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Abstract— This is the second of a two paper series on the
dynamic coverage problem first introduced in [1]. Dynamic
coverage optimal control is a new class of optimal control
problems motivated by multi-spacecraft interferometric imag-
ing applications. The dynamics is composed of N second order
differential equations representing N fully actuated particles.
To be minimized is a cost functional that is a weighted sum
of the total fuel expenditure, the relative speeds between the
particles and the measure of a given set whose size is a
function of the particles’ trajectories. In this paper, we extend
the analysis to formations evolving on non-linear manifolds.
We derive the necessary optimality conditions and give an
example of a non-rigid two spacecraft formation evolving on
a paraboloidal surface.

I. INTRODUCTION

The use of geometric control methods for spacecraft for-
mation flying has received little attention, whereas extensive
investigations have been conducted in the field of robotic
path planning (see Section (IV) in [2]). This work is an at-
tempt to use geometric optimal control theory for spacecraft
formation motion planning for imaging applications.

Let M be a smooth (C∞) Riemannian manifold with the
Riemannian metric denoted by 〈·, ·〉p for a point p ∈ M .
Thus the length of a tangent vector v ∈ TpM is denoted
by ‖v‖p = 〈v, v〉1/2

p , where TpM is the tangent space of
M at p. The Riemannian connection on M , denoted ∇, is
a mapping that assigns to any two smooth vector fields X
and Y in M a new vector field, ∇XY . For the properties
of ∇, we refer the reader to [3] and [4]. We take ∇ to
be the Levi-Civita connection and is, hence, assumed to
be symmetric throughout the entirety of this paper. The
operator ∇X , which assigns to every vector field Y the
vector field ∇XY , is called the covariant derivative of Y
with respect to X . We will denote by [X, Y ] the Lie bracket
of the vector fields X and Y and is defined by the identity:
[X, Y ]f = X(Y f)−Y (Xf). Given vector fields X , Y and
Z on M , define the vector field R (X, Y ) Z by the identity

R (X, Y ) Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z. (1.1)
R is trilinear in X , Y and Z and is thus a tensor of type
(1, 3), which is called the curvature tensor of M .

We consider the general class of problems described by
a system of N particles satisfying dynamics of the form:

Dci

dt
(t) = vi(t),

Dvi

dt
(t) = ui(t), (1.2)
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i = 1, . . . , N , where ci : [0, T ] → M is a curve on M ,
vi(t) ∈ Tci(t)M and ui(t) ∈ TTci(t)M . DY/dt denotes
the covariant time derivative of the vector field Y.

Let ui(t) ∈ TTci(t)M be given by

ui(t) =
m∑

j=1

uj
i (t)Yj(ci(t)), (1.3)

where m ≤ n and Yj , j = 1, . . . , n, satisfy 〈Yj , Yk〉 = δjk.
In other words, Yj is an orthonormal set of vector fields on
Tci(t)M . Mathematically, this assumption limits the class of
manifolds we consider (to parallelizable manifolds) for the
general problem formulation, but is satisfied for the special
case where we deal with systems of particles in space. m =
n corresponds to the fully actuated system, whereas m < n
corresponds to the under-actuated situation. Here we only
consider fully actuated systems.

Assumption I.1. Each particle is fully actuated in all n
directions. That is to say m = n.

II. IMAGING AND THE COVERAGE PROBLEM

Equations (1.2) represent the spacecraft dynamics, treat-
ing each spacecraft as a point particle. Hence, we ignore
attitude dynamics and assume all spacecraft are perfectly
aligned and are pointing towards the target. Results pre-
sented in this paper can be extended to include rigid body
dynamics, which is the main reason for using language and
tools from geometric control theory. This, however, is the
subject of current research. In interferometric imaging, we
are interested in the relative position dynamics as projected
onto a plane perpendicular to the line of sight. This plane
is called the observation plane, denoted by O ⊂ R

2. Hence,
we are interested in the projected relative curves:

c̃ij(t) =
1
λ

PO (cj(t) − ci(t)) , (2.1)

where λ is the optical wavelength and c̃ij : [0, T ] → Õ
are curves on Õ, the frequency (or, u-v) plane, and PO

is the operator that projects relative trajectories in M onto
the observation plane O. Hence, O is the plane on which
motion is projected and Õ is the u-v frequency plane. Let
	 ·, · 
 denote the inner product on O.

