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Abstract— We investigate the average rate per job in an
open M/M/1 processor-sharing queue. We introduce three
definitions of average rate as seen by the system and by each
job, and present expressions for each in terms of the system
rate and load. We compare the three measures and prove
that they are strictly ordered over all loads. We next consider
the system rate required to achieve a minimum average rate
per job, and prove that it is increasing and convex. Finally,
we consider the system rate required to achieve a minimum
tail probability on the average rate per job, and present
expressions illustrating when the system rate is constrained
by the required tail probability.

I. INTRODUCTION

Processor-sharing (PS) queues have long been of interest
in a wide variety of operations research environments, in-
cluding telecommunications. We are particularly motivated
by data telecommunication systems, in which each user
represents a file to transmit and the queue service rate
represents the total transmission rate of the system. If the
total rate of the system is shared equally between all active
file transmissions, then the system can be modeled by a
processor-sharing queue.

The most common data telecommunication performance
measures involve the transmission rate per user. From the
system’s perspective, the total transmission rate is split
among the active users, and therefore the instantaneous
rate per user changes whenever a user arrives or departs.
From the user’s perspective, the average transmission rate
is defined as the file size divided by the time required to
transmit the file. In the context of a processor-sharing queue,
these transmission rates per job are therefore related to the
stationary distribution of the queue or to the ratio of a user’s
service time requirement to the user’s sojourn time. There
is a long literature on processor-sharing systems, including
characterizations of the stationary distribution of the queue
and the distribution of users’ sojourn times. However, we
have found no literature on the transmission rates per job.

For open M/M/1-PS systems, Coffman et. al. [1] derived
the Laplace transform of the waiting time distribution of
a tagged user, conditioned on the required service time
and the number in the system upon the tagged arrival.
From this result, they obtained the first two moments of
the conditioned equilibrium waiting time. By removing the
conditioning and inverting this Laplace transform, Morrison
[2] obtained an integral representation for the complemen-
tary distribution of the sojourn time, which was refined by
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Guillemin and Boyer [3] via spectral theory to obtain the
distribution of the sojourn time of a user conditioned on the
number of users in the system at its arrival. The moments
of this distribution were further studied by Sengupta and
Jagerman [4].

For closed M/M/1-PS systems, Morrison obtained the
asymptotic approximation to the equilibrium distribution
of the waiting time [5], as well as the distribution of the
response time conditioned on the required service time in
the very heavy-usage case [6], using perturbation analysis
on the generating functions of the sojourn time. Similar
perturbation techniques were used by Knessl [7] to construct
an asymptotic approximation to the sojourn time distribu-
tion in a large heavy loaded system. Gaver and Jocobs
[8] investigated the multiclass processing-sharing queues
using a heavy traffic diffusion approximation. Switching
time were considered by Bersani [9] and Barbagallo [10].

There is also a literature on other types of processor-
sharing queues. The steady-state behavior of two M/M/1
parallel PS queues under the head-of-the-line PS disci-
pline is investigated in [11] and [12]. GI/M/1-PS systems
were studied in [13]-[17], M/G/1-PS systems in [18]-[19],
MAP/M/1-PS systems in [20].

Finally, there is a literature on slowdown in queues,
defined as the ratio of the sojourn time to the job size
(c.f. [21]). Mean slowdown is often used as a measure
of system performance as opposed to the more traditional
mean sojourn time. Under processor-sharing, all jobs have
the same mean slowdown; hence the processor is fairly
shared among all jobs in the system.

Our focus, however, is on the transmission rate per job.
We present three definitions of average rate per job. The
first two are from the system’s perspective, and are related
to the stationary distribution of the queue. The third is
from the user’s perspective, and is related to the ratio of
a user’s service time requirement to the user’s sojourn
time. Although the literature on the stationary distribution,
sojourn time, and slowdown ratio for processor-sharing
queues forms a foundation for our work, it does not directly
address these performance measures.

