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Abstract— This paper introduces a new method to proba-
bilistically evaluate the validity of dynamics model approx-
imations, and applies the method to simplified models of
satellite formation dynamics near the Sun - Earth / Moon L2
libration point. The new method uses a Monte Carlo scheme
similar to a Sampling Importance Resampling filter to evolve
state probability densities through satellite dynamics models
of varying complexity. The evolved densities are fit with a
Gaussian mixture model and compared probabilistically to
evaluate the validity of the dynamics models over time.

I. INTRODUCTION

The gravitational field created by two large bodies acting
on a small satellite is known to have five equilibrium or li-
bration points [1]. The environment at these libration points
is favorable for long duration missions, and in particular the
L2 point is well-suited for future space telescopes [2]. Many
of these telescopes consist of several free flying components
and require varying degrees of precision formation flying.
These missions can typically be decomposed into two for-
mation control topologies: formation maneuvering, where a
new science focus is selected and the formation must change
its motion or shape, and formation keeping, where the
formation maintains its shape for scientific data collection.
Unfortunately, the satellite dynamics near the L2 point
are nonlinear, making it difficult to design controllers to
maintain individual satellites within these formation control
topologies. In order to regain use of the most successful
tools for controller design, a simplified linear model of
satellite dynamics is sometimes assumed for short periods
of time, i.e. during formation keeping [3].

One common model of relative dynamics between two
satellites is the double integrator, in which all external forces
are assumed to have the same influence on both satellites
[3]. Under this model, the satellites’ thrusters are the only
forces that cause relative motion between members of the
formation, and it is easy to design fuel-optimal controllers
[4]. In Ref. [3], the validity of this model has been explored
using a bounding technique for orbits under the primary
influence of the Sun. The goals in this study are to:

1) Explore the validity of simplified models in the L2
environment to aid the increasing number of potential
missions at the L2 point.

2) Characterize the accuracy of the double integrator
approximation in terms of error probabilities.
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3) Develop insight into how the nonlinearities of the L2
point influence uncertainty propagation between the
true and approximate models.

The approach of this work is as follows. Several dynamics
models of varying complexity are developed to approximate
satellite dynamics at the L2 point. These models are tested
by comparing the uncertainty of a satellite driven by both
disturbance forces and initial measurement uncertainty. In
order to characterize the uncertainty environment for each
of these models, a Monte Carlo method similar to the
SIR or Sampling Importance Resampling filter is used to
evolve satellite state probability distributions in each model.
These distributions are used to characterize the probabilistic
evolution of model errors over time.

This paper is outlined as follows. In sections II-A through
II-C particle filters are reviewed, including how they may
be used to evolve probability distributions through complex
dynamics models. In section II-D, evolved probability prob-
ability distributions are shown to be able to characterize the
accuracy of approximations to those dynamics models. In
section III, the method is used to characterize the accuracy
of the double integrator approximation to relative dynamics
of satellites near the L2 point.

II. PARTICLE FILTERS AS A METHOD FOR

PROPAGATING STATE PROBABILITY DISTRIBUTIONS

A. Model Assumptions

It is first necessary to state all assumptions made in
creating the dynamics models to be compared in this work.
First, it is assumed that the dynamics of all systems are
written in a possibly nonlinear continuous time equation of
the form:

�̇x(t) = f(�x(t)) + Bcts(t)�wcts(t) (1)

where �x(t) ∈ �N is the system consisting of positions and
velocities along each coordinate axis, the column vector
�wcts(t) is an exogenous disturbance to the system, and the
function f is the dynamics function and may be nonlinear.
The subscript cts is used to denote the continuous time
representations of the noise input matrix. It is also assumed
that the noise �wcts(t) enters linearly into the right hand side
of equation (1) through the matrix Bcts(t). When necessary,
the continuous time dynamics can be approximated as a
discrete time difference equation of the form:

�x(tk+1) =
∫ tk+1

tk

f
(
�x(tk)

)
dt + B(tk)�w(tk) (2)
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where k is an integer time index, dt the sampling period,
and B(tk), �w(tk) are equivalent discrete time representa-
tions of the input matrix Bcts(t) and process noise �wcts(t).

