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Abstract— This tutorial paper presents a first principles devel-
opment of subspace system identification (ID) using a fundamental
statistical approach. This includes basic concepts of reduced rank
modeling of ill-conditioned data to obtain the most appropriate
statistical model structure and order using optimal maximum
likelihood methods. These principles are first applied to the well
developed subspace ID of linear dynamic models; and using recent
results, it is extended to closed-loop linear systems and then
general nonlinear closed-loop systems.

The fundamental statistical approach gives expressions of the
multistep likelihood function for subspace identification of both
linear and nonlinear systems. This leads to direct estimation of
the parameters using singular value decomposition type methods
that avoid iterative nonlinear parameter optimization. The result is
statistically optimal maximum likelihood parameter estimates and
likelihood ratio tests of hypotheses. The parameter estimates have
optimal Cramer-Rao lower bound accuracy, and the likelihood
ratio hypothesis tests on model structure, model change, and
process faults produce optimal decisions.

The extension to general nonlinear systems determines optimal
nonlinear functions of the past and future using the theory of
maximal correlation. This gives the nonlinear canonical variate
analysis. New results show that to avoid redundancy and obtain
gaussian variables, it is necessary to determine independent
canonical variables that are then used in the likelihood function
evaluation.

These new results greatly extend the possible applications of
subspace ID to closed-loop linear and nonlinear systems for
monitoring, fault detection, control design, and robust and adaptive
control. Potential applications include system fault detection
for control reconfiguration, autonomous system monitoring and
learning control, and highly nonlinear processes in emerging fields
such as bioinformatics and nano technology. Applications are
discussed to identification of vibrating structures under feedback
including online adaptive control of aircraft wing flutter, and
identification of the chaotic Lorenz attractor.

Index Terms— Subspace system identification, closed-loop, lin-
ear, nonlinear, maximum likelihood estimation, optimal estimation.

I. INTRODUCTION

The method of subspace system identification has had
some very impressive accomplishments as will become
clear in the development. One of these is the use of a
singular value decomposition to obtain estimates that in
some cases are ‘efficient’, i.e. approach the Cramer-Rao
lower bound for variance. Other known efficient methods
require nonlinear iterative parameter optimization, whereas
using subspace methods the global solution to the problem
is immediately obtained by a numerically efficient and
stable computation. The method has been widely applied in

almost every area requiring systems identification of linear,
time-invariant systems with equal spaced data. However,
because of lack of a general theory describing the statistical
behavior of subspace methods, it has been regarded as an
approximate method that may not compete well with max-
imum likelihood methods in various situations, particularly
involving systems with feedback or nonlinear behavior.

The major challenge has been the development of a sound
statistical theory that describes the conditions for which it
approaches the lower bound accuracy of a maximum likeli-
hood method. Reliance upon subspace system identification
in a number of critical applications requires knowledge of
the statistical behavior of the subspace algorithm in use.
This includes determination of the parameter estimation
error or an equivalent model uncertainty description for
assessing model accuracy. Such an uncertainty description
can be used, for example, in controller robustness analysis
or robust control design. For monitoring and fault detection,
it is critical that the distribution of test statistics be
available for performing tests of hypotheses. This is only
generally available for maximum likelihood methods. Later
discussions in this tutorial paper as well as some of the
other papers in this session give detailed examples of model
uncertainty descriptions and distributions of test statistics.

In this paper, we discuss primarily the canonical variate
analysis (CVA) method because it results in maximum
likelihood accuracy, but comment and compare with the
various other subspace methods and algorithms concerning
various issues. The paper is organized with the next
section giving an overview of the CVA. The following
section provides a detailed discussion of CVA for linear
systems. Then a discussion of the problem of closed-loop
feedback around the plant to be identified is given. The next
several sections concern the extension to general nonlinear
systems. This is described first as a nonlinear regression
problem to focus on the the substantial complexities of
the nonlinear aspects of the problem. Then the issues of
redundancy and nongaussian that have been major hurdles
to solving the problem are discussed, and a method for
obtaining a solution is described using optimal normalizing
transformations to evaluate the likelihood function. Finally
application of these methods to the chaotic Lorentz attractor
is presented. The other papers in this tutorial session are
Palanthandalam-Madapusi et al. (2005), Lacy et al. (2005),
and Juricek et al. (2005).
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II. OVERVIEW OF CVA CONCEPTS

The basic concept of a canonical variate analysis (CVA)
of a time series is discussed, along with some of the char-
acteristics of the solution, particularly for linear systems.