The remainder of this paper is organized as follows. In
section II, we present the three definitions of average rate
per job. We derive expressions for each in terms of the
system rate and load, and prove that they are strictly ordered
over all loads. In section III, we consider two types of
performance bounds, on average rate and on the probability
of meeting or exceeding a specified rate. We prove that
the system rate required to achieve a minimum average
rate per job is increasing and convex. We also present
expressions illustrating when the system rate is constrained
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by the required tail probability.

II. QUEUEING MODEL

We are motivated by users sharing a data channel of total
transmission rate R (bits/sec). Suppose that users arrive as
a Poisson process with rate λ (jobs/sec). Suppose that each
user transmits a file and then departs from the system, and
that file sizes are independent and identically distributed and
drawn from an Exponential distribution with mean F (bits).
Suppose that when there are N ≥ 1 jobs in the system, each
user transmits at an instantaneous rate of R/N .

The system is therefore equivalent to a M/M/1-PS queue
with arrival rate λ and service rate µ (jobs/sec), where
µ = R/F . Denote the load on the queue by ρ ≡ λ/µ, and
assume that ρ < 1. It follows that the stationary distribution
for the number of users in the system is given by:

πn ≡ Pr(N = n) = (1 − ρ)ρn, n = 0, 1, 2, · · ·

We are interested in the transmission rate of users when
the system is not empty, and therefore we will need to know
the distribution of the number of jobs in the queue during
busy cycles, given by:

pn ≡ Pr(N = n|n ≥ 1)

=
πn

1 − π0
= (1 − ρ)ρn−1, n = 1, 2, · · · (1)

A. Three definitions of average rate

We now introduce three definitions of average rate in the
system. We start with the average rate per user as seen by
the system, conditioned on at least one user in the system:

Definition 1:

mtime ≡

∞∑
n=1

R

n
pn (2)

A closed form expression for mtime in terms of either R
and ρ or R and λF can be found by substituting (1) into
(2) and expressing the sum as a logarithm:

mtime =
R(1 − ρ)

ρ
ln(1/(1 − ρ))

=
R(R − λF )

λF
ln(R/(R − λF )) (3)

A second definition of average rate can be created by
weighting the instantaneous rate per user by the number
of users in the system. Instead of using the stationary
distribution during a busy cycle {pn}, we weight the
distribution by the number of jobs n, namely we replace (1)
by p′n ≡ Cnρn. The constant C can be found by evaluating∑

∞

n=1 p′n = 1, resulting in:

p′n = n(1 − ρ)2ρn−1, n = 1, 2, · · · (4)

Our second definition of average rate is thus:
Definition 2:

mweighted =
∞∑

n=1

R

n
p′n (5)

Substituting (4) into (5) yields a closed form expression in
terms of either R and ρ or R and λF :

mweighted = R(1 − ρ) = R − λF (6)

Finally, a third definition of average rate is from the
perspective of the users. Let Fi represent the file size of
user i. Let Ti represent user i’s sojourn time, the time
user i spends in the system from arrival until completion
of service. Let Ri represent user i’s average rate (over its
sojourn time). It follows that Ri = Fi/Ti.

The third definition of average rate is Ri averaged over
all users:

Definition 3:
mjobs = EiRi (7)

Since the arrivals form a Poisson process, an arrival will
find the number of users in the system (excluding itself)
to reflect the stationary distribution {πn}. However, over
a user’s sojourn time, the expected average rate depends
not only upon the stationary distribution {πn}, but also
upon transients. The problem is that a user’s sojourn time
also depends on future arrivals and departures, due to the
processor-sharing service discipline.