In this paper, all dynamics models are given in continuous
form as in equation (1). Noise is simulated either as the
continuous form of the dynamics given in equation (1) or as
the discrete form given in equation (2). It will be made clear
which model is used in each simulation by representing
the time dependency tk in discrete time systems by its
index k alone; for example. It is also assumed that the
input matrix B is constant. For satellite simulations, it is
assumed that the initial state error covariance matrix P (0) =
E

[(
�x(0) − x̄(0)

)(
�x(0) − x̄(0)

)T ]
is known as a property

of the satellite’s sensors. Furthermore, the satellite’s initial
distribution is assumed to be Gaussian.

B. Evolution of Probability Distributions

In order to characterize the uncertainty near the L2 libra-
tion point for different model types, it is necessary to evolve
satellite uncertainty under the possibly nonlinear dynamics
function f . Although there is no exact method for evolving
a probability distribution through a nonlinear transforma-
tion, particle filters have been demonstrated successfully
as an approximate method on a wide variety of nonlinear
systems and non-Gaussian distributions [5]. Particle filters
approximate a true probability distribution with a finite set
of weighted particles, often chosen according to a Monte
Carlo scheme [6]. By evolving particles through a dynamics
function with simulated process noise, particle filters are
able to construct an approximation to the state probability
distribution p(�x) at any time k of interest:

p(�x(k)) ≈
N∑

i=1

Wi(k)δ
(
�x(k) − �xi(k)

)
(3)

where Wi(k) are the weights of each of the particles
�xi(k), and δ(·) is the Dirac delta function. The weights
are always normalized so the set of particles and weights
constitutes a discrete probability distribution. The important
result in particle filter literature is that as N → ∞, the
probability distribution approaches the true distribution [6].
The motivation for using a particle filter in this context
lies in the fact that it gives significant information on the
shape of the true distribution, allowing better evolution and
interpretation of model error dynamics at the L2 point.

C. The SIR Filter

Most particle filters share the following set of common
steps [5]. First, a set of N particles �xi(k) is selected at
random according to a known initial probability distribution
of the system state. Next, each particle is given a weight
Wi(k). The particles are then evolved according to the
dynamics of equation (2) to some arbitrary time. When
a new measurement is available, the particle filter adjusts
the weights to emphasize those that are more likely to
represent the true state. For this study, however, the focus

is on the evolution of the distribution, so there are no
measurements. As a result, weights on all particles remain
constant, as any resampling or reweighting would degrade
the model’s performance. This matches the first few steps of
the SIR or Sampling Importance Resampling filter, without
the reweighting and resampling steps [6]. A list of steps is
given in Table I.

TABLE I

STEPS TO ESTIMATE THE EVOLUTION OF THE STATE DISTRIBUTION

1) Pick a set of N particles �xi(0) according to the known initial
Gaussian distribution with error covariance P (0).

2) Numerically integrate each particle according to f for the sample
period dt. If the process noise �wi is modeled with continuous
dynamics, include �wi in the integration and skip step 3.

3) Pick a set of N process noise vectors �w i according to the noise
distribution. Perturb each particle �xi(k) by adding one noise vector
to it. The new set of perturbed particles represent �x i(k + 1), a
single evolution of the old particles according to the discrete time
dynamics of equation (2).

4) Repeat from step 2 for the desired simulation time. When finished,
the set of particles are a discrete approximation of the true state
probability matrix [6].

D. Error and Probability Calculations

The algorithm of Table I is a method to propagate an
initial uncertainty distribution through a dynamics model
of the form given by equation (2). If more than one
dynamics model exists for a system, the evolution method
of the previous section can be used to compare the two
models probabilistically. Consider two models attempting
to represent a particular system:

�x1(k + 1) = f1

(
�x1(k)

)
+ B �w(k) (4)

�x2(k + 1) = f2

(
�x2(k)

)
+ B �w(k)

These models have identical input matrices and noise mod-
els but different dynamics functions. The two models may
represent a highly complex nonlinear model for evaluation
and a simplified model for design. If these systems begin
with the same particles and are driven by the same process
noise, then any differences in the evolution of the particles
can only be caused by differences in the underlying dynam-
ics functions. The ith evolved particle �xi,1(k) from system
1 can be subtracted from the evolved particles �xi,2(k) from
system 2 particle by particle to give the ith error vector:

�ei(k) = �xi,1(k) − �xi,2(k) =
(

�ep
i

�ev
i

)
(5)

where �ep
i is the error vector of just the position states of the

ith particle, and �ev
i is the error vector of just the velocity

states of the ith particle. The evolution of the distribution of
these error vectors gives valuable insight into the differences
between the two system models.

