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Abstract— This paper builds on the OSNR model in [13] and
studies the optimization problem of optical signal to noise ratio
(OSNR) in the case of single point-to-point links. An m-player
noncooperative game is formulated and the cost function for
each channel is introduced, with differentiated prices. The
status of the link, i.e. such that the total input optical power
will not exceed the link’s capacity, is considered in the cost
function. Conditions for existence and uniqueness of the Nash
equilibrium solution are given. Some strategies for dynamic
price setting are also discussed, in the context of dynamic
channel-add.

I. INTRODUCTION

Recently, there has been much interest in optical
wavelength-division multiplexing (WDM) communication
networks and their dynamic aspects, [4], [11], [12]. In
optical communication systems, information is transmit-
ted by modulating the optical power of light pulses of
a specific wavelength, and multichannel optical systems
are realized by WDM technology. Reconfigurable optical
networks operate in a dynamic environment, with some
existing channels remaining in service while network re-
configuration (channel add/drop) is being performed, [12].
Channel performance should be optimized and maintained
after reconfiguration.

Channel performance typically depends on transmission
parameters such as optical signal-to-noise ratio (OSNR),
dispersion and nonlinear effects, [14]. In link optimization,
OSNR is considered as the main performance parameter,
while dispersion and nonlinear effects are kept low by
proper link design, [13]. The dominant impairment is noise
accumulation in chains of optical amplifiers and its effect
on OSNR, [8]. By adjusting channel input power, the
OSNR can be equalized. Some static approaches have been
developed for single-link OSNR optimization of cascaded
amplifiers, [7], [8].

[13] extends this problem to a general multi-link config-
uration, via a noncooperative game approach. An OSNR
model is formulated for reconfigurable optical networks.
Noncooperative games are characterized by assuming that
cooperation between players is not possible, such that each
play acts independently, [5]. This is an appropriate assump-
tion in large-scale optical networks, where a centralized
system for transmitting real-time information between all
channels is difficult to maintain. In this sense, a network
game is defined where each channel attempts to minimize
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its individual cost function by adjusting its transmission
power, in response to the others’ actions. A cost function
with the utility function monotone in OSNR is defined
and conditions for existence and uniqueness of the Nash
equilibrium (NE) solution are given in [13].

Noncooperative game approaches have been suggested in
recent studies of power control in wireless communication
systems, [1], [3], [6], [15]. It is shown that if an appropriate
cost function and pricing mechanism are used, one can find
an efficient Nash equilibrium for a multi-user network, [2].

We extend the cost function in [13] to a more general
case, motivated as follows. In optical networks, there exists
a threshold (saturation power) of each link in the paths
of channels, such that the nonlinear effects in the span
following each amplifier are small, [8]. The total launched
power has to be below or equal to that threshold, which
can be interpreted as a capacity constraint. Each optical
amplifier in a link is operated with a target optical power
(less or equal to the threshold), therefore the total launched
power in the span will be equal to it. This is the condition
imposed and used in formulating the network game in [13],
thereby ensuring it at any intermediary site in the link.
However, this condition on the total launched power in a
span was not yet imposed on the source of each link (Tx) in
[13]. Therefore there is no guarantee for the span between
Tx and the first amplifier that the total launched power will
be equal or below the threshold of the link.

In this paper, we consider this capacity constraint and
impose it indirectly at Tx by adding a new term on the cost
function used in [13]. We not only assume that each channel
pays a price proportional to the amount of optical power
it uses, but also give a regulatory function by providing
each channel with the link status, i.e., how much the total
power is below the target. This is valuable for the case when
the sum of channel optical power approaches the available
capacity, as the price will increase without bound. Hence
this preserves the power resources by forcing all channels to
decrease their corresponding optical power. This is similar
to the case in general networks: the network provides
congestion indication signals to users and allows users
to adapt their transmission rates in response to network
congestion, [6]. As a first step extending the cost function
in [13], We consider a single link accessed by m channels
with all spans having equal length.

We characterize the NE solution and consider some dy-
namic properties of the pricing strategies. The organization
of the paper is as follows. We present the OSNR model
based on [13] for a single link in the next section. In
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Section 3, the OSNR optimization problem is formulated.
The existence and uniquness of NE solution is proven in
Section 4. In Section 5 we give a discussion on dynamic
pricing strategies, followed by conclusions in Section 6.