A conceptual starting point for the CVA approach is the
description of a process in terms of energy storing quantities
referred to as states. The states act as memory and are the
central variables in describing the process dynamics. The
states include the chemical, thermal, potential or kinetic
energy of the process stored in the form of composition,
temperature, position or velocity, or rotational energy. The
true state vector, or state for brevity, can have very high or
even infinite dimension, but at some point in practice a finite
dimensional approximation is needed. A major difficulty in
previous approaches has been the fitting of a great many
possible models of various complexities to the observations,
and the determination of adequately fitting models.

In the canonical variate analysis (CVA) approach (La-
rimore, 1983b), the statistically significant states are first
determined directly from the observations by a canonical
variate analysis. This determines which of the possible
energy storing relationships are statistically significant and
provides a mathematical basis for describing them. Then the
detailed mathematical description of the system dynamics
is directly determined by multivariate regression methods.

The determination of the appropriate model state order
is based on an information measure known as the Akaike
information criterion (AIC) (Akaike, 1973, 1976). This
measure of statistical fit has been justified from the funda-
mental statistical inference principles of sufficiency and re-
peated sampling in a predictive inference setting (Larimore,
1983a; Larimore and Mehra, 1985). Once the model state
order is determined, a state space model of the process is
determined by multivariate regression methods. In the linear
case, the computational procedure is based on a singular
value decomposition (SVD), which is numerically stable
and accurate (Golub, 1969). The computational procedure
always gives a meaningful solution to the problem. For the
nonlinear case, the computation is more involved and is
discussed in following sections.

The CVA method applies to data taken from a very gen-
eral class of multivariable time-invariant stochastic systems.
The assumptions are that:

• The observations are equally spaced in time.
• The system is finite-dimensional, time-invariant, and

possibly multivariable.
• The noise disturbances are a finite-dimensional Gaus-

sian processes, i.e. the output of white Gaussian noise
exciting a time-invariant finite-dimensional system.

• The observations may include the addition of a time-
varying mean function.

• The process may include delayed inputs or internal
delayed feedback.

• The measurements may be highly illcondiioned or
singular or the process cointegrated.

For the case of linear systems, the CVA method of system
identification has been applied to a variety of systems. In
the linear case, the theory and computational methods are
quite advanced, and has a number of features that are well
suited to model estimation and identification on existing
microprocessors including:

• General state space model including inputs, and pro-
cess and measurement noise

• Multi-input, multi-output systems
• Computation using the singular value decomposition
• Numerically stable and accurate – highly reliable
• Automatic determination of the best choice of model

state order
• Finite amount of computation – nonrecursive
• No initialization required – accurate on small samples
• Near the maximum likelihood lower bound in accu-

racy in open- or closed-loop operation as verified in
simulations

• Nonminimum phase and time delay systems
• Simultaneous identification of transfer function and

noise spectrum of the disturbance process
• Confidence bands giving accuracy on the estimated

transfer function
• The required excitation for achieving a given model

accuracy is determined using the confidence bands
These properties of the algorithm give it a unique place
among the other currently available algorithms. It is reliable,
accurate, and yet will handle the very difficult problem of
system identification of high-order multivariable systems
using short data lengths in the presence of feedback.

The recently developed statistical theory (Larimore,
2004) is quite extensive and shows that for large sam-
ples CVA is a maximum likelihood method with optimal
accuracy. This has considerable implications for a number
of modeling, failure detection and control applications:

• The identification accuracy is optimal and the uncer-
tainty description is accurate for use in stability and
performance assessment and robust control design.

• For monitoring process change and failure detection,
tests of hypotheses are optimal with minimum prob-
ability of false alarm and maximum probability of
failure detection

• In reidentifying a system, the required accuracy is
achieved with the least amount of data, i.e. control
reconfiguration can occur in the shortest time.