Apart from the error vectors’ discrete distribution, ad-
ditional analysis and insight can be found by considering
the distributions of the scalar magnitudes of position errors
and velocity errors separately. In particular, the position and
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velocity error magnitudes of the particles, ep
i and ev

i , may be
used to create two Gaussian mixture models that represent
the position and velocity error distributions with sums of M
Gaussians [7]. The two Gaussian mixture model probability
densities are continuous densities in the magnitudes of
position and velocity error, ep and ev , respectively. For the
position error, the density is written:

Pp(ep) =
M∑

j=1

αjNj(ep) (6)

where αj is a weighting coefficient and Nj(ep) ∼
N(µj , σj) is the jth Gaussian distribution of mean µi

and standard deviation σi evaluated at the point ep. The
probability density function for velocity error magnitude e v

is defined in an analogous manner. A typical expectation
maximization algorithm as described in [7] can be used to
set the weighting coefficients and the mean and standard
deviation of the component Gaussians. First the likelihood
of each initial component given each particle’s error ep

i is
determined using Bayes’ theorem:

P (j|ep
i ) =

αjNj(e
p
i )∑M

L=1 αLNL(ep
i )

Next, the component Gaussians and weights are updated:

α̂j =
N∑

i=1

P (j|ep
i ) (7)

µ̂j =
∑N

i=1 xiP (j|ep
i )∑N

i=1 P (j|ep
i )

(8)

σ̂2
j =

∑N
i=1(e

p
i − µ̂j)2P (j|ep

i )∑N
i=1 P (j|ep

i )
(9)

These steps are then iterated until convergence. A typi-
cal metric used to measure convergence of the Gaussian
mixture model is the log likelihood function [7]. The log
likelihood function at the k th iteration is:

LLk =
N∑

i=1

log
( M∑

j=1

αjNj(ep
i )

)
(10)

where the values of αj and Nj(·) are taken from the mixture
model at the kth iteration. The mixture model is then
iterated using equations (7) - (9) until the log likelihood
changes by less than 1% between successive iterations, or
until a max number of iterations have been performed [7].

The densities formed by the mixture models can be
numerically integrated over any region of interest. In partic-
ular, it is possible to calculate the probability of observing
an error magnitude larger than a desired threshold by
numerically integrating over all regions of the probability
density that are outside the threshold’s bound:

P (ep > ep
max) =

∫
ep>ep

max

Pp(ep)dep (11)

P (ev > ev
max) =

∫
ev>ev

max

Pv(ev)dev

If these position and velocity thresholds are set to be the
maximum resolution ep

max and ev
max of a particular sensor,

then the numerical integrations give the probability of that
sensor detecting an error between the states of the two
dynamics models. This gives a measure of the validity of
approximating dynamics model 1 with dynamics model 2
by computing the probability of observing an error in the
sensors used to measure the true system. This method for
testing model validity is summarized in Table II.

TABLE II

STEPS TO VERIFY DYNAMICS MODEL APPROXIMATIONS

1) Pick a set of N particles �xi(0) according to the known initial
distribution with covariance P (0).

2) Evolve particles to the desired simulation time using Table I.
3) Calculate the set of error vectors �ei(k) = (�ep

i �ev
i )T according

to equation (5).
4) Calculate the magnitudes of the position and velocity components

of the error vectors ep
i (k) and ev

i (k) at a desired time index k.
5) Fit a Gaussian mixture model to the set of position magnitudes

ep(k) and another mixture model to the set of velocity magnitudes
ev(k) using equations (7) - (9).

6) Calculate the probability that the error has grown larger than the
sensor’s position resolution: P (ep(k) > ep

max), and velocity
resolution P (ev(k) > ev

max) using equation (11).

III. APPLICATION TO L2 LIBRATION PT ENVIRONMENT

A. Circular Restricted Three Body Problem

The error probability evolution technique is now applied
to a satellite formation near the Sun - Earth / Moon L2
libration point. The L2 point is one of five points of
equilibrium in the combined gravitational environment of
the Sun and the Earth / Moon system [1]. Figure 1 shows
that the L2 point, along with L1 and L3, form a set of
libration points that are collinear with the Sun and the Earth
/ Moon barycenter [8]. A satellite placed near one of these
collinear points has well-characterized dynamics provided
it is considered with several assumptions [1]:

1) The Sun and the Earth / Moon system travel in
circular orbits about their barycenter.

