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Abstract—In this paper, we present a trajectory gen-
eration and an adaptive, output feedback control design
methodology to facilitate spacecraft formation flying near
the Sun-Earth L2 Lagrange point. Specifically, we create
a spacecraft formation by placing a leader spacecraft on a
desired Halo orbit and a follower spacecraft on a desired
quasi-periodic orbit surrounding the Halo orbit. We develop
the nonlinear dynamics of the follower spacecraft relative
to the leader spacecraft, wherein the leader spacecraft is
assumed to be on a desired Halo orbit trajectory. In addition,
we design a formation maintenance controller such that the
follower spacecraft tracks a desired trajectory. Specifically,
we design an adaptive, output feedback position tracking
controller, which provides a filtered velocity measurement
and an adaptive compensation for the unknown mass of the
follower spacecraft. The proposed control law is simulated
for the case of the leader and follower spacecraft pair and is
shown to yield semi-global, asymptotic convergence of the
relative position tracking errors.

I. Introduction

Equilibrium positions in the restricted three body
problem (RTBP) of the Sun-Earth system, known as the
Lagrange points, have been exploited as key locations
for space-based astronomical observation stations [1],
[10]. As seen in Figure 1(a), Lagrange points L1, L2,
and L3 are collinear with the Sun and Earth while L4
and L5 each combined with the Sun and Earth yields
an equilateral triangle. A primary benefit of operating
observation stations in the vicinity of the Lagrange
points is that spacecraft near these points obtain nearly
an unobstructed view of the galaxy, unhindered by the
atmospheric and geomagnetic forces.

Spacecraft formation flying (SFF) has the potential to
enhance space-based imaging/interferometry missions
by distributing mission tasks (usually conducted by
a monolithic spacecraft) to many small spacecraft.
Incorporating this technology into future space mis-
sions near the Sun-Earth Lagrange points can enlarge
the sensing aperture and increase versatility of future
observation platforms. However, effective utilization of
this new technology requires proper design of spacecraft
formations and for each spacecraft in the formation
to be precisely controlled to maintain a meaningful
baseline.
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Spacecraft trajectory designs for single spacecraft
missions near the Sun-Earth Lagrange points include
Lyapunov and Halo orbits [16], [18], [19]. These periodic
trajectories have the characteristic that spacecraft do
not require fuel to stay on these orbits. Thus, these
periodic trajectories are well suited as locations for a
leader spacecraft and a formation of follower spacecraft
can be placed in the vicinity of these trajectories.
Current literature for formation design near the Sun-
Earth L2 Lagrange point is scarce, with the exception of
[9], [13], [17]. In [13], reference trajectories for follower
spacecraft are computed using classical orbital elements,
resulting in bounded orbits around the leader spacecraft
on a periodic orbit. In [17], feedback control is utilized to
produce reference trajectories for follower spacecraft. In
addition, [9] provides a method of generating reference
trajectories for follower spacecraft using a numerical
method, where the resulting trajectories are quasi-
periodic.

Current approaches for spacecraft control near the
L2 Lagrange point require position and velocity sensors
for feedback control purposes [7], [8], [11], [12], [14].
However, exploiting the nonlinear, adaptive, output
feedback control design methodologies of [3], [6], [15] to
control spacecraft near the L2 Lagrange point eliminates
the need for velocity sensors, thus reducing the cost and
mass of the spacecraft.

In this paper, we develop a leader-follower spacecraft
formation, where the leader spacecraft is on a periodic,
Halo orbit around the L2 Lagrange point in the Sun-
Earth system and the follower spacecraft is to track a
desired relative trajectory. Specifically, in Section II, we
develop the dynamics of the follower spacecraft relative
to the leader spacecraft. Next, in Section III, we design a
desired quasi-periodic relative trajectory for the follower
spacecraft in the spirit of [9]. In contrast to [9], our
trajectory design exploits the analytical properties of
the quasi-periodic relative trajectories to characterize
spacecraft formations using a parameter set. In Section
IV, we formulate a trajectory tracking control problem.
In Section V, we develop an adaptive, output feedback
control algorithm to enable the follower spacecraft to
track this desired quasi-periodic relative trajectory.
In Section VI, we provide illustrative simulations to
demonstrate the efficacy of the proposed trajectory gen-
eration and control design schemes. Finally, in Section
VII, we give some concluding remarks.