In multi-aperture interferometry, there are two main
imaging goals. The first is simply referred to as frequency
domain (or u-v plane) coverage. Here, we only state the
coverage goal and refer the reader to [5] for a more detailed
discussion. We are interested in having the resolution disc
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as defined by the set DR =
{
(u, v) :

√
u2 + v2 ≤ 1/θr

}
be

completely covered by some ball of radius rp centered at
c̃ij(t), for some t ∈ [0, T ], i and j, where θr is the angular
resolution. An image is said to be successfully completed
if a maneuver M satisfies the following condition.

Definition II.1. (Successful Imaging Maneuver) An imag-
ing maneuver M is said to be successful if, for each
(u, v) ∈ DR, there exists a time t ∈ [0, T ] and some
i, j = 1, . . . , N such that (u, v) ∈ B̄rp

(c̃ij(t)), where
B̄x(y) is a closed ball in R

2 of radius x centered at y.
rp is proportional to the size of the telescope’s airy disc.

The second objective is that all frequencies in DR must be
sampled while maximizing the signal-to-noise ratio (SNR).
SNR can be controlled by controlling the relative speeds
between the spacecraft in the formation [5]. As the projected
relative speed between a spacecraft pair is reduced, the
achievable SNR increases. Intuitively, as a spacecraft moves
more slowly, it spends more time in the neighborhood of a
relative position state in space. This leads to more photon
collection at that state, resulting in a stronger signal.

III. DYNAMIC COVERAGE OPTIMAL CONTROL

Based on the above discussion, we wish to minimize three
quantities: (1) the fuel expended by each spacecraft in the
constellation, (2) the projected relative speeds between the
spacecraft of the system and (3) the amount of uncovered
points in DR. The constraints we have are the dynamics
(1.2) and boundary conditions on the position and velocity
vectors of each spacecraft. Motion constraints (as defined in
[6]) are not treated in this paper, though they can be easily
incorporated in the analysis. We now state the coverage
optimal control problem considered in this paper.

Problem III.1. Coverage Optimal Control. Minimize

J (ci,ui, t) =
∫ T

0

1
2

{ N∑
j=1

[
〈uj ,uj〉 (3.1)

+τ2
N∑

k=1

	 dc̃jk

dt
,
dc̃jk

dt



]}
+ κ2 meas (Ψ) dt,

where Ψ is the mapping that returns the set of un-
covered frequency points in DR up to time t; Ψ :
(t, c̃ij ; i, j = 1, . . . , N) → {(u, v) ∈ DR : ∀σ ∈
[0, t] and ∀i, j ∈ 1, . . . , N, (u, v) ∈ B̄rp

(c̃ij(σ))} and the
function meas (Λ) is a measure function of some set Λ. The
constraints are the dynamics (1.2), the boundary conditions
ci(0) = c0

i , ci(T ) = cT
i , vi(0) = v0

i , ci(T ) = vT
i , (3.2)

i = 1, . . . , N , and the relationship in Equation (2.1).

In Equation (3.1), we have used the simple derivative
d
dt to differentiate the quantity c̃jk since c̃jk belongs
to R

2. Note that when κ = 0 the problem reduces to
that discussed in [6]. In this case, the terminal boundary
conditions alone drive the system. When κ = 0 the system
is driven to also minimize the set of uncovered points in
DR. Whenever meas (Ψ) becomes zero, the only drive is
to meet the terminal conditions in (3.2). For a discussion

on the properties of the measure function meas(·), see [1].
We assume that

Assumption III.1. The function meas is differentiable with
respect to both arguments t and c̃.