2) The satellite is sufficiently small as to have no effect
on the motion of the Sun or Earth / Moon.

3) No other forces affect the system.

Fig. 1. Geometry of the Sun-Earth libration points with coordinate frame
centered on L2 and rotating about the Sun / Earth barycenter

Under these assumptions, the problem is known as the
circular restricted three-body problem (CRTBP) [1]. The
full dynamics for this problem may be derived from the
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Lagrangian. In Ref. [1], for example, the satellite is con-
sidered in a coordinate frame that rotates about the Sun /
Earth barycenter, centered on the L2 point:

ρ̈x = ρ̇y +
∂L

∂ρx
, ρ̈y = −ρ̇x +

∂L

∂ρy
, ρ̈z =

∂L

∂ρz
(12)

L is the Lagrangian for the system, used here with the same
form and notation used in [1]:

L =
1
2
(
�̇ρ− K�ρ

)2 + α2
ρx

‖�r1‖ + (13)

+
µ

‖�r1‖3

1
‖�ρ + �e1‖ +

1 − µ

‖�r1‖2‖�r2‖
‖�r2‖/‖�r1‖

‖�ρ + ‖�r2‖
‖�r1‖�e1‖

where �ρ is a 3 element vector of normalized position with
respect to the L2 point, ρx , ρy , and ρz are the x, y, and z
components of the vector �ρ, respectively, and:

K =

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠ , �e1 =

⎛
⎝ 1

0
0

⎞
⎠

The parameter α2 = 1.010075174 is such that α2�e1 is
the location of L2 with respect to a rotating coordinate
system centered at the Sun / Earth - Moon barycenter and
normalized by 1 AU. The parameter µ = 3.0404·10−6 is the
ratio of the Earth - Moon system’s mass to the total mass of
the Sun / Earth - Moon system, using the stellar constants
given in [2]. The parameters �r1 and �r2 are vectors from the
L2 point to the Earth and the Sun, respectively. Both are in
the dimensionless coordinate frame of [1]. Their values in
this dimensionless coordinate frame are given below, again
using stellar constants from [2]:

�r1 =

⎛
⎝−0.0100782144

0
0

⎞
⎠ , �r2 =

⎛
⎝−1.0100782144

0
0

⎞
⎠

The form and notation of the above dynamics equation are
taken from [1] and apply to the dimensionless coordinate
frame given in that same paper. These coordinates relate
to the physical coordinates of Figure 1 by the following
transformation [1]:

position (in km): �x = Tx · �ρ (14)

velocity (in km/s): �v = Tv · �̇ρ
where �x and �v are position and velocity perturbations from
the L2-centered rotating coordinate frame of Figure 1, and
Tx ≡ ‖�r1‖ · 149597870, Tv ≡ ‖�r1‖ · 29.784735.[1]

In contrast to the full dynamics of equation (12), an
alternative representation is to expand the Lagrangian in
a series of Legendre polynomials, giving a different form
of the dynamics [1], [8], [9]:

�̈ρ = 2K�̇ρ− K2�ρ +
∞∑

n=2

ncnPn

(
ρx

‖�ρ‖
)
‖�ρ‖n−2�ρ +

+
∞∑

n=2

cnP ′
n

(
ρx

‖�ρ‖
)
‖�ρ‖n−2

(
‖�ρ‖�e1 − ρx

‖�ρ‖ �ρ

)
(15)

where the notation is the same as in equation (12), Pn is
the nth Legendre polynomial, and:

cn = (−1)n µ

‖r1‖3
+ (−1)n (1 − µ)‖r1‖n−2

‖r2‖n+1

The transformation of equation (14) may be applied to
convert these dimensionless coordinates into the physical
coordinates of Figure 1. This summation form is classically
used to search for closed-form orbits near the libration
points, which are discussed in the next section.