II. SINGLE LINK OSNR MODEL

λ1

λ1

Optical Fiber
λm λm

Optical Amplifier

Fig. 1. Block Diagram of Optical Link

In this section, we review the OSNR model in [13]
for a single link (Fig. 1). This link is composed of N
cascaded optically amplified spans. There are m channels
transmitted across the link. For a channel i, corresponding to
wavelength λi, we denote by ui, n0,i the input signal optical
power and the input noise power. Let u = [u1, ..., um]T

denote the vector of channel input power and u−i be the
vector obtained by deleting the ith element from u,

u−i = [u1, ..., ui−1, ui+1, ..., um]T .

Optical amplifiers are used to amplify the optical power
of all channels in a link simultaneously. The gain of each
channel can be compensated by equalizing channel optical
powers when a different gain is experienced, because of the
amplifier’s non-uniform wavelength-dependent gain profile
[10]. We assume that all the amplifiers in a link have the
same spectral shape and are operated in automatic power
control (APC) mode [14], with the total power target P0,
which we take as the optical power capacity of this link.
We note that P0 is selected to be bellow the threshold for
nonlinear effects [8]. Because of the amplified spontaneous
emission (ASE) noise which is also wavelength-dependent,
different channels will have different OSNR. While the
dispersion and nonlinearity effects are considered to be
limited, the ASE noise accumulation will be the dominant
impairment in our model. We make the same assumption
as in [8], [13] that ASE noise power does not participate in
amplifier gain saturation.

From Lemma 2 in [13], the OSNR γi for the ith channel
in a single link is given as

γi =
ui

n0,i +
∑

j Γijuj

, (1)

where Γ = [Γij ] is the full (m × m) system matrix and
Γij may be viewed as the system gain from channel j to
channel i. Or we can rewrite γi as

γi =
ui

X−i + Γiiui

, (2)

where
X−i =

∑
j �=i

Γijuj + n0,i. (3)

III. NONCOOPERATIVE GAME FORMULATION

In this section, we formulate a noncooperative game,
with the cost function Ji(ui, u−i) for each channel i being
defined as the difference between a pricing and a utility
function: Ji(ui, u−i) = Pi(ui, u−i) − Ui(ui, u−i). Such a
cost function not only sets the dynamic prices, but also
captures the demand of a channel for the optical power.
Each channel i minimizes its cost function Ji by adjusting
the optical power ui.

Note that in our case, both the pricing function and the
utility function depend not only on ui but also on all other
channel powers.

We consider the same utility function as in [13]:

Ui(ui, u−i) = qi ln(1 + ki

ui

X−i

), (4)

where qi > 0 is channel specific parameter and ki > 0 is
introduced for scalability of the term ui

X−i
.

This utility function Ui is twice continuously differ-
entiable, monotone increasing and strictly concave in ui,
which is in accordance with the economic principle, law of
diminishing returns, [1].

Note that we can express the utility function Ui as:

Ui = qi ln
1 + (ki − Γii)γi

1 − Γiiγi

,

such that Ui is monotone in γi. Here qi indicates the
strength of the channel’s desire to maximize its OSNR, γi.
Maximizing utility is related to maximizing channel OSNR.

The pricing function Pi indicates the current state of
networks, [2]. We define this function as:

Pi(ui, u−i) = piui +
1

P0 −
∑

j uj

, (5)

where pi > 0 is the pricing parameter of channel i and is
determined by the network.

The pricing term not only sets the actual price for each
channel, but also compared to [13], considers the link status
via the extra term 1

P0−
∑

j
uj

. When the sum of optical
power of channels approaches the target power P0, the price
increases without bound. Hence the power resources are
preserved by forcing all channels to decrease their input
power.

Therefore the cost function that the ith channel will seek
to minimize is

Ji(ui, u−i) = piui +
1

P0 −
∑

j uj

−qi ln(1+ki

ui

X−i

). (6)

Hence the underlying m-player noncooperative game is
defined here in terms of the cost functions Ji(ui, u−i),
i = 1, ...,m, and the constraints

ui ≥ 0 (7)∑
j

uj ≤ P0 (8)
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We denote by U the subset of R
m where power vector u

belongs in view of the foregoing constraints (7, 8). Then the
constraint set U is closed and bounded (therefore compact).

Note that in such a form, the term 1
P0−

∑
j

uj
in (6),

ensures that ui = P0 −
∑

j �=i uj is not a solution to the
minimization of Ji, i.e.,

Ji(u : ui = P0 −
∑
j �=i

uj) > Ji(u), ∀u, ui �= P0 −
∑
j �=i

uj .