IV. NECESSARY CONDITIONS FOR OPTIMALITY

To obtain necessary optimality conditions we first append
the dynamic constraints in Equations (1.2) to the Lagrangian
of the cost functional (3.1) by introducing the Lagrange
multipliers λj

1 and λj
2, j = 1, . . . , N into the cost functional

J . Collecting terms with the same indexes, Equation (3.1)
becomes:

J (ci,ui) =
∫ T

0

N∑
j=1

[
1
2
〈uj ,uj〉 + λj

1

(
Dcj

dt
− vj

)

+ λj
2

(
Dvj

dt
− uj

)
+

τ2

2

N∑
k=1

	 dc̃jk

dt
,
dc̃jk

dt



]

+ κ2 meas [Ψ (c̃jk(t); j, k = 1, . . . , N)] dt (4.1)
We introduce the one-parameter variations for the curves
ci:

ci(t, 0) = ci(t),
Dci

∂ε
(t, 0) = Wi(t)

Dci

∂ε
(0, 0) =

Dci

∂ε
(T, 0) = 0, (4.2)

D
dt

Dci

∂ε
(t, 0) =

D
dt

Wi(t) is continuous on [0, T ]

D
dt

Dci

∂ε
(0, 0) =

D
dt

Dci

∂ε
(T, 0) = 0,

i = 1, . . . , N . Likewise, we may define variations in vi(t),
ui(t) and λi

k(t), k = 1, 2, i = 1, . . . , N , by vi(t, ε), ui(t, ε)
and λi

k(t, ε), k = 1, 2, i = 1, . . . , N , as follows:

ui(t, ε) =
m∑

j=1

uj
i (t, ε)Yj(ci(t, ε)) ∈ TTci(t,ε)M

vi(t, ε) =
n∑

j=1

vj
i (t, ε)Yj(ci(t, ε)) ∈ Tci(t,ε)M

λi
k(t, ε) =

n∑
j=1

λij
k (t, ε)ωj(ci(t, ε)) ∈ T ∗

ci(t,ε)
M

where ωj , j = 1, . . . , n, are co-vector fields such that
ωl(Yj) = δlj . Taking variations in ui and vi, we have:
Dui

∂ε
(t, ε)

∣∣∣∣
ε=0

= δui(t) + (B (Wi,ui)) (ci(t)) ∈ TTM

Dvi

∂ε
(t, ε)

∣∣∣∣
ε=0

= δvi(t) + (B (Wi,ui)) (ci(t)) ∈ TTM

where, for instance,

δui(t) =
m∑

j=1

∂uj
i

∂ε
(t, 0)Yj(ci(t))

(B (Wi,ui)) (ci(t)) =
m∑

j=1

uj
i (t) (∇Wi

Yj) (ci(t)).

Similar expressions can be obtained for Dvi

∂ε and Dλj
i

∂ε ,
j = 1, 2, i = 1, . . . , N . B(·, ·) is a bilinear form that we
introduce in order to be able to separate variations in the
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components of ui, vi and λj
i from variations in the basis

vector fields. It is important to separate these terms since
the variations δui, δvi and δλi

j , i = 1, . . . , N , j = 1, 2,
are independent from each other as well as from Wi. For
variations in c̃ij(t), let

c̃ij(t, ε) =
2∑

k=1

c̃k
ij(t, ε)Zk(c̃ij(t, ε)) ∈ Tc̃ij(t,ε)Õ,

where Zk, k = 1, 2, is an orthonormal set of vector fields
on Tc̃ij(t,ε)Õ. The set Zk, k = 1, 2, may be taken to be the
standard set of vector fields spanning R

2.
In [1], we make the assumption that the manifold M ≡

O. This assumption simplified the analysis quite signifi-
cantly. In this paper, the spacecraft are free to move on
some given non-flat surface M . Such surfaces are usually
dictated by some further imaging specifications. For exam-
ple, having the formation evolve on a virtual paraboloid
surface provides improved focusing properties [7].