B. Halo Orbits

In early studies of the libration points [8], [9], the CRTBP
dynamics of equation (15) were truncated at degree 3; per-
turbation analysis of this truncated system yielded families
of so-called halo orbits near the three collinear libration
points. These closed-form halo orbits are characterized by
an orbital parameter Ax or Az: the in-plane x position or
the out-of-plane z position at the y axis crossing, and n,
the orbit family [1]. Though satellite dynamics near these
halo orbits are unstable, they are known to be slow relative
to the Earth. This makes them attractive for longterm space
telescope missions in which low fuel maneuvers, consistent
environments, and relatively small disturbances are essential
[2]. For this study, a halo orbit based on future formation
missions near L2 [10] was constructed using the truncated
dynamics of [8] and [9]. Although this approximation is a
closed-form orbit derived from the dynamics of equation
(15), it does not represent a solution to the full CRTBP
dynamics of equation (12) due to the differences between
the truncated dynamics and the full dynamics. Nonetheless,
this approximate halo orbit may be used as an initial guess
to compute the true halo orbit using the full dynamics of
equation (12) and the general iterative scheme described in
[1]; the true halo orbit lies at least 20000 km farther from
the L2 point in the xy and yz planes than its reduced order
counterpart. This particular halo orbit is chosen based on
observations in Ref. [11] that simulation results obtained
from this halo orbit in the full CRTBP dynamics tend to
hold under the true dynamics near the L2 point.

Because closed-form orbital solutions are not necessary
for this study, the full dynamics of equation (12) are used
for numerical integration instead of the Legendre series
form of the dynamics. This eliminates errors between the
approximate orbits from Ref. [8], [9] and the actual orbits.

C. Disturbance Model of the L2 Environment

In addition to the CRTBP dynamics of equation (12),
there are two significant sources of disturbances in the L2
environment that must be considered: solar pressure and
gravitational perturbations [2]. Gravitational perturbations
result primarily from variations in the location of the L2
point caused by the Moon’s orbit, perturbations due to
the Earth’s eccentricity in its orbit about the Sun, and
perturbations from other planets. To characterize these
disturbances in simulation, the worst case disturbing
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acceleration (in m/s2) was obtained for each coordinate
axis of the reference frame of Figure 1 [2]. The bound
on each axis was then taken as the 3σ value for the
disturbance along that axis. The initial distribution of
the disturbance was assumed Gaussian, and it was kept
constant during the simulation to account for the fact that
the gravitational disturbance is, to a good approximation,
constant over short timescales. The covariance for the
gravitational perturbation �wG is given below:

Qcts = diag(1.535·10−13, 9.727·10−14, 9.604·10−16) (16)

The subscript cts is used because the perturbations are
represented in continuous time in this simulation. This
disturbance is assumed to act directly on the velocity states
only. For the satellite simulations, the continuous satellite
dynamics are numerically integrated directly, so no discrete
time approximation was used. That is, the dynamics are
written in the form of equation (1), and that equation is
numerically integrated directly using Bcts and �wcts without
explicitly creating B(tk) and �w(tk).

The second disturbance, solar pressure, was computed
according to the radial force model outlined in [2]:

�wSRP =
1367 · 2A

mcR2
r̂ (17)

where A is the satellite’s sunshade area, m is the satellite’s
mass, c is the speed of light, R is the distance from
the satellite to the Sun, in AU, and r̂ is a unit vector
pointing away from the Sun along the line between it and
the satellite. This solar pressure model assumes that the
satellite has a perfectly reflective sunshade perpendicular to
the direction of the Sun’s rays.

The initial state error covariance was assumed to be
consistent with the capabilities of the Autonomous Forma-
tion Flying sensor (AFF), one of the only sensor schemes
currently being tested for use in satellite formation flying
at the libration points [12]. The absolute tolerances given
in [12] were modeled as the 3σ values of the satellite states
(in m and m/s), so the initial state error covariance was
assumed to be Gaussian, with:

P (0) =
[

4.4·10−5 · I3×3 0
0 1.1·10−7 · I3×3

]

D. Validation of Relative Satellite Model

Many future L2-based space telescope missions will
require arrays of satellites flying in precisely controlled
formations [13]. Nonetheless, the satellite dynamics are
nonlinear, so applying robust control tools is difficult. Be-
cause the time evolution of these dynamics are ‘slow,’ it is
purported that double integrator approximations to relative
satellite dynamics could be used, as was done in [3] for
an Earth trailing orbit. However, the window of validity of
such approximations is not known for the L2 environment.

The approach here is to use the model error evaluation
process developed in section II in order to characterize
the window of validity of these approximate models at

L2. Specifically, this section shows the validity of double
integrator approximations to the relative satellite dynamics
of two satellites flying in formation.