The key is to condition on customer’s i’s file size, or
equivalently upon its service time. Denote the average rate
for jobs with file size Rτ (and hence service time τ ) by:

Y (τ) = Ei(Ri|Fi = Rτ) = Ei(Fi/Ti|Fi = Rτ)

= RτEi(1/Ti|Fi = Rτ) (8)

It follows that mjobs = EτY (τ).
The Laplace transform of sojourn time conditioned on a

job’s service time is given in [1]:

Ei(e
−sTi |Fi = Rτ) = c1(λ, µ, s, τ) (9)

where

c1(λ, µ, s, τ) =
(1 − ρ)(1 − ρr2)e−λ(1−r)τe−sτ

(1 − ρr)2 − ρ(1 − r)2e−µτ(1−ρr2)/r

and

r =
λ + µ + s − [(λ + µ + s)2 − 4λµ]

1
2

2λ
(10)

This result can be used to find an expression for
Ei(1/Ti|Fi = Rτ) by integrating the conditional Laplace
transform: ∫

∞

0

ETi
(e−sTi |Fi = Rτ) ds

= ETi

(∫
∞

0

e−sTi ds

∣∣∣∣ Fi = Rτ

)

= ETi

(
1

Ti

∣∣∣∣ Fi = Rτ

)
(11)

The average rate for jobs with service time τ is thus given
by substituting (9) and (11) into (8):

Y (τ) = Rτ

∫
∞

0

Ei(e
−sTi |Fi = Rτ) ds

= Rτ

∫
∞

0

c1(λ, µ, s, τ) ds
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Furthermore, since Fi is Exponentially distributed with
mean F , the average rate as seen by users is:

mjobs = EτY (τ)

=

∫
∞

0

Rτ

F
e−

Rτ
F

(∫
∞

0

c1(λ, µ, s, τ) ds

)
d(Rτ)

=
R2

F

∫
∞

0

τe−
Rτ
F

(∫
∞

0

c1(λ, µ, s, τ) ds

)
dτ

where r is given by (10).
In order to write mjobs solely in terms of either R and

ρ, we can solve (10) for s to obtain s = uµ where:

u =
(1 − r)(1 − ρr)

r
(12)

Substituting R/F by µ and using (12), we can represent
mjobs as:

mjobs = R(1− ρ)

∫
∞

0

µτe−µτ

(∫
∞

0

c2(λ, µ, s, τ) ds

)
dτ

(13)
where

c2(λ, µ, s, τ) =
(1 − ρr2)e−

1−r
r

µτ

(1 − ρr)2 − ρ(1 − r)2e−
(1−ρr2)

r
µτ

Define v = µτ . Using a variable substitution from {s, τ}
to {u, v}, we obtain:

mjobs = R(1 − ρ)

∫
∞

0

ve−v

(∫
∞

0

c3(ρ, u, v) du

)
dv

(14)
where

c3(ρ, u, v) =
(1 − ρr2)e−

1−r
r

v

(1 − ρr)2 − ρ(1 − r)2e−
(1−ρr2)

r
v

and

r =
1 + u + ρ − [(1 + u + ρ)2 − 4ρ]

1
2

2ρ

B. Comparisons of average rates

In this subsection, we compare the three definitions of
average rate presented above. The main result is given in
the following theorem:

Theorem 1: mtime > mjobs > mweighted, ∀ 0 < ρ < 1.
Proof: We start by establishing that 0 < r < 1. Since

4λµ > 0, it follows from (10) that r > 0. To establish that
r < 1, multiply both the numerator and denominator in (10)
by λ + µ + s + [(λ + µ + s)2 − 4λµ]1/2:

r =
2µ

λ + µ + s + [(λ + µ + s)2 − 4λµ]
1
2

<
2µ

λ + µ + s + [(µ − λ + s)2]
1
2

=
2µ

2µ + 2s
< 1 (15)

where the first inequality follows from (λ+µ+s)2−4λµ >
(µ − λ + s)2.