Thus, for i, j = 1, . . . , N we have

c̃ij(t, 0) = c̃ij(t) =
1
λ

PO (cj(t) − ci(t)) ,

Dc̃ij

∂ε
(t, 0) =

1
λ

∂PO

∂c
· (Wj(t) − Wi(t))

Dc̃ij

∂ε
(0, 0) =

Dc̃ij

∂ε
(T, 0) = 0, (4.3)

D
dt

Dc̃ij

∂ε
(t, 0) =

1
λ

D
dt

[
∂PO

∂c
· (Wj(t) − Wi(t))

]
D
dt

Dc̃ij

∂ε
(0, 0) =

D
dt

Dc̃ij

∂ε
(T, 0) = 0

where ∂PO

∂c : M → R
2 is viewed as a transformation on

M . Hence, the right hand sides of the second and fourth
equations represent the projected variational vector fields.

Remark IV.1. c̃ij belongs to a flat space O. Then
D
∂ε

Dc̃
∂t

=
D
∂t

Dc̃
∂ε

+ R̃

(
Dc̃
∂ε

,
Dc̃
∂t

)
Dc̃
∂t

=
D
∂t

Dc̃
∂ε

(4.4)

since the curvature of O, R̃, is zero everywhere.

Theorem IV.1. Under Assumptions (I.1) and (III.1), taking
first order variations of the expression in Equation (4.1)
leads to the following relationship:
∂J
∂ε

(ci(t, ε),ui(t, ε), t; i = 1, . . . , N)
∣∣∣∣
ε=0

=

=
∫ T

0

N∑
j=1

〈uj ,B (Wj ,uj)〉 − Dλj
1

dt
(Wj)

− λj
1 (B (Wj ,vj)) − λj

2 (B (Wj ,uj))

+ λj
2 (R (Wj ,vj)vj) − Dλj

2

dt
(B (Wj ,vj))

+
N∑

k=1

τ2

λ
	 d2c̃jk

dt2
,
∂PO

∂c
Wj 
 −κ2

λ

∂meas
∂c̃jk

(
∂PO

∂c
Wj

)
dt

+
∫ T

0

N∑
j,k=1

−τ2

λ
	 d2c̃jk

dt2
,
∂PO

∂c
Wk 
 (4.5)

+
κ2

λ

∂meas
∂c̃jk

(
∂PO

∂c
Wk

)
dt

+
∫ T

0

N∑
j=1

−λj
2(δuj) + 〈uj , δuj〉dt

+
∫ T

0

N∑
j=1

−λj
1 (δvj) − Dλj

2

dt
(δvj) dt.

Proof In Equation (4.1), we replace c̃jk(t), uj(t) and vj(t)
with the perturbed variables c̃jk(t, ε), uj(t, ε) and vj(t, ε),
respectively. To prove the theorem, we compute ∂J /∂ε on
a term by term basis as follows. First, we have:

∂

∂ε

∫ T

0

1
2
〈uj(t, ε),uj(t, ε)〉dt

∣∣∣∣
ε=0

=
∫ T

0

〈uj , δuj + B (Wj ,uj)〉dt, (4.6)

where a summation over j is understood. For the fourth term
in Equation (4.1), we use the fourth identity in Equations
(4.3) and integrate by parts to obtain

∂

∂ε

∫ T

0

τ2

2

N∑
j,k=1

	 dc̃jk

dt
,
dc̃jk

dt

 dt

∣∣∣∣
ε=0

=
∫ T

0

τ2

λ

N∑
j,k=1

	 dc̃jk

dt
,

d
dt

[
∂PO

∂c
(Wk − Wj)

]

 dt

= −
∫ T

0

τ2

λ

N∑
j,k=1

	 d2c̃jk

dt2
,
∂PO

∂c
(Wk − Wj) 
 dt

+
N∑

j,k=1

τ2

λ
	 dc̃jk

dt
,
∂PO

∂c
(Wk − Wj) 


∣∣∣∣
T

0

,

where use has been made of Equation (4.4). The second
term vanishes due to the fixed boundary conditions (4.2).
Thus, for the fourth term in (4.1) we have

∂

∂ε

∫ T

0

τ2

2

N∑
j,k=1

	 dc̃jk

dt
,
dc̃jk

dt

 dt

∣∣∣∣
ε=0

(4.7)

= −
∫ T

0

τ2

λ

N∑
j,k=1

	 d2c̃jk

dt2
,
∂PO

∂c
(Wk − Wj) 
 dt.