These considerable benefits are available only from the use
of a maximum likelihood procedure.

While these results for linear CVA are very impressive
and have considerable potential for some application, other
areas require treatment of nonlinear systems. A number
of methods have been developed and applied to nonlinear
systems with major advances and impressive results such as
Wiener and Volterra methods and neural networks. However
most of the methods have major drawbacks:

• They do not utilize the powerful theory of statistical

2306



inference and the optimal properties of maximum
likelihood estimation and likelihood ratio tests of
hypotheses

• They do not produce time domain state space models
that are predominantly used in simulation and control
system analysis, design, and implementation

On the other hand, the developments in nonlinear modeling
in statistics have yielded some major insights and interpre-
tations into seemingly ad hoc procedures such as neural
networks. Indeed some recent ‘kernelization’ methods have
adopted regularization methods with a statistical interpreta-
tion (Hastie, 2001). These developments are related to the
maximum likelihood methods of this paper in the discussion
below.

In latter sections of this paper, the attractive features
of the linear CVA approach are extended to a nonlinear
canonical variate analysis (NLCVA) problem. Some of the
theory of NLCVA was previously developed in Larimore
(1989; 1992b) showing that many of the results apply
in a modified form to very general nonlinear systems
including chaotic multiple equilibria systems. In this paper,
progress is discussed in extending the statistical theory.
Such results would provide asymptotic maximum likelihood
procedures for model estimation and tests of hypotheses
in system with nonlinear dynamics. This would provide
optimal estimation accuracy and optimal tests of hypotheses
for monitoring system change and failure detection, and ac-
curate uncertainty descriptions for stability and performance
assessment.

III. LINEAR CVA OF DYNAMIC PROCESSES

In this section, some of the technical details of the linear
CVA method for linear dynamic systems are developed.
This provides a basis for further extensions of the CVA
method to closed-loop and nonlinear systems. A tutorial
paper with additional details on linear CVA is Larimore
(1999) that gives a geometric interpretation of CVA and
relates it to the other reduced-rank methods of principal
component analysis, partial least squares, and instrumental
variables.

Canonical correlation and variate analysis was developed
by Hotelling (1936) who also developed principal compo-
nent analysis. Consider the multivariate regression problem

ft = Mpt + et (1)

involving the vector ft of dependent variables and the
vector pt of independent variables with N observations
indexed by t = 1, . . . ,N . Assume that p and f are jointly
distributed as normal random variables with mean zero and
covariance matrices Σpp, Σff , Σpf . These vectors may be
high dimensional with considerable redundancy if all of
the variables are used. That redundancy can lead to poor
models when estimating a large number of parameters if
many of them have little effect. For any choice of rank
r, canonical variate analysis provides a way to determine
transformations of the original variables to new vectors of

dimension r defined by variables ct = Jrpt and dt = Lrft.
The new variables ct and dt are an optimal choice in terms
of maximum likelihood for a specified rank r.

Furthermore, the statistically optimal choice of the rank,
i.e., the dimension of c and d, can be determined using
maximum likelihood ratio tests. The method of maximum
likelihood and likelihood ratio tests have well-known opti-
mal statistical properties in the case of linear regression for
the normal distribution (Anderson, 1984). The solution to
this problem can be expressed in the form of a generalized
singular value decomposition as follows (Larimore, 1990a).

Theorem 1: Canonical Variate Analysis. Let Σpp(m ×
m) and Σff (n × n) be nonnegative definite (satisfied by
covariance matrices). Then there exist matrices J (m × m)
and L(n × n) satisfying the generalized singular value
decomposition

JΣppJ
T = Im ; LΣffL

T = In (2)

JΣpfL
T = Γ = diag(γ1 ≥ . . . ≥ γr ≥ 0, . . . , 0), (3)

where m = rank(Σpp) and n = rank(Σff ).
For a specified dimension or rank r to use for c and

d, the optimal choice of Jr and Lr is the first r rows
of J and L, respectively. Also the maximum of the log
likelihood function is simply expressed in terms of the
canonical correlations γi as

max log p(Y |X;C,Σee) =
N

2

r∑
i=1

log |Syy|−1(1 − γ2
i ). (4)

Optimal statistical tests on rank involve likelihood ratios.
Thus the optimal rank or order selection depends only on
the canonical correlations γi. A comparison of potential
choices of rank can thus be determined from a single
GSVD computation on the covariance structure. The above
theory applies exactly to the linear regression problem with
normally distributed errors that are independent for different
samples t.