II. System Model
In this section, we develop a nonlinear model charac-

terizing the position dynamics of the follower spacecraft
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relative to the leader spacecraft near the L2 Lagrange
point in the Sun-Earth system. Referring to Figure 1,
we assume that the Earth and the Sun rotate in a
circular orbit around the Sun-Earth system barycenter
(center of mass) with a constant angular speed ω.
In addition, we attach an inertial coordinate system
{X, Y, Z} to the Sun-Earth system barycenter and a
rotating, right-handed coordinate frame {xL2 , yL2 , zL2}
to the L2 Lagrange point with the xL2 -axis pointing
along the direction from the Sun to the Earth, the zL2-
axis pointing along the orbital angular momentum of
the Sun-Earth system, and the yL2 -axis being mutually
perpendicular to the xL2 and zL2 axes, and pointing in
the direction that completes the right-handed coordi-
nate frame.

A. Dynamics of a Spacecraft Relative to the L2 La-
grange Point

In order to describe the dynamics of a spacecraft
formation near the L2 Lagrange point, we must first
describe the dynamics of a spacecraft relative to the L2

Lagrange point. To do so, let q(t)�
= [x y z]T ∈ R

3

denote the position vector from the spacecraft to the
L2 Lagrange point, expressed in the {xL2 , yL2 , zL2}
coordinate frame. In addition, let RS→s(t) ∈ R

3 and
RE→s(t) ∈ R

3 denote the position vectors from the
Sun and Earth, respectively, to the spacecraft. Finally,
let RL2 , RE, and RS denote the distances between
the Sun-Earth system barycenter and the L2 Lagrange
point, the Earth, and the Sun, respectively. Then,
the mathematical model describing the position of a
spacecraft relative to the L2 Lagrange point is given by
[21]

mq̈ + Cq̇ + N(q, s) = u, (1)

where m is the mass of the spacecraft, C ∈ R
3×3 is

a Coriolis-like matrix defined as C �
= 2mω

[
0 −1 0
1 0 0
0 0 0

]
,

N ∈ R
3 is a nonlinear term consisting of gravitational

effects and inertial forces

N �
=m

⎡
⎢⎢⎢⎣

µS(x+RL2+RS)

‖RS→s‖3 +
µE(x+RL2−RE)

‖RE→s‖3 − ω2 (x + RL2)

µS y
‖RS→s‖3 + µE y

‖RE→s‖3 − ω2y

µS z
‖RS→s‖3 + µE z

‖RE→s‖3

⎤
⎥⎥⎥⎦,

and u(t) ∈ R
3 is the thrust control input to the

spacecraft. Furthermore, the constants µE and µS in the
definition of N are defined as µE

�
=GME and µS

�
=GMS,

respectively, where G is the universal gravitational
constant, ME is the mass of the Earth, and MS is the
mass of the Sun.

B. Halo Orbit Trajectory
In this subsection, we describe a method to gen-

erate thrust-free, periodic trajectories around the L2
Lagrange point in the form of Halo orbits. We present a
succinct overview of a numerical algorithm to generate
these periodic trajectories. Additional details on the
generation of these periodic trajectories can be found
in [16], [18], [19].

One numerical method [19] of generating thrust-
free periodic orbits around the L2 Lagrange point in
the Sun-Earth system involves finding a proper set of
position and velocity initial conditions to propagate the

spacecraft dynamics of (1), with the control thrust u
set to zero. First, the Poincaré-Lindstedt method is
used to find a high order analytic approximation to
a periodic trajectory in the neighborhood of the L2
Lagrange point. Next, the initial conditions, based on
the Poincaré-Lindstedt method, are used as an initial
seed in a numerical algorithm to find a better set of
initial conditions leading to a periodic trajectory. This
numerical algorithm applies a Taylor series expansion
to the spacecraft states with respect to the initial
conditions and time and truncates higher order terms,
such that for Halo orbits the result is a set of 3 linear
equations with 4 unknown variables. Families of orbits
can be characterized by fixing one of the unknown
variables so that the result gives an equal number
of equations to unknowns. Solving the aforementioned
linear matrix equation and using the result to update
the previous set of initial conditions, we obtain a new
initial condition guess.

The spacecraft dynamics are then propagated using
the new updated set of initial conditions to verify
trajectory periodicity. If the trajectory is sufficiently
close to being periodic, then the initial conditions
can be used for further simulation, else the above
numerical algorithm is used to solve for a new set of
initial conditions. Since the collinear Lagrange points
are inherently unstable [19], long-term propagation of
spacecraft dynamics using the initial conditions ob-
tained in the above manner is futile. However, by
exploiting the symmetry property of Halo orbits (see
below), we can artificially obtain a periodic orbit by
computing trajectory information during half of a pe-
riod and reusing this trajectory data throughout other
simulations.