We now compare mtime as represented in (16) with
mjobs represented in (13). We start by expressing the term
ln(1/(1− ρ)) in (16) as a double integral with respect to s
and τ :

ln(1/(1 − ρ))

= ln(1/(1 − ρ))

∫
∞

0

µe−µτ dτ

=

∫
∞

0

µe−µτ
[
ln(1 − ρe−sτ )

]s=∞

s=0
dτ

=

∫
∞

0

µρτe−µτ

(∫
∞

0

e−sτ

1 − ρe−sτ
ds

)
dτ

Then mtime in (3) can be written in a similar form as mjobs

in (14):

mtime = R(1−ρ)

∫
∞

0

µτe−µτ

(∫
∞

0

c4(λ, µ, s, τ) ds

)
dτ

(16)
where

c4(λ, µ, s, τ) =
e−sτ

1 − ρe−sτ

Comparing (16) with (13), it follows that a sufficient
condition for mtime > mjobs to hold is:

c4(λ, µ, s, τ) > c2(λ, µ, s, τ), ∀ {s, τ, λ} > 0, 0 < ρ < 1.

Substitute s by µ(1− r)(1−ρr)/r into this expression and
and simplifying yields the equivalent sufficient condition:

(1 − ρr)2e
(1−ρr2)

r
µτ

> ρ(1 − r)2 + (1 − ρr2)
[
e

(1−ρr)
r

µτ − ρe(1−ρr)µτ
]

Finally, using the Maclaurin series of ex and simplifying,
if follows that mtime > mjobs if:

∞∑
n=3

(µτ)n

n!
Hn(ρ, r) > 0

where

Hn(ρ, r) = (1 − ρr)2
(1 − ρr2)n

rn

−(1 − ρr2)

[
(1 − ρr)n

rn
− ρ (1 − ρr)

n

]

We will show that the sum is positive by showing that each
term is positive, using mathematical induction method.

H3(ρ, r) =
ρ(1 − ρr)2(1 − ρr2)(1 − r)2

r2

Since 0 < ρ < 1 and 0 < r < 1, H3(ρ, r) > 0
establishing the base case. For the induction case, assume
that Hk(ρ, r) > 0 for some k > 3.

Hk+1(ρ, r) >
ρ(1 − ρr)k(1 − ρr2)(1 − r)

r

(
1

rk−1
− 1

)

Since r < 1, if follows that Hk+1(ρ, r) > 0. Consequently
Hn(ρ, r) > 0, for n ≥ 3, and hence mtime > mjobs.
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Fig. 1. comparisons of average rates

We now prove the second part of the theorem, that
mjobs > mweighted. From (6) and (14), we have:

mjobs

mweighted
=

∫
∞

0

ve−v

(∫
∞

0

c3(ρ, u, v) du

)
dv

Define c5(ρ, r, v) ≡ c3(ρ, u, v). Using a variable substitu-
tion from u to r, we obtain:

mjobs

mweighted
=

∫
∞

0

ve−v

(∫ 1

0

c5(ρ, r, v)
1 − ρr2

r2
dr

)
dv

We can bound the integrand for all 0 < ρ < 1, 0 < r < 1
and 0 < v < ∞:

ve−vc5(ρ, r, v)
1 − ρr2

r2

=
(1 − ρr2)2

(1 − ρr)2 − ρ(1 − r)2e−
(1−ρr2)

r
v

v

r2
e−

v
r

≥
(1 − ρr2)2

(1 − ρr)2
v

r2
e−

v
r >

v

r2
e−

v
r

It follows that

mjobs

mweighted
>

∫
∞

0

(∫ 1

0

v

r2
e−

v
r dr

)
dv = 1

Therefore mjobs > mweighted.
The three average rates (normalized by R) are plotted

versus the load ρ in figure 1. We observe that the difference
between mtime and mjobs is relatively small, and that
the difference between mtime or mjobs and mweighted is
concave with respect to ρ.