This is a necessary condition for the NE solution to be
an inner one. We make another assumption in order to
guarantee that the NE solution is inner.

(A1) The ith channel’s cost function has the following
property: at ui = 0, Ji(u : ui = 0) > Ji(u), ∀u, ui �= 0.

We can rewrite (A1) as

qi ln(1 + ki

ui

X−i

) +
1

P0 −
∑
j �=i

uj

> piui +
1

P0 −
∑

j uj

.

Hence, if qi and pi are selected such that qi � pi, (A1) is
satisfied. This can be reached since qi and pi are determined
by the channel and the network, respectively.

IV. EXISTENCE AND UNIQUENESS OF NE SOLUTION

In this section, we prove existence and uniqueness of
the NE solution. We will use the following mathematical
preliminary results.

Definition 1 Let A be a m × m matrix, A = [aij ]. A is
said to be diagonally dominant if

|aii| ≥
∑
j �=i

|aij |, ∀i.

It is said to be strictly diagonally dominant if

|aii| >
∑
j �=i

|aij |, ∀i.

Lemma 1 Let A be a m × m real matrix. The diagonal
elements of A are all positive. Then A is positive definite
if A and AT are both strictly diagonally dominant.

Proof. By Definition 1, we have aii >
∑

j �=i |aij | and
aii >

∑
j �=i |aji|. Thus for matrix (A + AT ), we have

2aii >
∑

j �=i(|aij | + |aji|) ≥
∑

j �=i |aij + aji|. Hence
2aii >

∑
j �=i |aij + aji|, such that (A + AT ) is strictly

diagonally dominant. From Gershgorin’s Theorem, [9], it
follows that all the eigenvalues of (A + AT ) are real and
positive, i.e., (A+AT ) is positive definite. Therefore matrix
A is positive definite. �

Lemma 2 Let A, B, C, D and E be m×m real positive
matrices with A = B + C + D + E. Then matrix A is full
rank if B is positive semidefinite and C, D, E are positive
definite.

Now we give the main results.

Theorem 1 Consider the m-player noncooperative game
problem with individual cost function (6) and constraints
(7)-(8). Such a problem admits a unique inner NE solution
if ki, qi and pi are selected such that, ∀i, j:

ki > (m − 1)Γij , j �= i, (9)

qmin ≤ qi <
qmin∑
j �=i

Γji

kj

, (10)

pmax

√
qi

∑
j �=i

Γji

kjqj

< pi ≤ pmax, (11)

where

qmin = min
i

qi (12)

pmax = max
i

pi. (13)

Proof. The proof follows the approach of [2]. We note that
U is closed and bounded. Let u

1,u2 ∈ U be two power
vectors and 0 < λ < 1 be a real number. We have, for any
u

λ = λu
1 + (1 − λ)u2, u

λ ≤ P0. Thus U is convex,
although not rectangular. Each Ji(ui,u−i) is continuous
and bounded except on the hyperplane defined by (8). Hence
for a given sufficiently small ε > 0, if we replace (8) with∑

j uj ≤ P0 − ε and denote the corresponding constraint
set by Uε. Then Uε is clearly compact, convex and non-
rectangular. On Uε, differentiating (6) with respect to ui,
we have

fi(u) :=
∂Ji

∂ui

= pi +
1

(P0 −
∑

j uj)2
−

qiki

X−i + kiui

; (14)

and differentiating fi(u) with respect to ui and uj , j �= i,
yields

Aii(u) :=
∂2Ji

∂u2
i

=
2

(P0 −
∑

j uj)3
+

qik
2
i

(X−i + kiui)2
,

(15)

Aij(u) :=
∂2Ji

∂uj∂ui

=
2

(P0 −
∑

j uj)3
+

qikiΓij

(X−i + kiui)2
,

(16)
From (15), it follows directly that ∂2Ji

∂u2

i

is well-defined and
positive on Uε. By a standard theorem of the game theory
(Theorem 4.4, p.176 in [5]), this game admits a NE solution.

Furthermore, the solution has to be inner from (A1), i.e.
the NE solution is independent of ε for ε > 0 sufficiently
small. Thus it provides also a NE solution to the original
game on U.

We next show the uniqueness of the NE solution. Note
that the inner solution satisfies the first-order optimality
conditions, i.e., the set of equations:

fi(u) = 0, i = 1, . . . ,m.