Halo orbits are classified as periodic trajectories that
are symmetric with respect to the {xL2 , zL2} plane (i.e.,
yL2 = 0), and are not confined to be in the orbital
plane of the Sun and Earth. Halo orbits have the
distinguishing characteristic that their projections on
the {yL2 , zL2} plane are curves that resemble a Halo.
In this paper, we let qH(t) = [xH yH zH]T ∈ R

3 denote
the position vector from a point on a Halo orbit to
the L2 Lagrange point, expressed in the {xL2 , yL2 , zL2}
coordinate frame. An initial seed for the numerical
algorithm of [19] consists of a spacecraft starting on
the {xL2 , zL2} plane with a nonzero initial yL2 and
zL2 velocity (i.e., qH(0) = [xH(0) 0 zH(0)]T and
q̇H(0) = [0 ẏH(0) żd(0)]T ). Updates to the initial xL2
position and yL2 velocity contribute to finding a closed
periodic trajectory. In addition, the initial zL2 position
determines the size of the Halo orbit. Figure 1(b) shows
a typical Halo orbit trajectory around the L2 Lagrange
point.

In this paper, we use Halo orbits as the reference
trajectory for the leader spacecraft. The control design
framework of [21] can be employed to ensure that the
spacecraft dynamics of (1) tracks a Halo orbit reference
trajectory. In a subsequent subsection, we will describe
the dynamics of the follower spacecraft relative to the
leader spacecraft on the Halo orbit. Finally, we denote
RS→H(t) ∈ R

3 and RE→H(t) ∈ R
3 as the position

vectors from the Sun and the Earth, respectively, to
the Halo orbit.

Remark 2.1: The Halo orbit trajectory satisfies the
spacecraft dynamics of (1) under the condition that the
spacecraft control input is zero. Moreover, we express
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the leader spacecraft dynamics on the Halo orbit as

mq̈H + Cq̇H + N(qH, H) = 0. (2)

We note that the Halo orbit is a periodic trajectory
with a frequency denoted as ωH.

C. Follower Spacecraft Dynamics
In this subsection, we describe the dynamics of the

follower spacecraft relative to the leader spacecraft
tracking a no-thrust, periodic Halo orbit trajectory
qH without deviating from this orbit for all time. To
describe the dynamics of the follower spacecraft, we
express the position vector of the follower spacecraft rel-
ative to the L2 Lagrange point in the coordinate frame
{xL2 , yL2 , zL2} as qfL2

(t) =
[
xfL2

yfL2
zfL2

]T ∈ R
3.

In addition, we denote RS→sf (t) ∈ R
3 and RE→sf (t) ∈

R
3 as the position vectors from the Sun and Earth,

respectively, to the follower spacecraft. Using (1), the
follower spacecraft dynamics relative to the L2 Lagrange
point can be expressed as

mf q̈fL2
+ Cf q̇fL2

+ NfL2
(qfL2

, sf) = uf , (3)

where mf is the mass of the follower spacecraft, Cf ∈
R

3×3 is a Coriolis-like matrix defined as Cf
�
= 2mfω

·
[

0 −1 0
1 0 0
0 0 0

]
, NfL2

∈ R
3 is a nonlinear term consisting

of gravitational effects and inertial forces defined as
NfL2

�
=

mf
m N(qfL2

, sf), and uf(t) ∈ R
3 is the thrust control

input to the follower spacecraft.
Next, we define the relative position between the

follower and the leader spacecraft qf(t) ∈ R
3 as qf

�
= qfL2−qH. To obtain the dynamics of the follower spacecraft

relative to the leader spacecraft, we differentiate qf with
respect to time twice and multiply both sides of the
resulting equation by mf to produce

mf q̈f = mf q̈fL2
− mf q̈H. (4)

Next, we solve for q̈H in (2), multiply the resulting
equation by mf , and substitute the result into (4) to
yield

mf q̈f + Cf q̇f + Nf(qf , sf) = uf , (5)

where (3) has been used. Note that Nf ∈ R
3 is a non-

linear term defined as Nf
�
= NfL2

(qfL2
, sf) − NH(qH, H),

where NH ∈ R
3 is defined as NH

�
=

mf
m N(qH, H).

Remark 2.2: The Coriolis matrix Cf satisfies the
skew-symmetric property of xT Cfx = 0, ∀x ∈ R

3.
Remark 2.3: The left-hand side of (5) produces an

affine parameterization mf q̈f + Cf q̇f + Nf(qf , sf) =
Y (q̈f , q̇f , qf , sf)mf , where mf is the unknown, constant
mass of the follower spacecraft and Y (·) ∈ R

3 is a
regression matrix defined as

Y �
= [Y1 Y2 Y3]

T
, (6)

where Y1, Y2, Y3 ∈ R are defined as Y1
�
= ẍf

−2ωẏf −ω2xf + µS(xf+xH+RL2+RS)

‖RS→sf ‖3 + µE(xf+xH+RL2−RE)

‖RE→sf ‖3

−µS(xH+RL2+RS)

‖RS→H‖3 − µE(xH+RL2−RE)

‖RE→H‖3 , Y2
�
= ÿf + 2ωẋf

−ω2yf + µS(yf+yH)
‖RS→sf ‖3 + µE(yf+yH)

‖RE→sf ‖3 − µS yH
‖RS→H‖3 − µE yH

‖RE→H‖3 ,

and Y3
�
= z̈f +

µS(zf+zH)
‖RS→sf ‖3 + µE(zf+zH)

‖RE→sf ‖3 − µS zH
‖RS→H‖3 − µE zH

‖RE→H‖3 ,
respectively.