C. Tail probability

One additional performance measure we are interested
in is the tail probability of rate. Specifically, denote the
instantaneous rate per job at time t by Xt. From the point
of view of the system, under the stationary distribution

conditioned on at least one job in the system (1), the
distribution of Xt is given by:

P

(
Xt =

R

n

)
= pn =

(
1 −

λF

R

)(
λF

R

)n−1

, n ≥ 1

Therefore the probability of receiving an instantaneous rate
of x or better is given by:

P (X ≥ x) =

k∑
n=1

P

(
X =

R

n

)
= 1 −

(
λF

R

)k

where k = �R/x� ≥ 1.
We will consider the interpolated function:

G(x,R) ≡ 1 −

(
λF

R

)R/x

(17)

which is a continuous approximation to P (X ≥ x) defined
on 0 < x ≤ R.

III. MARGINAL BANDWIDTHS

In this section, we consider the ability of the system to
provide two types of performance bounds: mtime ≥ m and
G(x,R) ≥ p. We consider them separately in the next two
subsections. For purposes of discussion, we assume that the
user arrival rate λ and the average file size F are fixed, but
that the total system transmission rate R can be chosen
by an appropriate investment into the system. We further
assume that in all cases R > λF , so that ρ < 1.

A. Bound on mean rate

We start by examining the derivative of mtime with
respect to R, which follows from (3):

∂mtime

∂R
=

(
2R

λF
− 1

)
ln

(
R

R − λF

)
− 1

It can be easily shown that mtime increases monotoni-
cally with R:

Theorem 2: ∂mtime

∂R > 0 ∀ R.
Proof: Expanding ln( R

R−λF ) using a Maclaurin series,

∂mtime

∂R
=

(
2R

λF
− 1

) ∞∑
n=1

(λF/R)n

n
− 1

= 1 −
λF

R
+

(
2R

λF
− 1

) ∞∑
n=2

(λF/R)n

n
> 0

From (3), in order to satisfy mtime ≥ m, the rate
R ≥ Rmin, where Rmin is determined by the fixed point
equation:

m =
Rmin(Rmin − λF )

λF
ln

(
Rmin

Rmin − λF

)
(18)

It follows that the marginal bandwidth required for an
increase in the average rate mtime is given by:

∂R

∂mtime
=

((
2R

λF
− 1

)
ln

(
R

R − λF

)
− 1

)
−1
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A stronger characterization of Rmin versus m is de-
scribed in the following theorem:

Theorem 3: Rmin is a monotonically increasing and con-
vex function of m, and Rmin −m monotonically decreases
with m from λF to λF/2.

Proof: From Theorem 2, ∂m
∂Rmin

> 0. Thus Rmin

monotonically increases from λF to infinity as m increases
from 0 to infinity. Consider the second derivative, ∂2m

∂R2
min

:

∂2m

∂R2
min

=
ρmax(ρmax − 2) − 2(1 − ρmax) ln(1 − ρmax)

Rminρmax(1 − ρmax)

where ρmax = λF/Rmin.
The denominator is positive for 0 < ρmax < 1. Denote

the numerator by f1(ρmax); it is negative for 0 < ρmax < 1
since

lim
ρmax→0

f1(ρmax) = 0

and

f ′

1(ρmax) = 2ρmax +2 ln(1−ρmax) < 0, ∀ 0 < ρmax < 1

Hence ∂2m
∂R2

min

< 0 and thus Rmin is a convex function of
m.

To prove the variation of Rmin − m with m, expand
ln(1 − λF/Rmin) by its Maclaurin series, substituting in
(18), and simplifying yields:

Rmin − m =

(
1

2
+ f2(ρmax)

)
λF

where

f2(ρmax) =

∞∑
n=1

ρn
max

(n + 1)(n + 2)

Now 0 < f2(ρmax) < 1/2 for 0 < ρmax < 1. As
m increases from 0 to infinity, we have already noted
that Rmin increases monotonically from λF to infinity.
It follows that ρmax decreases monotonically from 1 to
0, and therefore that f2(ρmax) decreases monotonically
from 1/2 to 0. This establishes that Rmin − m decreases
monotonically from λF to λF/2.