For the second term, we have
∂

∂ε

∫ T

0

λj
1

(
Dcj

dt
− vj

)
dt

=
∫ T

0

λj
1

(
D
dt

Wj − δvj − B (Wj ,vj)
)

dt.

For the first term in parenthesis, we integrate by parts:∫ T

0

λj
1

(
D
dt

Wj

)
dt = λj

1 (Wj)
∣∣∣∣
T

0

−
∫ T

0

Dλj
1

dt
(Wj) dt.

The first term on the right hand side vanishes by virtue of
the boundary conditions (4.2) imposed on Wj . We then
obtain

∂

∂ε

∫ T

0

N∑
j=1

λj
1

(
Dcj

dt
− vj

)
dt (4.8)

=
∫ T

0

N∑
j=1

−Dλj
1

dt
(Wj) − λj

1 (δvj + B (Wj ,vj)) dt.

For the third term in Equation (4.1), recall the identity [8]:
D
∂ε

D
∂t

Y − D
∂t

D
∂ε

Y = R

(
Dc
∂ε

,
Dc
∂t

)
Y,
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where Y is a vector field along a trajectory c(t). Then

∂

∂ε

∫ T

0

N∑
j=1

λj
2

(
Dvj

dt
− uj

)
dt

=
∫ T

0

N∑
j=1

λj
2

(
R(Wj ,vj)vj +

D2vj

∂t∂ε
− δuj

−B (Wj ,vj)
)

dt

=
∫ T

0

N∑
j=1

λj
2

(
R(Wj ,vj)vj − δuj − B (Wj ,vj)

)

−Dλj
2

dt
(δvj + B (Wj ,vj)) dt (4.9)

where integration by parts has been used to arrive at the
last equation. Finally, under Assumption III.1, for the last
term we have

∂

∂ε

∫ T

0

κ2meas [Ψ] dt =
∫ T

0

N∑
j,k=1

κ2 ∂meas
∂c̃jk

∂c̃jk

∂ε
dt

=
∫ T

0

N∑
j,k=1

κ2

λ

∂meas
∂c̃jk

[
DPO

dc
(Wk − Wj)

]
dt, (4.10)

where it is understood that the meas function is applied
to the set Ψ (c̃jk) for all j, k = 1, . . . , N . Finally, from
equations (4.6-4.10), by separating terms involving the co-
efficients Wj , Wk, δvj and δuj , we obtain the expression
(4.5) and, hance, proving the theorem. �
Remark IV.2. Note that ∂meas

∂c̃jk
constitute the components

of the differential form d (meas) ∈ T ∗O, the cotangent
space on O. Hence, the notation ∂meas

∂c̃jk
(X) denotes this

form operating on X ∈ TO.

From Theorem (IV.1) one can extract the necessary
optimality conditions as the following theorem states.

Theorem IV.2. Under Assumptions (I.1) and (III.1), a set of
optimal trajectories c̃i, i = 1, . . . , N , that minimize J while
satisfying the dynamic constraints (1.2) and the boundary
conditions (3.2) satisfy the following necessary conditions
for an arbitrary vector field X and for j = 1, . . . , N :

Dci

dt
= vi

Dvi

dt
=

(
λj

2

)#

,

Dλj
1

dt
(X) = (R (uj ,vj)vj)

� (X)

Dλj
2

dt
(X) = −λj

1 (X)

uj =
(
λj

2

)#

0 =
N∑

k=1

τ2

(
D2c̃jk

dt2

)�

(X) − κ2 ∂meas
∂c̃jk

(X)

where Y� (X) = 〈Y,X〉 and 
 is the inverse of �.