III. Spacecraft Formation Design
In this section, we exploit [9] to develop a method of

designing reference trajectories for the follower space-
craft relative to the leader spacecraft on the Halo orbit
trajectory. Specifically, we present a method of design-
ing quasi-periodic orbits around a nominal Halo orbit.
These quasi-periodic orbits will be used as the desired
trajectories for the follower spacecraft. Furthermore,
we will exploit special characteristics of these quasi-
periodic orbits to parameterize spacecraft formations
about the leader spacecraft on the Halo orbit.

We begin by expressing the relative position dynamics
of (5) in a state-space form, i.e., let x1(t) ∈ R

3 be
defined as x1

�
= qf and x2(t) ∈ R

3 be defined as x2
�
= q̇f .

Then (5) can be written as

Ẋf =
[

ẋ1

ẋ2

]
=

[
x2

−m−1
f (Cfx2 + Nf(x1, sf))

]
, (7)

where Xf(t)�
=

[
xT

1 xT
2

]T ∈ R
6 and we assume that

uf = 0, ∀t ≥ 0. Next, we linearize the nonlinear terms
on the right hand side of (7), in the neighborhood of
Xf = 0, to obtain

Ẋf = AXf , (8)

where A(t) ∈ R
6×6, defined as

A�
=

[
03 I3

−m
−1
f

dNf (x1,sf )
dx1 x1=0 −m

−1
f

Cf

]
, is a time varying

matrix with elements that are periodic with time.
Note that 03 denotes the 3 × 3 zero matrix, I3 denotes
the 3 × 3 identity matrix, and dNf(x1,sf )

dx1 x1=0 denotes
the 3 × 3 Jacobian matrix of Nf(x1, sf) evaluated at
x1 = 0. The period of oscillation of A is the same
as the period of the nominal Halo orbit, i.e., A is
periodic with a frequency ωH. Furthermore, the time
dependence of A characterizes the dynamics resulting
from the linearization of (7) as a nonautonomous,
linear differential equation with a periodic A matrix.
Consequently, we employ Floquet theory [4] to
transform (8) into an autonomous, linear differential
equation so as to facilitate an explicit solution of (8).

We begin by introducing the notion of a fundamental
matrix [4] of (8) denoted as ϕ(t) ∈ R

6×6. Next, we
denote the Halo orbit period as TH. Using Floquet
theory, we utilize the transformation

Xf = PYf , Yf = P−1Xf , (9)

where Yf(t) ∈ R
6 is a vector composed of the trans-

formed state Xf and P (t) ∈ R
6×6 is a matrix with

elements that are periodic with time [4], to transform
the nonautonomous differential equation of (8) into

Ẏf = BYf , (10)

where B ∈ R
6×6 is a constant matrix. Following [4], the

B matrix can be computed using ϕ and TH as follows
B = 1

TH
log

(
ϕ−1(0)ϕ(TH)

)
, where the log function

denotes the logarithm of a matrix. Furthermore, the
P matrix can be computed using ϕ and B as follows
P (t) = ϕ(t)e−Bt. Note that the P matrix is nonsingular
∀t ∈ R, such that the transformation of (9) is unique
[5].

The autonomous, linear differential equation of (10) is
equivalent to (8) in the transformed set of coordinates.
Furthermore, the eigenvalues of the B matrix are de-
noted as the characteristic exponents [5], which describe
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the stability characteristics of any trajectory that is
sufficiently near the nominal Halo orbit. It is observed
in [17] that direct computation of the eigenvalues of
B results in a pair of hyperbolic eigenvalues, a pair of
zero eigenvalues, and a pair of nonzero, pure, imaginary
eigenvalues. We denote the pair of hyperbolic eigenval-
ues as λh1 and λh2 and the frequency corresponding to
the nonzero, pure, imaginary eigenvalues as ωQ. Next,
we perform a coordinate transformation of the form

Yf = TZf , (11)

where Zf(t) ∈ R
6 is a vector composed of the trans-

formed state Yf and T ∈ R
6×6 is a time indepen-

dent, linear transformation matrix, which transforms
the B matrix into a modal matrix form given by

Ω = diag
{[

0 1
0 0

]
,

[
0 1

−λh1λh2 (λh1 + λh2)

]
,

[
0 1

−ω2
Q 0

]}
.