Rmin versus m is shown in figure 2, along with its
asymptote Rmin − m = λF/2. The asymptote can be
thought of as a limit as the load approaches zero. In the
limit, during a busy cycle there is one job in the system
with probability 1 − ρmax, and two jobs with probability
ρmax. It follows that

mtime =

(
1 −

λF

Rmin

)
Rmin+

λF

Rmin

Rmin

2
= Rmin−

λF

2

B. Bound on tail probability

We turn next to examining the bandwidth required for a
bound on the tail probability of rate. We use the continuous
interpolation G(x,R) of P (X ≥ x), as defined in (17). We
start by examining the derivative of G(x,R) with respect
to R, which can be shown to be:

∂G(x,R)

∂R
=

(
λF

R

)R/x
1 + ln(R/λF )

x
,R ≥ x,R > λF
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Fig. 2. Rmin versus m
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It follows that G(x,R) increases monotonically with R for
a fixed x. From (17), in order to satisfy G(x,R) ≥ p, the
rate R ≥ Rmin, where Rmin is determined by the fixed
point equation:

p = 1 −

(
λF

Rmin

)Rmin/x

, Rmin ≥ x,Rmin > λF (19)

Rmin versus p is shown in figure 3, where each curve
represents a constant value of x/λF . When x ≤ λF , Rmin

starts at λF when p = 0, increases monotonically with p,
and approaches infinity as p approaches 1. When x > λF ,
Rmin = x over 0 < p ≤ 1 − λF/x, increases monoton-
ically for higher values of p, and approaches infinity as p
approaches 1.

We use the term p-limited to denote the case in which
Rmin increases monotonically with p, and the term x-
limited to denote the case in which Rmin = x. In the x-
limited case, each user wants a guarantee of obtaining the
full system transmission rate a certain portion of time. This
can only occur when there is one user in the system, which

2363



0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

x / λ F

R
m

in
 / 

λ 
F

p = 0.2
p = 0.5
p = 0.8

Fig. 4. Rmin versus x

occurs with probability 1−λF/R, and hence the x-limited
case only occurs when p ≤ 1 − λF/x.

It follows that the marginal bandwidth required for an
increase in the probability p of obtaining a rate of x or
better is given by:

∂Rmin

∂p
=

(
Rmin

λF

)Rmin/x
x

1 + ln(R/λF )
,

Rmin ≥ x,Rmin > λF

Finally, we examine the relationship between Rmin and
x. From (19), x can be represented as:

x = min

(
Rmin ln(Rmin/λF )

ln(1/(1 − p))
, Rmin

)
, Rmin > λF

It follows that the marginal bandwidth required for an
increase in x at a fixed probability p is given by:

∂Rmin

∂x
=

{
ln(1/(1−p))

1+ln(Rmin/λF ) , λF < Rmin < λF/(1 − p)

1, Rmin ≥ λF/(1 − p)

Rmin versus x is shown in figure 4, where each curve
represents a constant value of p. Rmin is monotonically
increasing with x. When x < λF/(1 − p), Rmin is
increasing with p. This is the p-limited case discussed
above. When x ≥ λF/(1 − p), the system is x-limited,
and Rmin = x.

IV. CONCLUSION

In this paper, we introduced three definitions of average
rate per job in a M/M/1 processor-sharing queue, mtime,
mweighted and mjobs. We proved that mtime > mjobs >
mweighted over all loads. Further we proved that the re-
quired system rate Rmin is a monotonically increasing and
convex function of the minimum average rate per jobs
m. Finally, we showed that under a constraint on the tail
probability of the average rate per job, the required system
rate might be limited by either the probability p or by
the location of the rate requirement x, and gave conditions
explaining when each case occurs.
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