Proof The first equation follows immediately from Equation
(1.2). For an optimal solution, the first order necessary

condition is that
∂J
∂ε

(ci(t, ε),ui(t, ε), t; i = 1, . . . , N)
∣∣∣∣
ε=0

= 0. (4.11)

The rest of the proof relies on this condition and the fact
that Wj , Wk, δuj and δvj are independent for all j, k =
1, . . . , N . The fourth equation follows immediately from the
last integral in Equation (4.5) and the independence of δvj ,
j = 1, . . . , N . The fifth equation follows immediately from
condition (4.11), the third integral in Equation (4.5) and the
independence of δuj , j = 1, . . . , N . The last (algebraic)
equation is obtained by studying the second integral in
Equation (4.5). Since Wk, k = 1, . . . , N , are independent,
we then have

N∑
j=1

τ2

(
d2c̃jk

dt2

)�

(X) − κ2 ∂meas
∂c̃jk

(X) = 0,

∀k = 1, . . . , N . Since uj =
(
λj

2

)#

and by interchanging
indices (j → k and k → j), we obtain the last (algebraic)
condition. Hence, the last term under the first integral in
Equation (4.5) is zero. the third equation in the theorem is
obtained from this, the fourth Equation in the theorem, the
first integral in Equation (4.5) and the independence of Wj ,
j = 1, . . . , N . The second equation follows from Equation
(1.2) and the fifth condition in the theorem. �

V. EXAMPLE: DUAL-SPACECRAFT INTERFEROMETRY

In this section we demonstrate the above ideas for a two
spacecraft formation. As we did in [1], we first derive a
single degree of freedom version of the necessary conditions
of Theorem (IV.2), which only apply to fully actuated
multi-spacecraft systems. Since in the present example one
spacecraft is fixed in space, the symmetries exhibited in
Theorem (IV.2) are broken (specifically, the fifth algebraic
condition in the theorem). Hence, the result presented in
this section is not a simple special case of Theorem (IV.2).

The curve c(t) ∈ M corresponds to the trajectory of
the collector spacecraft on the manifold and v(t) ∈ TM
corresponds to the relative velocity vector field between
the parent and collector spacecraft. The projected relative
position is given by c̃ = (1/λ)PO (c) while the pro-
jected relative velocity is given by ṽ = (1/λ) d

dtPO (c) =
P

v
O(c,v), where P

v
O : M × TM → E

2 is a continuously
differentiable function on the tangent bundle to M and
where E

2 is the tangent space to R
2. Hence, ṽ ∈ E

2.
The cost functional to be minimized is given by:

J =
∫ T

0

1
2
〈u,u〉 +

τ2

2
	 ṽ, ṽ 
 +κ2meas (Ψ(c̃)) dt.

One now follows a procedure similar to that found in Sec-
tion (IV) by appending the Lagrangian with λ1 (ċ − v) +
λ2

(
Dv
dt − u

)
. In order to compute the necessary conditions

we observe that
∂

∂ε

∫ T

0

τ2

2
	 ṽ, ṽ 
 dt

=
∫ T

0

τ2 	 ṽ,
∂

∂ε
P

v
O(c,v) 
 dt
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=
∫ T

0

τ2 	 ṽ,
∂P

v
O

∂c
(W) +

∂P
v
O

∂v

(
∂v
∂ε

)

 dt

=
∫ T

0

τ2

[〈(
∂P

v
O

∂c

)T

ṽ,W

〉

+

〈(
∂P

v
O

∂v

)T

ṽ, δv + B (W,v)

〉]
dt, (5.1)

where W ∈ TM is the variation vector field corresponding
to the curve c and ∂P

v
O

∂c and ∂P
v
O

∂c are viewed as the
components of the differential form: dP

v
O ∈ T ∗TM . The

T in the superscript corresponds to the adjoint (transpose)
operation. In obtaining the above expression we have used
integration by parts and the fact that W(0) = W(T ) = 0.
The inner product on the last line corresponds to the metric
on M . The remainder of the derivation is similar to that
obtained in Section (IV). We obtain the following:
∂J
∂ε

∣∣∣∣
ε=0

=
∫ T

0

〈u, δu〉 − λ2 (δu) dt (5.2)

+
∫ T

0

−λ1(δv) − Dλ2

dt
(δv) + τ2

〈(
∂P

v
O

∂v

)T

ṽ, δv

〉
dt

+
∫ T

0

〈u,B (W,u)〉 + τ2

〈(
∂P

v
O

∂c

)T

ṽ,W

〉

+ κ2 ∂meas
∂c

(W) − Dλ1

dt
(W) − λ1 (B (W,v))

− λ2 (B (W,u)) − Dλ2

dt
(B (W,v))

+ λ2 (R(W,v)v) + τ2

〈(
∂P

v
O

∂v

)T

ṽ,B (W,v)

〉
dt.