Then, (10) is transformed into Żf = ΩZf .
Now it is trivial to obtain the following solution for

Zf analytically

Zf = [Zf1 Zf2 Zf3 Zf4 Zf5 Zf6 ]T , Zfi(t) ∈ R, i = 1, . . . , 6,
(12)

where Zf1
�
=Zf1(0) + Zf2(0)t, Zf2

�
=Zf2(0), Zf3

�
=−λh2Zf3 (0)+Zf4 (0)

λh1−λh2
eλh1 t + λh1Zf3 (0)−Zf4 (0)

λh1−λh2
eλh2 t, Zf4

�
=

−λh2Zf3 (0)+Zf4 (0)

λh1−λh2
λh1e

λh1 t + λh1Zf3 (0)−Zf4(0)

λh1−λh2
λh2e

λh2 t,
Zf5

�
=D cos(ωQt + φ), and Zf6

�
= − DωQ sin(ωQt + φ),

Zfi(0), i = 1, . . . , 6, denotes the ith initial condition
of the vector Zf , and D, φ ∈ R are parameters that
characterize size, location, and shape of the relative
trajectory around the nominal Halo orbit. Eq. (12)
reveals that the general solution of Zf may not be
periodic for arbitrary initial conditions. However, by
properly choosing the initial condition Zf(0) the terms
corresponding to the pair of zero eigenvalues and the
hyperbolic eigenvalues that produce unstable and/or
asymptotically stable motion can be eliminated, thus
resulting in periodic motion for Zf . The remaining
periodic terms in (12) allow the trajectory designer
freedom to choose the parameters Zf1(0), D, and φ to
satisfy mission specifications.

To compute the follower spacecraft trajectory relative
to the nominal Halo orbit requires transformation from
Zf −→ Xf in the form of

Xf = PTZf , (13)

where (9) and (11) have been used. Note that the P
matrix is composed of elements which are periodic with
respect to time, with frequency ωH, whereas the solution
of Zf is composed of elements which are periodic with
respect to time, with frequency ωQ. Consequently, the
solution of Xf is a trajectory with two frequency com-
ponents ωH and ωQ. It is observed that the frequencies
ωQ and ωH are linearly independent, i.e., the condition
a1ωQ + a2ωH = 0, ai ∈ Z, i = 1, 2, where Z is the
set of integers, holds only for ai = 0, i = 1, 2 (see [2]
for details on linearly independent frequencies). Such
a trajectory containing linearly independent frequency
components is termed as a quasi-periodic trajectory (see
[2] for details on quasi-periodic functions). Thus, the Xf
trajectory has the characteristic of being quasi-periodic.
Finally, we utilize Xf as the desired trajectory of the
follower spacecraft relative to the Halo orbit qdf (t) ∈ R

3,
i.e.,

[
qT
df

q̇T
df

]T = Xf .

Remark 3.1: To facilitate subsequent illustrative ex-
amples, we approximate the Halo orbit and the P
matrix using Fourier series approximations. Since both
qH and P are periodic with the same period, the
resulting Fourier series approximations are convergent
to the actual forms of qH and P . To compute the time
derivatives of qH and P , we analytically differentiate
the Fourier series approximations with respect to time.
Thus, it follows that qdf and its time derivatives,
viz., q̇df , q̈df , and

...
q df or equivalently Ẋf and Ẍf ,

are computed using qH, P , and Zf , and their time
derivatives, i.e.,

Ẋf = Ṗ TZf+PT Żf , Ẍf = P̈ TZf+2ṖT Żf+PT Z̈f , (14)

where (13) has been used.

IV. Trajectory Tracking Problem Formulation
In this section, we formulate a control design problem

such that the follower spacecraft relative position qf
tracks a desired relative position trajectory qdf , i.e.,
lim

t→∞qf(t) − qdf (t) = 0. The effectiveness of this control
objective is quantified through the definition of a
position tracking error e(t) ∈ R

3 as

e �
= qf − qdf . (15)

The goal is to construct a control algorithm that
obtains the aforementioned tracking result in the pres-
ence of the unknown constant follower spacecraft mass
mf . We assume that the velocity measurements of the
follower spacecraft relative to the leader spacecraft on a
nominal Halo orbit are not available for feedback, i.e.,
q̇f is unknown.

To facilitate the control development, we assume
that the desired trajectory qdf and its first three time
derivatives are bounded functions of time. Next, we
define the follower spacecraft mass estimation error
m̃f(t) ∈ R as

m̃f
�
= m̂f − mf , (16)

where m̂f(t) ∈ R is the follower spacecraft mass
estimate.