To extend the CVA concept to time series requires the
concept of the past and future of a process. Suppose that
data are given consisting of observed outputs yt and possibly
observed inputs ut at time points t = 1, . . . ,N that are
equally spaced in time. Associated with each time t is a
past vector pt consisting of the past outputs and inputs
occurring prior to time t as well as a future vector ft
consisting of outputs at time t or later, specifically,

pt = (yTt−1, u
T
t−1, y

T
t−2, u

T
t−2, . . .)

T , ft = (yTt , y
T
t+1, . . .)

T (5)

Pioneering work by Akaike (1973, 1976) extended the
concepts of CVA to the identification of time series models.
One of the major issues is that the time series generally
violates the assumption of independent errors for different
times. Akaike chose the past pt and future ft to include the
present time, that can result in choosing too high an order
for the system state. It was still found to be useful, but
the results were substantially less accurate than maximum
likelihood and were primarily used to narrow the number
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of potential model structures that are likely to lead to good
models. In a multivariate time series, there can be a very
large number of structures (orders of the AR, MA and X
components of the model) to sort through. Also, the method
used by Akaike was a constructive approach involving the
sequential selection of basis elements, and thus the very
direct and simple generalized SVD as in the regression
case above was not used.

Larimore (1983b) first proposed using the GSVD above
directly on the past and future of the time series to determine
the rank of the relationship between the past and future.
For a process with no inputs ut, the transformed variable
ct = Jrpt has all of the information in the past for prediction
of the future. This is the definition of the state of a Markov
process usually denoted xt. For a given choice of the state
order r, the GSVD defines Jr, that in turn defines a state
estimate xt = Jrpt. A Markov process with state xt satisfies
state equations of the form

xt+1 = Φxt + Gut + wt (6)

yt = Hxt + Aut + Bwt + vt (7)

where wt and vt are white noise processes that are inde-
pendent with covariance matrices Q and R respectively.
Since the state estimate is available from xt = Jrpt, the
estimated values can be used in doing a regression of the
left-hand variables xt+1 and yt on the right-hand variables
xt and ut. This simple multivariate regression produces
estimates of the matrices Φ, G, H , and A, and similar
computations using the error in the regression to produce
estimates of B and the covariance matrices Q and R. The
entire computations can be implemented using numerically
stable and accurate SVD computations.

For time series processes with no inputs, it was found in
a particular case (Larimore, Mahmood, and Mehra, 1984)
that the accuracy of the model identified using CVA was
very close to achieving the Cramer-Rao lower bound so
that it was essentially equivalent to maximum likelihood
estimation. More detailed simulations followed (Deistler et
al, 1995; Larimore, 1996) showing the maximum likelihood
behavior of CVA in large samples. This was followed
by considerable effort on the asymptotic theory as the
sample size becomes large resulting in optimal properties of
asymptotic normality and minimum variance (Bauer, 1998;
2005).

To extend the results of the above CVA regression
problem to the time series case, the likelihood function
is expressed in terms of conditional multistep predictions.
To compute, the dimension of the past and future are
truncated to a sufficiently large finite number ζ = dim(ft)
and ρ = dim(pt). Following Akaike (1976), this dimension
is determined by autoregressive (ARX) modeling and
determining the optimal ARX order using the AIC. The
notation Y t

s = (ys, . . . , yt) is used to denote the observations
and similarly for Qt

s. Suppose that the number of samples
N is exactly N = Mζ + ρ for some integer M . Then

by successively conditioning, the log likelihood function of
the observations conditional on the initial state pρ+1 at time
ρ + 1 is

log p(Y Mζ+ρ
ρ+1 |pρ+1, Q, θ) =

M−1∑
m=0

log p(fmζ+ρ+1|pmζ+ρ+1, Q, θ) (8)

where Q = Q
Mζ+ρ
1 so the likelihood function decomposes

into the product of M multistep conditional probabilities.
Now by shifting the interval of the observations in the above
by time s, the likelihood of the observations Y

