the optimal design procedure of 
WZSMO is shown as follows: 

Optimal design algorithm of WZSMO 
Step 1): Solve the ARE (34) to get the optimal linear matrix 
gain lK .
Step 2): Let 0 lA A K C  and chose suitable scalars 0
and 0 0 , then solve the following optimal problem, 

min( ) , subject to: 

3 4
T TQ G W G C W C ,

4
4

0
T TI G C W

W CG I ,                     (35) 

0I I
I Q ,                                 (36) 

0 0 0 0T TQA A Q C C                        (37) 
Step 3): Chose a suitable  and then by the formulas (20) 
and (21), the nonlinear part of WZSMO is obtained.  

Remark 8: In [9], the design of linear feedback gain is 
combined with the design of nonlinear part, so their results 
are limited. But in this paper it is completely independent 
design procedure. Thus the extant linear observer theory can 
be utilized directly to design lK  without any constraints. 
The proposed procedure means that lK  makes the obtained 
WZSMO be the LQG optimal observer for nominal system 
and nK  makes it be sub-optimal observer for the cost of 
nonlinear injection.  

V. NUMERICAL EXAMPLE

The system under consideration has the following data: 
1 0 1 0

0 1 1 0
1 0 0 1
2 1 1 3

A ,
0
0
0
1

B ,
0
0
1
1

G ,

0 1 0 0
0 0 0 1C .                                               (38) 

The uncertain term is 3( , , ) 0.1 ( ) 0.2 ( )d x u t x t u t  and its 

bound can be chosen as ( , , ) 0.1 ( ) 0.2 ( )t u y y t u t .
The weighting matrices of LQG observer is set as 

30.05W I  and 20.1V I .
By the step 1), we can calculate the linear gain matrix  

0.5410 0.3807
2.8157 0.0887
0.9023 0.3640
0.0887 0.4526

lK ,                        (39) 

and 0 lA A K C . Assume that the initial state vector is 

(0) 1 2 1 2 T
x  and input vector is the sum of a 

sinusoidal signal and a state feedback ˆ( ) sinu t t Kx ,
where [2.3974 12.0659 10.0659 2.3974]K  make the 
original closed-loop system stable and x̂  is the state vector 
of the WZSMO system. Set 1  and 1 . Then a 
suitable weighting 0  can be chosen as 0 0.1 . A 
permissible orthogonal complement matrix of G  is

1 0 0
0 1 0
0 0 1
0 0 1

G .                              (40) 

After this, we can get the sub-optimal nonlinear injection 
part by using step 2). 

3 4 0.0857 0.9963T TG C W ,                 (41) 

1

0.0970 0.0083
0.1416 0.0122
0.0892 0.9961
0.0122 1.0048

T
nK Q C ,                   (42) 

( ) 0.1 0.1 ( ) 0.2 ( ) 1 y
y

y

e
v t e y t u t

e
,         (43) 

The poles of the sliding motion are 1.3580 0.4323s i ,
which calculated by 1( )T TC QAC C QC  of dynamic 
function (33). By (40)~(43), the WZSMO system (2) can be 
constructed.

The simulation results are shown in Figure 1 consisting of 
six pictures. Picture (a) shows that the sliding surface 

0ye will be remained after 1.7 second. The effectiveness 

of the WZSMO can be seen in Pictures (c)~(f). 2x  and 4x ,
shown in (d) and (f) respectively, are in fact the two entities 
of the output vector. The estimating system states, 2x̂  and 

4x̂ , successfully track the original systems states 2x  and 4x
at 1.7 second, which is consistence with the time when the 
siding motion begins in Picture (a). Picture (c) and (e) show 
that the unmeasured states are estimated with no bias in 
about 4.5 seconds, i.e., after 2.8 second the sliding motion of 
the error system is close to zero. The spent time 
approximately coincides with the poles of the sliding motion, 
4 / Re( )s . Picture (b) shows the control costs of the 

nonlinear injection ( )nK v t  of WZSMO. It can be seen from 
Picture (b) that by the propose sub-optimal design the 
maximum value of ( )nK v t  is less than 4 and the whole 

spent energy of the nonlinear injection 
7 2
0

( ) 11nK v t dt .
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VI. CONCLUSION

A simple solution method for WZSMO design is 
presented in terms of LMIs where only original system 
parameters are involved. The fact that the linear feedback 
part of WZSMO can be designed independently is explored. 
In reported results, its design is limited by the nonlinear 
injection and sliding motion characteristics. In fact, the 
WZSMO design is equivalent to the design problem of 
SMOFC with the input distribution matrix being a selectable 
parameter. An optimal design procedure followed by a 
numerical example is presented such that the linear 
feedback part is designed by the LQG optimal theory and 
the nonlinear injection is sub-optimized to limit and in some 
sense minimize the control cost. 
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Figure 1. (a) the sliding surface vector ye ; (b) the nonlinear injection: 2( )nK v t  (solid line -), 2

0
( )

t
nK v t dt  (dashed line --);  

(c)~(f) the trajectories of state vector 1x ~ 4x  (solid line -) and estimator vector 1̂x ~ 4x̂ (dashed line --). 
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