V. Adaptive Output Feedback Position Tracking
Controller

In this section, we design a desired compensation
adaptation control law (DCAL) [3] that asymptoti-
cally tracks a pre-specified follower spacecraft rela-
tive position trajectory, despite the unknown constant
follower spacecraft mass mf and the lack of follower
spacecraft relative velocity measurements. In order
to state the main result of this section, we define
auxiliary error variables ϑ(t) ∈ R

9 and r(t) ∈ R
10

as ϑ�
=

[
eT

f eT ηT
]T

and r �
=

[
eT

f eT ηT m̃f

]T

,
respectively. In addition, we define positive con-
stants λ1, λ2, and kη as λ1

�
=

1
2 min{1, mf , Γ−1},

λ2
�
=

1
2 max{1, mf , Γ−1}, and kη

�
=mf(k − 1) − 1, re-

spectively. Finally, we define a new regression matrix
Yd(·) ∈ R

3 as Yd(·) �
= Y (q̈df , q̇df , qdf , sdf ), where the

linear parameterization of Remark 2.3 has been used.
Note that in the definition of Yd, RS→sdf

(t) ∈ R
3 and

RE→sdf
(t) ∈ R

3 are denoted as the position vectors
from the Sun and Earth, respectively, to the desired
trajectory of the follower spacecraft.
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A. Velocity Filter Design
To account for the lack of follower spacecraft relative

velocity measurements viz., q̇f , a filtered velocity error
signal ef (t) ∈ R

3 is produced using a filter. The
following design is based on the framework of [3]. The
filter is constructed using the position tracking error e
as an input, as shown below

ef = −ke + p, (17)

where k > 0 is a positive, constant filter gain, p(t) ∈ R
3

is a pseudo-velocity tracking error generated using

ṗ = − (k + 1) p + (k2 + 1)e, p(0) = ke(0). (18)

To obtain the closed-loop dynamics of ef , we take
the time derivative of the filtered velocity error signal
ef and replace the dynamics of ṗ(t) from (18) to obtain

ėf = −kη − ef + e, (19)

where η(t) ∈ R
3 is an auxiliary tracking error variable

defined as
η �

= e + ė + ef . (20)

In addition, rearranging the definition of η gives the
closed-loop error dynamics for ė(t)

ė = η − e − ef . (21)

B. Open-Loop Auxiliary Tracking Error Dynamics
In this subsection, we develop the open-loop dynamics

of the auxiliary tracking error variable η. We begin
by differentiating η of (20) with respect to time,
multiplying both sides of the resulting equation by mf ,
substituting for ėf from (19) and ė from (21), and
rearranging terms to yield

mf η̇ = mf q̈f − mf q̈df − mf(k − 1)η − 2mfef , (22)

where the definition of (15) has been used. Next, we
substitute mf q̈f from (5) into (22) and rearrange terms
to obtain

mf η̇ = −mf q̈df − Cf q̇df + uf − Cf ė − Nf(qf , sf)
−mf(k − 1)η − 2mfef , (23)

where q̇f has been replaced by ė + q̇df . We add and
subtract Nf(qdf , sdf ) to and from the right hand side of
(23) and substitute ė from (21) to write the open-loop
dynamics of η as follows

mf η̇ = −Ydmf + uf − Cfη − mf(k − 1)η + X , (24)

where the definition of the desired regression matrix Yd
has been used and X (t) ∈ R

3 is defined as

X �
= Cf(e+ef)+Nf(qdf , sdf )−Nf(qf , sf)−2mfef . (25)

Remark 5.1: For X defined in (25), a boundedness
condition is required such that a stability result can be
formulated. Using the mean value theorem, as in [15],
we can bound X as follows ‖X‖ ≤ ρ (‖ϑ‖) ‖ϑ‖, where
ρ(·) is some nondecreasing function.

C. Stability Analysis
In this subsection, we present the main theorem to

ensure semi-global, asymptotic stability of the position
tracking error.

Theorem 5.1: Let k ∈ R be a constant, positive,
control gain and Γ ∈ R be a positive constant. Then,
the adaptive, output feedback control law consisting of
(17), (18), and

uf = Ydm̂f + kef − e, (26)

m̂f = m̂f(0) − Γ
∫ t

0

Y T
d (σ) (e(σ) + ef (σ)) dσ − ΓY T

d e

+ΓY T
d (0)e(0) + Γ

∫ t

0

dY T
d (σ)
dσ

e(σ)dσ, (27)

ensures semi-global asymptotic convergence of the po-
sition tracking errors as delineated by lim

t→∞e(t) = 0, if k

is selected such that kη > 1
4
ρ2

(√
λ2
λ1

‖r(0)‖
)

where ρ(·)
is a nondecreasing function.