The truth model for the j th satellite Sj includes solar
radiation pressure, gravitational disturbances, and the effects
of the CRTBP dynamics:

d

dt

(
�x
�̇x

)
Sj

=
d

dt

(
Tx · �ρ
Tv · �̇ρ

)
Sj

+
(

�0
�wG

)
+

(
�0

�wSRP

)
Sj

(18)
where the transformations �x = Tx · �ρ and �v = Tv · �̇ρ
from equation (14) are used to write the satellite state �ρ
and �̇ρ in the physical coordinates of Figure 1, and the
inputs �wG and �wSRP are the disturbances from gravitational
and solar pressure perturbations of equations (16) and (17),
respectively. Solar radiation pressure parameters were taken
from [3].

In contrast, the double integrator model assumes that
satellite dynamics can be approximated as a double inte-
grator in the rotating coordinate frame of Figure 1. The
model also includes identical gravity and solar pressure
disturbances as those driving the truth model of equation
(18). The dynamics of the jth satellite are represented in
the double integrator ‘DI’ dynamics as:

d

dt

(
�xDI

�̇xDI

)
=

(
�0
�wG

)
+

(
�0

�wSRP

)
(19)

Six separate satellites were simulated in this environment
in order to evaluate formations of spacecraft near L2.
Each satellite was displaced from the nominal formation
center along the positive or negative direction of one
coordinate axis. An arbitrary point on the reference halo
orbit was taken as the formation center: (x, y, z, ẋ, ẏ, ż)T

≈ (−165000, 679000, 13400, 0.078, 0.072,−0.073)T (km
and km/s). The satellites’ initial states relative to the
formation center are listed in the table below, along with
the other simulation parameters. The orbital parameters
given below were used to generate a halo orbit using
Richardson’s approximation to the reference halo orbit; that
approximation was then used to generate the corresponding
reference halo orbit. The initial states given below are
relative to the formation center.

In-plane orbital radius Ax ≈ 220000 km (20)

Out-of-plane orbital radius Az ≈ 184000 km

Orbit family n = 1

Satellite mass m = 700 kg

Sunshade area A = π (15/2)2 m2

Simulation time = 8 hours

Number of particles N = 500 particles

Initial state (x, y, z, ẋ, ẏ, ż)T = (500m,0, 0,0,0, 0)T
S1

Initial state (x, y, z, ẋ, ẏ, ż)T = (−500m,0,0, 0,0,0)T
S2

Initial state (x, y, z, ẋ, ẏ, ż)T = (0,500m,0,0,0, 0)T
S3

Initial state (x, y, z, ẋ, ẏ, ż)T = (0,−500m,0, 0,0,0)T
S4

Initial state (x, y, z, ẋ, ẏ, ż)T = (0,0,500m,0,0, 0)T
S5

Initial state (x, y, z, ẋ, ẏ, ż)T = (0,0,−500m, 0,0,0)T
S6

Number of Gaussians M = 25
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From the simulation geometry, each two-satellite formation
has a formation radius of either 1 km or 0.5

√
2 km, depend-

ing on whether the two satellites were displaced along the
same axis or different axes; both of these formation sizes
are comparable to the proposed size of future formation
flying telescopes [3]. Each of these individual satellites is
simulated separately according to the algorithm of Table
I, and the dynamics model error analysis is performed on
the relative dynamics between each pair of satellites. For
formation analysis, the particles of the each pair of satellite
models are subtracted to yield relative states:

�xi,rel = �xi,S1 − �xi,S2 (21)

�vi,rel = �vi,S1 − �vi,S2

where i indicates the ith particle, and ‘S1’ and ‘S2’ indicate
which two satellites are being compared. For each pair of
satellites, two sets of relative states are created: one in
which the satellites are driven under the full dynamics of
equation (18), and another in which the satellites are driven
under the double integrator dynamics of equation (19). In
particular, the dynamics f1

(
�x
)

of equation (4) correspond to
the relative states generated by driving two satellites by the
full dynamics of equation (18), while the dynamics f2

(
�x
)

of equation (4) correspond to the relative states generated
by driving two satellites by the double integrator dynamics
of equation (19).

These two sets of relative states were compared using
the algorithm of Table II. The algorithm was applied to
the error between the true relative state and the double
integrator approximation. The error thresholds were set to
be ep

max = 0.02m and ev
max = 0.001m

s and correspond to
the smallest position and velocity measurable by the AFF
sensor [12]. Any model errors below these thresholds would
not be observed by the AFF sensor.