Suppose that there are two Nash equilibria, represented
by two optical power vectors u1 and u0, respectively. Let
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�u = u0 − u1. Define the pseudo-gradient vector:

g(u) :=

⎛
⎜⎝

∇u1
J1(u)
...

∇um
Jm(u)

⎞
⎟⎠ =

⎛
⎜⎝

f1(u)
...

fm(u)

⎞
⎟⎠ , (17)

where the notation in (14) is used.
Since the NE solution is necessarily an inner solution,

from the first-order optimality condition for u1 and u0, it
follows that g(u1) = 0 and g(u0) = 0, i.e. ∀i,

n0,i +
∑
j �=i

Γiju
0
j + kiu

0
i =

qiki

pi + 1
(P0−

∑
j

u0

j
)2

, (18)

n0,i +
∑
j �=i

Γiju
1
j + kiu

1
i =

qiki

pi + 1
(P0−

∑
j

u1

j
)2

, (19)

Define an optical power vector u(θ) as a convex combina-
tion of the two equilibrium points u1 and u0:

u(θ) = θu0 + (1 − θ)u1, 0 < θ < 1. (20)

Differentiating g(u(θ)) with respect to θ, we get

dg(u(θ))

dθ
= G(u(θ))

du(θ)

dθ
= G(u(θ))�u, (21)

where G(u) is the Jacobian of g(u), with respect to u. Using
(17) together with the notation in (15, 16) yields

G(u) := [Aij ] =

⎛
⎜⎜⎜⎝

A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

Am1 Am2 · · · Amm

⎞
⎟⎟⎟⎠ . (22)

Integrating (21) over θ, we obtain

0 = g(u1) − g(u0) =

[∫ 1

0

G(u(θ))dθ

]
�u. (23)

For simplicity, we define

G(u1, u0) =

∫ 1

0

G(u(θ))dθ =:
[
Aij

]
, (24)

where

Aij := Aij(u1, u0) =

∫ 1

0

Aij(u(θ))dθ. (25)

Therefore, we can rewrite (23) as

0 = G(u1, u0)�u. (26)

Note that �u is a constant optical power vector.
We compute next Aii and Aij in (25).

Using (3, 15, 20) into (25) yields

Aii =

∫ 1

0

Aii(u(θ))dθ

=

∫ 1

0

[
2

(P0 −
∑
j

uj(θ))3
+

qik
2
i

(X−i(θ) + kiui(θ))2
]dθ

=

∫ 1

0

[
2

(P0 −
∑
j

u1
j − θ

∑
j

�uj)3
+

qik
2
i

(n0,i +
∑
j �=i

Γij(θ�uj + u1
j ) + kiui(θ))2

]dθ

Recall (18, 19) and denote the left-hand side of (18, 19) as

ai + bi := n0,i +
∑
j �=i

Γiju
0
j + kiu

0
i , (27)

bi := n0,i +
∑
j �=i

Γiju
1
j + kiu

1
i . (28)

With these notations, we can rewrite the foregoing as

Aii =

∫ 1

0

2

(P0 −
∑
j

u1
j − θ

∑
j

�uj)3
dθ

+

∫ 1

0

qik
2
i

(aiθ + bi)2
dθ (29)

For the second integral, we get∫ 1

0

qik
2
i

(aiθ + bi)2
dθ =

qik
2
i

bi(ai + bi)
(30)

With ai, bi defined in (27, 28) and using (18, 19), it follows

∫ 1

0

qik
2
i dθ

(aiθ + bi)2
=

(pi + 1
(P0−

∑
j

u1

j
)2

)(pi + 1
(P0−

∑
j

u0

j
)2

)

qi
(31)

Therefore, computing the first integral and using (31), (29)
can be written as

Aii =
(P0 −

∑
j u0

j ) + (P0 −
∑

j u1
j )

(P0 −
∑

j u0
j )

2(P0 −
∑

j u1
j )

2

+
(pi + 1

(P0−
∑

j
u1

j
)2

)(pi + 1
(P0−

∑
j

u0

j
)2

)

qi

=
(P0 −

∑
j u0

j ) + (P0 −
∑

j u1
j )

(P0 −
∑

j u0
j )

2(P0 −
∑

j u1
j )

2

+
1

qi(P0 −
∑

j u0
j )

2(P0 −
∑
j

u1
j )