Proof. We begin by substituting (26) into (24) to
obtain the closed-loop dynamics for η

mf η̇ = Ydm̃f + kef − e − Cfη − mf(k − 1)η + X . (28)

Next, differentiating (16) with respect to time and using
(27) and (20), we obtain the closed-loop dynamics for
the spacecraft mass estimation error

˙̃mf = ˙̂mf = −ΓY T
d (σ)η. (29)

We define a positive-definite, candidate Lyapunov func-
tion as V �

=
1
2eT

f ef + 1
2eT e+ 1

2mfη
T η+ 1

2Γ−1m̃2
f . Applying

Rayleigh-Ritz’s theorem on V results in

λ1‖ϑ‖2 ≤ λ1‖r‖2 ≤ V ≤ λ2‖r‖2. (30)

Next, differentiating V with respect to time and sub-
stituting the closed-loop dynamics of (19), (21), (28),
and (29) into the result, we obtain

V̇ = −eT
f ef − eT e − mf(k − 1)ηT η + ηTX , (31)

where the skew-symmetry property of Remark 2.2 has
been used. In addition, utilizing the upper bound on X
to upper bound (31), we get

V̇ ≤ −‖ϑ‖2 − kη‖η‖2 + ρ (‖ϑ‖) ‖ϑ‖‖η‖, (32)

where the definition of kη has been used. Bounding
the last two terms on the right hand side of (32) by
completing the squares results in

V̇ ≤ −
(

1 − ρ2 (‖ϑ‖)
4kη

)
‖ϑ‖2. (33)

Note that if kη is chosen such that kη > ρ2(‖ϑ‖)
4 , then

V̇ is negative semidefinite, i.e.,

V̇ ≤ −β‖ϑ‖2, (34)

where β is some positive constant defined as β �
=1

− ρ2(‖ϑ‖)
4kη

. Utilizing (30) yields a sufficient condition for
(34) as follows

V̇ ≤ −β‖ϑ‖2, kη >
1
4
ρ2

⎛
⎝

√
V (t)
λ1

⎞
⎠ . (35)
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Since V is a non-negative function and V̇ is a negative
semi-definite function, V is a non-increasing function.
Thus, V ∈ L∞ as described by V (r(t)) ≤ V (r(0)) < ∞,
t ≥ 0. Using (30) and V (r(t)) ≤ V (r(0)), we obtain a
sufficient condition for (35)

V̇ ≤ −β‖ϑ‖2, kη >
1
4
ρ2

(√
λ2

λ1
‖r(0)‖

)
. (36)

From V ∈ L∞, we know that ef , e, η, m̃f ∈ L∞. Since
e, ef , η ∈ L∞, it follows from (20) that ė ∈ L∞; hence,
due to the bound of qdf , q̇df , we can use (15), (19),
(20), (25), and (28) to conclude that qf , q̇f , ėf , η̇ ∈ L∞.
Similar signal chasing arguments can now be employed
to show that all other signals in the closed-loop system
remain bounded. Using (34), it can be easily shown
that e, ef , η ∈ L2. Since e, ef , η ∈ L∞, using Barbalat’s
Lemma [6], we conclude that lim

t→∞e(t), ef (t), η(t) = 0.
Thus, the result of Theorem 5.1 follows.

VI. Simulation Results
In this section, we present illustrative examples that

incorporate the algorithms presented in Sections III
and V. Specifically, we provide details on computing
the quasi-periodic trajectories described in Section III.
Next, we provide a simulation of the follower spacecraft
relative dynamics (5), utilizing the control laws of (17),
(18), (26), and (27) so that the follower spacecraft tracks
a desired quasi-periodic trajectory relative to a nominal
Halo orbit.

In all simulations, we employ the Sun-Earth sys-
tem circular orbit parameters [19], [20]: G = 6.671
×10−11 m3

kg·s2 , ω = 2.73774795629 × 10−3 rad
day , MS =

1.9891 × 1030kg, ME = 5.974 ×1024kg, 1 AU =
1.496 × 108km, and RL2 = 1.010033599267463 AU,
where 1 AU stands for 1 Astronomical Unit denoting the
distance between the Sun and the Earth. Furthermore,
we consider that the follower spacecraft has a mass
of mf = 1000kg. Finally, the distances RS and RE

can be computed as RS = ME
ME+MS

× 1AU and RE =
MS

ME+MS
× 1AU, respectively.

A. Quasi-Periodic Trajectory Generation
Applying the numerical algorithm presented in

Subsection II-B results in a family of initial con-
ditions for the Halo orbit from which we have
selected the following initial condition qH(0) =
[−2.61921376240742 0 −0.13648677396294] × 105km
and q̇H(0) = [0 4.21353617291110 0] ×103 km

day. In
addition, the Halo orbit period is determined to be
TH = 1.135225027876099× 103day. Figure 1(b) shows
the Halo orbit relative to the L2 Lagrange point and
its projections onto the {xL2 , yL2}, {xL2 , zL2}, and
{yL2 , zL2} planes. We utilized 25 terms of a Fourier
series to approximate the Halo orbit trajectory qH.
The fundamental matrix ϕ described in Section III is
numerically computed using A(t) as follows ϕ̇ = A(t)ϕ,
ϕ(0) = I6, ∀t ∈ [0, TH]. Thus, using P (t) = ϕ(t)e−Bt, P
is numerically computed ∀t ∈ [0, TH]. Next, we compute
a Fourier series approximation of P , where we retain 25
terms of the series approximation. This is used with the
analytic expression for Zf to compute qdf and its time
derivatives analytically from (14).