The simulations show that the formation between satel-
lites in the +x and −x directions (satellites S1 and S2 in
equation (20)), are most likely to have a detectable error
between the double integrator model and the true dynamics
at this point in the reference halo orbit. Figure 2 shows the
results of the relative dynamics simulation, with the worst
formation drawn with o’s and x’s on position and velocity
error, respectively. Results show that a double integrator
approximation to relative satellite dynamics between the
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Fig. 2. Probability of detectable errors in relative satellite dynamics
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Fig. 3. Evolution of worst simulated formation’s position and velocity
errors over 8 hours
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tion’s x and y position errors over 8 hours

pairs of simulated satellites may be used at least for two
hours with approximately 1% probability of a position error
of detectable magnitude, and the probability of error quickly
increases after this two hour mark. The probability of a
detectable velocity error, in contrast, remains near zero for
the entire simulation.

Figures 3a-c show the distributions of the relative state
errors for the worst satellite formation. The relative errors
in the x and y axes expand significantly over the course
of the simulation. In contrast, the errors in the z axis
remain smaller and more tightly clustered, and the mean
drifts significantly compared to the size of the distribution.
Figure 4 plots the equiprobability curves of an M = 20
Gaussian mixture model whose component Gaussians have
covariances of the form σ2

i · I. The nearly-elliptical curves
are plotted at 10% intervals and show that the distribution of
the relative state errors remains nearly Gaussian during the
simulation. Because of this fact, the number of Gaussians
M is found to have negligible effect on the shape of Figure
2 for M between 1 and 250 Gaussians. The equiprobability
curves also show the significant expansion of errors in
the x and y axes, as well as a drift in the mean of
these errors. These dynamical effects can be explained with
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the difference between the true and simplified dynamics
models. Because the simplified dynamics model does not
include the Earth’s gravity, each satellite in the formation
experiences an additional gravitational force in the true
dynamics model. This effect causes the means of the relative
errors to drift as observed in Figures 3a-c, and represents
the difference between the dynamics of the halo orbit and
the double integrator environment. The fact that the satellite
formation aligned with the +x and −x directions are most
likely to have a detectable error can be explained from
the dynamics equations themselves. An evaluation of the
particles of each formation at the start of the simulation
shows that the satellites displaced along the x axis experi-
ence a relative acceleration of nearly twice the magnitude
than those displaced along the y or z axes at this point in the
reference halo orbit. These results suggest that formations
primarily oriented along the x axis will suffer from greater
formation model error than those in other orientations at
this particular point in the reference orbit.

In contrast to the worst formation, the formation in which
model validity lasts the longest with small probability of
detectable error is the formation with one satellite along the
−y direction and one satellite along the −z direction. At
the beginning of the simulation, this formation experiences
relative forces that are on average about three times smaller
than those experienced by the worst formation. However,
despite the significant differences in relative forces, the
detectable error probability still diverges only 30 minutes
after that of the worst formation.

E. Factors Influencing Model Validity at L2

The results of section III-D show that at a particular
point on a reference halo orbit, the double integrator model
for satellite formation dynamics holds for approximately 2
hours with low probability of detectable error between it and
the true relative dynamics. This section further examines
the effects of several factors that influence the position
probability curves of Figure 2. The velocity probability
curves are not plotted, as they are negligible for the duration
of each simulation and not affected by any experimental
variations explored in this section.

The first factor examined was the effect of varying the
size of the satellite formation. In section III-D, all two-
satellite formations were either 1 km or 0.5

√
2 km. In this

study, the worst formation was first reduced so its two
satellites were separated by 100 m. In this smaller for-
mation, the satellites were shifted relative to the formation
center along the x axis by only ±50 m instead of ±500 m
as was done in section III-D. Next, the pair of satellites
was separated by 2 km; in this formation, the satellites
were shifted ±1 km from from the formation center along
the x axis at the outset. The satellites were simulated
with these new formation sizes, and all other simulation
parameters remained the same as in equation (20). Position
error probability curves were computed as in section III-
D, and are shown in Figure 5. The results show that

formation size plays a significant role in determining the
window of validity of the double integrator approximation
for formation dynamics near L2. The double integrator
model for the 2 km formation holds only for 1.5 hours
and then degrades rapidly, while the same model for the
100 m formation holds for 2.5 hours and degrades much
slower over the simulation. Since the simulations for the
various formation sizes all share the same sensor noise
and disturbance parameters, the differences in the error
probability curves of Figure 5 are due to the difference
between the L2 dynamics of equation (12) and the double
integrator model of equation (19).
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Fig. 5. Effects of varying formation size for worst satellite formation