2

+
pi

qi

(P0 −
∑

j u0
j )

2 + (P0 −
∑

j u1
j )

2

(P0 −
∑

j u0
j )

2(P0 −
∑

j u1
j )

2
+

p2
i

qi

,

or

Aii = W1 + W2 ·
1

qi

+ W3 ·
pi

qi

+
p2

i

qi

, (32)
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with

W1 =
(P0 −

∑
j u0

j ) + (P0 −
∑

j u1
j )

(P0 −
∑

j u0
j )

2(P0 −
∑

j u1
j )

2
,

W2 =
1

(P0 −
∑

j u0
j )

2(P0 −
∑
j

u1
j )

2
,

W3 =
(P0 −

∑
j u0

j )
2 + (P0 −

∑
j u1

j )
2

(P0 −
∑

j u0
j )

2(P0 −
∑

j u1
j )

2
. (33)

Note that W1,W2,W3 are positive constants. Similarly for
Aij , j �= i, we can obtain, using (16, 20) into (25), that

Aij = W1 + W2 ·
Γij

qiki

+ W3 ·
piΓij

qiki

+
p2

i Γij

qiki

, (34)

where W1,W2,W3 are defined in (33).
Let Bii = 1, Cii = 1

qi
, Dii = pi

qi
Eii =

p2

i

qi
and Bij = 1,

Cij =
Γij

qiki
, Dij =

piΓij

qiki
, Eij =

p2

i Γij

qiki
, for j �= i. Therefore,

for any i, j, Aij above in (32, 34) can be written as

Aij = W1 · Bij + W2 · Cij + W3 · Dij + Eij ,

and matrix G(u1, u0) in (24) can be expressed as

G(u1, u0) = W1 · B + W2 · C + W3 · D + E. (35)

It is obvious to check that matrix B with Bij = 1 is positive
semidefinite. If (9) holds, it follows ki >

∑
j �=i Γij . Hence

C,D and E are all strictly diagonally dominant. If (10)
holds, i.e.,

1

qi

>
∑
j �=i

Γji

qminkj

,

we can obtain
1

qi

>
∑
j �=i

Γji

qjkj

, (36)

so that CT is strictly diagonally dominant.
Now from (36), it follows qi

∑
j �=i

Γji

qjkj
< 1, such

that
√

qi

∑
j �=i

Γji

qjkj
> qi

∑
j �=i

Γji

qjkj
. From (11) and the

foregoing, it follows that

pmaxqi

∑
j �=i

Γji

kjqj

< pi ≤ pmax,

from which the following inequality can be obtained:

pi

qi

>
∑
j �=i

pjΓji

qjkj

. (37)

The above shows that DT is strictly diagonally dominant.
Following similar arguments, it can be shown that

p2
i

qi

>
∑
j �=i

p2
jΓji

qjkj

, (38)

so that ET is also strictly diagonally dominant. From
Lemma 1, matrix C,D and E are all positive definite, and
from Lemma 2, we conclude that matrix G(u1, u0) in (35)
is full rank. From (26), it readily follows that �u = 0, i.e.,
u0 = u1. Therefore, the NE solution is unique. �

Remark:

When pi = p and qi = q, the same price is set for
channels and each channel has the same preference for
OSNR. Therefore the cost function is reduced to

Ji(ui, u−i) = pui +
1

P0 −
∑
j

uj

− q ln(1 + ki

ui

X−i

).

In this case, the conditions in Theorem 1 are reduced to (9)
only. Compared with the condition (28) in [13], (9) is more
restrictive. However, unlike [13], the cost function above
guarantees that the total launched power at Tx satisfies the
capacity constraint,

∑
j uj < P0.

V. DISCUSSION

As indicated before, qi is related to the preference for
OSNR of ith channel, and pi is the pricing parameter
determined by the network. We will discuss parameter
selection in the following subsections.

A. Decentralized Pricing Strategy

Here, the network sets fixed prices for each channel,
and channels decide their willingness (qi) to pay to obtain
satisfied OSNR levels.

First, we study the relation between qi and the corre-
sponding γi for each channel. From (2, 14), at each Nash
equilibrium, we have

qi(γi) =
pi

ki

(X−i + kiui(γi)) +
X−i + kiui(γi)

ki(P ′
0 − ui(γi))2

, (39)

where
P ′

0 = P0 −
∑
j �=i

uj ,

ui(γi) =
X−i

1/γi − Γii

.