To show the resulting trajectories of qdf , given differ-
ent numerical values for parameters Zf1(0), D, and φ,
we simulated qdf using a parameter set: Zf1(0) = 0,
D = 0.0001, and φ = 0 rad. By computing the
eigenvalues of the B matrix, we determined ωQ =
6.286301816644046× 10−5 1

day. Figure 2(a) shows the
quasi-periodic trajectory relative to the nominal Halo
orbit for parameter values of φ = 0, φ = π

4 , and
φ = π

2 . Figure 2(a) illustrates that changes in φ denote
changes in the initial position of the spacecraft along
a given quasi-periodic trajectory. Next, we simulated
qdf using a parameter set: Zf1(0) = 0, D = 0.0002,
and φ = 0 rad. Figure 2(b) shows the desired quasi-
periodic trajectory relative to the nominal Halo orbit.
Note that the parameter D determines the size and
shape of the desired quasi-periodic trajectory relative
to the nominal Halo orbit. We also simulated qdf using a
parameter set: Zf1(0) = 0.0001, D = 0, and φ = 0 rad.
For this parameter set, Figure 3(a) shows a periodic
trajectory relative to the nominal Halo orbit with the
same period as ωH. Finally, we simulated qdf using a
parameter set: Zf1(0) = 0.0001, D = 0.0001, and φ = 0
rad. For this parameter set, Figure 3(b) shows the quasi-
periodic trajectory relative to the nominal Halo orbit.

B. Adaptive Output Feedback Control of the Follower
Spacecraft

The control law consisting of (17), (18), (26),
and (27) was simulated for the follower spacecraft
dynamics relative to the leader spacecraft on a
nominal Halo orbit (5). When tracking desired
quasi-periodic trajectories, we initialized the follower
spacecraft with the set of initial conditions given
as qf(0) = [−2.61921376240742 − 2.57780484325713
−0.13648677396294] × 105km and q̇f(0) =
[−0.1469110370264 42.1353617291110 − 0.1469092330256]

×102 km
day

. The control and adaptation gains are
obtained through trial and error in order to obtain
good performance for the tracking error response. The
following resulting gains were used in this simulation
k = 44.97 and Γ = 9.3 × 105. In addition, the follower
spacecraft mass parameter estimate was initialized to
m̂f(0) = 600 kg. A simulation of the follower spacecraft
tracking the desired quasi-periodic trajectory of Figure
2(a) is performed. The trajectory qf is shown in Figures
4(a) and 4(b). Figure 5 shows the position tracking
error e and the pseudo-velocity error ef . The control
input uf is shown in Figure 6(a). Finally, the follower
spacecraft mass estimate m̂f is shown in Figure 6(b).

VII. Conclusion

In this paper, we designed desired quasi-periodic tra-
jectories for the follower spacecraft relative to the leader
spacecraft on the Halo orbit. The size, location, and
shape of these trajectories were characterized by a pa-
rameter set. Illustrative simulations were performed to
show these parameter characteristics. Next, a Lyapunov
design was used to develop an adaptive, output feed-
back controller, which yielded semi-global, asymptotic
convergence of the relative position tracking errors. The
control law required only position error measurements
while estimating velocity error measurements through
a filtering scheme. Simulation results were presented to
show good trajectory tracking.
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Fig. 1. (a) Sun-Earth system schematic diagram and (b)
Halo orbit trajectory of the leader spacecraft relative to the L2
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signal

0 500 1000 1500 2000 2500 3000
−2

−1

0

1

2
x 10

−6

C
on

tr
ol

 x
 (

N
)

0 500 1000 1500 2000 2500 3000
−2

−1

0

1

2
x 10

−6

C
on

tr
ol

 y
 (

N
)

0 500 1000 1500 2000 2500 3000
−2

−1

0

1

2
x 10

−6

C
on

tr
ol

 z
 (

N
)

time (days)

(a)

0 500 1000 1500 2000 2500 3000
570

580

590

600

610

620

630

time(days)

M
as

s 
pa

ra
m

et
er

 e
st

im
at

e 
(k

g)

(b)

Fig. 6. Follower spacecraft (a) control input and (b) mass
parameter estimate

2418


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /ArialNarrow-Italic
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-Oblique
    /Times-Roman
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