These results show the L2 dynamics begin to influence
simplified model validity after about 2 hours using the
above simulation parameters and different formation sizes.
However, Figure 5 gives the worst case scenario, because
it includes sensor noise, solar pressure disturbances, and
gravitational perturbations. To examine the effect of the L2
dynamics alone, the two-satellite formation was simulated
deterministically at different formation sizes. That is, each
satellite was simulated with no sensor noise, no solar
pressure, and no gravitational disturbances. The same errors
were then calculated between the full dynamics model and
the double integrator model. Figure 6 shows how those
errors evolve in time. In the absence of sensor noise and
other disturbances, position error hits the ep

max = 2 cm
mark at about 2 hours, 10 minutes for a 2 km formation,
about 3 hours 5 minutes for the 1 km formation, and it does
not cross the 2 cm mark for the 100 m formation over the
8 hour simulation. None of the formation sizes crossed the
ev
max = 1mm/s error limit during the simulation; velocity

errors were at least one order of magnitude lower than the
limit during the entire simulation. Additionally, the same
deterministic curves computed with gravitational perturba-
tions and solar pressure differ from the original by 10−7 m
at the end of the simulation; the effects of solar pressure
and gravitational perturbations are therefore negligible for
these formation sizes and time horizons. Comparing these
results with Figure 5 yields an important conclusion: sensor
noise causes the double integrator model’s validity to fail
30 minutes earlier than could possibly be expected for the
2 km formation, 1 hour earlier for the 1 km formation, and
at least 5 hours earlier for the 100 m formation. In other
words, at the formation sizes being considered for future L2
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space telescopes, sensor noise dominates formation model
validity over solar pressure, gravitational perturbations, and
even the L2 dynamics.
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Fig. 6. Evolution of worst simulated formation’s deterministic position
errors over 8 hours

To see whether position or velocity sensor error is the
dominating factor over these short time horizons, the same
1 km formation was simulated with varying levels of sensor
noise. To accomplish this, each of the position and velocity
sensor noise standard deviations was increased or decreased
separately by a factor of 10. The position probability curves
for the different levels of velocity noise are shown in Figure
7. The effects of changing sensor position error are not
plotted; changing sensing accuracy by even a factor of 10
changes the curves by ∆p ≈ 0.01. In contrast, changing
velocity sensing accuracy by a factor of 10 causes model
validity to drop after 30 minutes or nearly 3 hours, depend-
ing on whether error is increased or decreased. This shows
that velocity error is the dominating factor in determining
model validity with current formation sensing capabilities.
Notice that when velocity error is decreased, the double
integrator remains valid for this formation for nearly 3
hours, the amount of time suggested by Figure 6a for a
1 km formation. In other words, current velocity sensing
errors can be reduced significantly before CRTBP dynamics
become the dominant factor driving model validity.
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Fig. 7. Effects of varying velocity sensor noise for a 1 km formation

IV. CONCLUSIONS

An approach has been developed to analyze the error be-
tween two models (typically a simple model and a complex
model), in terms of an error probability density function and
probability over time. The technique uses particles to evolve
nonlinear probability density functions through nonlinear

models. The approach is especially useful in applications
where the control design model is an approximate version
of the truth model. In these cases, confidence in the approxi-
mation can be probabilistically evaluated. The approach was
shown to give insightful results for L2 formation dynamics.

The approach has shown for typical halo-orbit based
satellite formations that at the particular point selected,
the double integrator approximation to relative satellite
dynamics near the L2 point may be used for at least 2 hours
with low probability of a detectable error from existing
formation sensors. The simulations have also shown that
at the formation sizes under consideration for future space
telescopes, sensor-based noise in satellite velocity domi-
nates all other sources of model error near L2. Improved
velocity sensing will keep approximations valid over longer
time horizons, especially for formations at or under 1 km
in size. Additionally, it was also shown that L2 based orbits
and formations have preferred orientations in which the
double integrator approximation holds for longer periods of
time. This suggests that formation control strategies might
benefit from accounting for or taking advantage of these
preferred orientations.
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