Therefore, the necessary conditions are:
q̇ = v

Dv
dt

= λ�
2(

Dλ1

dt

)�

= R(u,v)v − τ2

(
∂P

v
O

∂c

)T

ṽ + κ2 ∂meas
∂c

Dλ2

dt
= −λ1 + τ2

(
∂P

v
O

∂v

)T

ṽ�

u = λ�
2.

These necessary conditions for the problem when κ = 0
are obtained in local coordinates (the arc length q1) in [9].

We now look at a class of two-spacecraft formations,
where one spacecraft, the “parent”, is fixed at the origin
and the second, the “collector”, is restricted to move along a
spiral embedded in a two-dimensional paraboloidal surface.
Hence, this system is a one degree of freedom system.

We model each spacecraft as a point mass, each with
unit mass. The choice of a paraboloid surface is made
because of its improved focusing properties. This type of
formation belongs to a class of formations known by Space
Technology 3 (ST-3) as one of NASA’s Origin’s missions.
For more on this class of formations, we refer the reader
to [7]. Moreover, the collector spacecraft follows a spiral
trajectory along the paraboloid. The spiral is designed to

ensure that the resulting maneuver is successful in the
sense of Definition (II.1). Hence, the spiral embedded on
the paraboloid surface will be considered as our one-
dimensional manifold M with n = 1.

Line of 
SightLinear Spiral

Paraboloid

x

y

 z 

q

Fig. 1. The basic interferometer.

Refer to figure (1). Let q = q be the single coordinate
we choose to work. We choose q to be the arc length
traversed along the spiral. Therefore, ∂q = ∂

∂q is the basis
vector for TqM . The velocity vector field is then given by
v = v1∂q. The control vector u = u1∂q is restricted to the
tangent space to TM . That is, u ∈ TTM . In rectangular
coordinates, the paraboloid is given by

z = (1/2)
(
(ρ2/β2) − β2

)
, (5.3)

where ρ =
√

x2 + y2 and β is a parameter that controls the
depth of the paraboloid. Note that vertex of the paraboloid
is located at the point (0, 0,−β2/2) in R

3.
In this section we give a brief account of the spiral

maneuver. We refer the reader to [10] for further details
and background information. In the x-y plane, the projected
position may be given in terms of polar coordinates (ρ, θ).
One way to ensure full coverage of the resolution disc DR

is to initialize the second spacecraft such that at t = 0 we
have (ρ = λ(m+1)

2θp
, θ = 0), make it follow a linear spiral

as a function of θ, and to impose the terminal condition
that at t = T we have ρ = 0, θ = (m+1)π

2 ), where T is
the terminal maneuver time. m is an integer that is equal to
the number of pixels in the reconstructed image and θp is a
parameter such that θp = mθr. This motion implies that the
two coverage balls B̄rp

(p̃12) and B̄rp
(p̃21) are initialized

such that they lie outside the resolution disc DR and move
spirally inwards till they overlap the central (fixed) ball
B̄rp

(p̃00) = B̄rp
(0, 0). The spiral path ensures visiting all

relative position states that correspond to full coverage of
the resolution disc. Thus ρ and θ are constrained to satisfy

ρ(θ) = k1 (k2π − θ) , θ ∈ [0, (m + 1)π/2] , (5.4)
where k1 = λ

πθp
and k2 = (m+1)

2 .
If we let r be the position vector of the collector

spacecraft, then the constraints (5.3) and (5.4) imply that
r = (x, y, z) =

(
(k1(k2π − θ) cos θ, k1(k2π − θ) sin θ,

(1/2)
(
(k2

1/β2)(k2π − θ)2 − β2
) )

.(5.5)
The arc length q is obtained as a function of θ using the
definition of the arc length of curve in space:

q(θ) = h(θ) =
∫ θ

0

‖∂r(θ′)/∂θ′‖dθ′. (5.6)
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The functional form of h can be obtained explicitly, which
we omit for the sake of brevity. By the geometry of the
problem described in previous paragraphs, it is easy to see
that the function h is both one-to-one and onto. Hence,
given a value for θ, one can uniquely solve for q using