For a given lower bound of OSNR, γ∗
i , we can show that

if qi is adjusted to satisfy the lower bound

qi > [
pi

ki

1 + (ki − Γii)γ
∗
i

1 − Γiiγ∗
i

+
(1 − Γiiγ

∗
i )(1 + (ki − Γii)γ

∗
i )

ki(P ′
0 − (P ′

0Γii + X−i)γ∗
i )2

]X−i, (40)

each channel will achieve at least a certain OSNR
level, i.e., γi > γ∗

i . Recall the lower bound in [13]:
pi

ki

1+(ki−Γii)γ
∗

i

1−Γiiγ
∗

i

X−i, we note that the lower bound in (40)
is more restrictive, due to the presence of the second
term. However as mentioned above, the more general cost
function considered here guarantees

∑
j uj < P0.

B. Dynamic Channel-Add

In reconfigurable optical networks, the number of chan-
nels can change dynamically. We will study the case of
channel-add with two extreme strategies for channels to be
added: worst-OSNR strategy and best-OSNR strategy. For
simplicity, we consider m = 2 and m = 3 only.
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(I) Worst-OSNR Strategy: For this case, each newly
added channel i sets qi as qmin and gets pi as pmax, where
qmin and pmax are defined in (12, 13).

Consider m = 2 and the 2nd channel is newly added.
From (9, 10, 11), we can get the following conditions for
selecting parameters of channel 2: k1 > Γ12, k2 > Γ21 and

Γ21

k2
q1 < q2 ≤ q1,

p1 ≤ p2 < p1

√
k2q2

Γ21q1
.

For the 3rd channel being added, we can obtain
k1 > 2max {Γ12,Γ13}, k2 > 2max {Γ21,Γ23}, k3 >
2max {Γ31,Γ32} for m = 3, and q3, p3 need to be selected
such that

max{(
Γ12

k1
+

Γ32

k3
)q2, (

Γ21

k2
+

Γ31

k3
)q1} < q3 ≤ min

i=1,2
{qi}

max
i=1,2

{pi} ≤ p3 < min{

√
p2
1/q1

Γ21

q2k2

+ Γ31

q3k3

,

√
p2
2/q2

Γ12

q1k1

+ Γ32

q3k3

}

(II) Best-OSNR Strategy: For this case, each newly added
channel i sets qi as much as he/she can, and get the smallest
pi. The conditions for channel i to select ki are same as
those corresponding conditions in the worst-OSNR Strategy.
So here we discuss parameter selection of qi and pi only.

For m = 2 and the 2nd channel being newly added, the
conditions for q2 and p2 can be written as

q1 ≤ q2 <
k1

Γ12
q1, (41)

p1

√
Γ12q2

k1q1
< p2 ≤ p1. (42)

For the 3rd channel being added,

q1 ≤ q3 <
q1

Γ13

k1

+ Γ23

k2

, (43)

p1

√
q3(

Γ13

q1k1
+

Γ23

q2k2
) < p3 ≤ p1. (44)

Note that when the 3rd channel is added, the conditions for
channel 2 will be changed to

q1 ≤ q2 <
q1

Γ12

k1

+ Γ32

k3

, (45)

p1

√
q2(

Γ12

q1k1
+

Γ32

q3k3
) < p2 ≤ p1. (46)

Comparing (45) with (41), we can find that (41) is more
restrictive. So q2 will not be reselected, neither p2.

The above are two possible extreme strategies. Other
strategies are possible, and the basic condition for a channel
to select its strategy is to meet the requirement of OSNR.

VI. CONCLUSIONS

In this paper, the framework of noncooperative game
theory was used to study the OSNR optimization problem,
extending the results in [13]. Motivated by the fact that
the capacity threshold of a link is not imposed on the total
launched power at Tx in [13], we extended the cost function
by considering the status of the link. This modified cost
function considers implicitly the capacity constraint. We
studied the case of a single link and obtained conditions
for the existence and uniqueness of the NE solution. These
conditions are more restrictive compared with those in [13],
however this trade-off guarantees the total launched power
will not exceed the capacity threshold of a link. Under
such conditions, two possible extreme strategies for the case
of dynamic channel-add were studied. There are several
directions for future research. One possible extension of this
work is to a general multi-link configuration. Another topic
of research is to analyze other strategies of setting param-
eters of dynamic channel-add, as well as development of
real-time iterative power control algorithms, with provable
convergence for general configurations.
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