θ = h−1(q). (5.7)

The metric on the tangent space is determined by com-
puting the line element ds2 in terms of the coordinate q.
Since q is the distance traveled on M , ds2 = dq2 and the
single element of the metric g is simply given by

g(q) = 1. (5.8)
With this, one is now in a position to compute the connec-
tion coefficients. The single connection coefficient (or the
Christoffel symbol) is given by

Γ = (1/2g)(∂g/∂q) = 0. (5.9)
Since M is a one-dimensional manifold, the curvature
tensor R is identically zero everywhere on M .

To compute ṽ in terms of q and v = q̇1, we first
need to obtain an expression for θ̇ in terms of q and q̇1.
Differentiating Equation (5.6), we obtain

v = q̇1 = (∂h/∂θ)θ̇ = r(q)θ̇, (5.10)
where r(q) = ∂h

∂θ

∣∣
θ=h−1(q)

using the relation (5.7). Using
this and Equations (5.5) and (5.7), we have:

ṽ = P
v
O = ẋ∂x + ẏ∂y = Px(q, v)∂x + Py(q, v)∂y, (5.11)

where
Px(q, v) = (v/r(q))

[ − k1 cos
(
h−1(q)

)
−k1

(
k2π − h−1(q)

)
sin

(
h−1(q)

) ]
Py(q, v) = (v/r(q))

[ − k1 sin
(
h−1(q)

)
+k1

(
k2π − h−1(q)

)
cos

(
h−1(q)

) ]
.

Finally, after quite an involved computation, one can
show that for such “scripted” (that is, pre-determined)
maneuvers, the meas function that ensues from the spiral
motion is given in terms of θ = h−1(q) by:

meas(θ) =
(
π/

(
4θ2

p

))
+

1
2

[
mθ2

2πθ2
p

− θ3

3π2θ2
p

]
,

θ ∈ [0, π]
meas(θ) =

(
π(3m + 1)/

(
12θ2

p

))
+

1
θ2

p

[
(m + 1)(θ − π)

2
− θ2 − π2

2π

]
,

θ ∈ [π, (π(m − 1)/2)]

meas(θ) =
π

(
3m2 − 7

)
24θ2

p

+
1

2θ2
p

[
(m + 3)(m + 1)

4

(
θ − (m − 1)π

2

)

− (m + 2)
2π

(
θ2 − (m − 1)2π2

4

)

+
1

3π2

(
θ3 − (m − 1)3π3

8

) ]
,

θ ∈ [(π(m − 1)/2) , (π(m + 1)/2)].
The function meas may now be obtained in terms of q by
the relation q = h(θ).

A final remark is in order. The basic assumption in this

work is that interferometry is performed continuously in
time as opposed to a “stop and stare” strategy. In a stop
and stare strategy, we identify discrete points on the spiral
and have the moving spacecraft visit these points, stop and
then stare to make a measurement. In the present work,
the scheme we envision is one where the way points are
assumed to be sufficiently close to each other and lie on
the spiral. We also assume that the optical system generates
interference patterns on the fly while the formation is
dynamically evolving in space.

VI. CONCLUSION

In this paper we used a differential geometric approach
to study extensions to the dynamic coverage optimal control
problem (see [1]), where now we study non-coplaner forma-
tions. The optimal control problem is defined to achieve ma-
neuvers optimal in both imaging and fuel senses. Optimality
conditions were derived and a two spacecraft example was
given to illustrate our results for the one degree of freedom
case. The geometric approach is pursued since the notation
is compact, the result is global and no need for specifying
any one set of local coordinates is required. The result of
Theorem (IV.2) may also be easily extended to a rigid body
treatment (as opposed to the point particle model) of each
spacecraft to include attitude control. Future work will aim
at the investigation of computer based simulations in an
attempt to obtain solutions to the N spacecraft problem and
to study the behavior of an optimal solution that satisfies
the necessary conditions given in this paper.
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