Mζ+ρ+s
ρ+1+s is

obtained. Consider the average of these shifted likelihood
functions which gives

1
ζ

ζ−1∑
s=0

log p(Y Mζ+ρ+s
ρ+1+s |pρ+1+s, Q, θ) (9)

=
1
ζ

ζ−1∑
s=0

M−1∑
m=0

log p(fmζ+ρ+1+s|pmζ+ρ+1+s, Q, θ) (10)

=
1
ζ

N∑
t=ρ+1

log p((ft|qt)|pt, θ)) (11)

Now each likelihood function in this average is a likelihood
of N−ρ points that differs only on the particular end points
included in the time interval. This effect will disappear
for large sample size, and even in small sample size will
provide a suitable approximate likelihood function. Note
that the only difference between the likelihood function for
the iid vector case of Section 2 and the time series case
here is the normalization 1/ζ involving the dimension of
the future and replacing x and y by pt and ft|qt respectively.

In the history of maximum likelihood estimation, major
advances were made when a suitable expression for the
likelihood function was obtained. The Whittle (1954) likeli-
hood function expressed in the frequency domain allows for
ML estimation of random processes in space and time. The
Schweppe (1965) likelihood function expressed in terms of
the Kalman filter allows for exact ML estimation of time
series models. The likelihood function (11) allows for ML
estimation using CVA in terms of the past and future as
shown below.

CVA is one of the class of subspace methods for fitting
state space models from observational data that has been
called a ‘Larimore type’ of subspace algorithm (Bauer
and Ljung, 2002). It was noted in Larimore (1983b) that
different weightings Λ can be used in place of Σff for
various purposes. Various weightings were discussed in
Larimore (1990a) that correspond to principal component
analysis, partial least squares, and instrumental variables,
and it was noted that only the weighting Σff leads to
maximum likelihood results. Bauer and Ljung (2002) show
that the CVA weighting is optimal in the possible choice
of weighting Λ. The other various weightings cannot be
maximum likelihood since they are not invariant to an
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arbitrary scaling of the data that is a property of maximum
likelihood. In particular, the N4SID algorithm of Van
Overschee and De Moor (1996) originally used the identity
weighting, that was subsequently shown to be much less
accurate in some cases. The CVA weighting can be used
in the N4SID algorithm, but it still can be much less
accurate than CVA (Juricek et al, 2002) due to a number
of differences in the details of the two methods.

Van Overschee and De Moor (1994) have shown that
the known subspace algorithms are approximately a gener-
alized SVD of the form of CVA with various weightings
followed by various procedures for estimating the state
space matrices from the GSVD. The CVA method uses
regression to estimate the state space matrices. On the
other hand, the N4SID algorithm of Van Overschee and
De Moor (1996) uses the structure of the observability
and controllability matrices to obtain estimates of the state
space matrices. N4SID is the only other commercially
available subspace system identification software besides
the ADAPTx implementation of CVA (Larimore, 1992a).

Dahlen et al (1998) have studied CVA and the three
N4SID algorithms given in the book by Van Overschee and
De Moor (1996) in terms of the fundamental requirement
that any solution must be positive real. Positive real is
equivalent to the requirement that a covariance sequence
be positive semi-definite to be a meaningful solution. They
construct systems that generate data which cause all three
algorithms in Van Overschee and De Moor (1996) to fail
even when using the CVA weighting. Also the algorithm of
Aoki (1987) is shown to fail. This demonstrates that these
algorithms are not completely reliable. In the dissertation
(Dahlen, 2001), Dahlen also analyzes the CVA algorithm
and says the solution is guaranteed to be positive real
so that no such failures of the algorithm will occur.
Thus there is a major reliability issue with N4SID that
is critical in applications such as control of aerospace
vehicles that requires a completely automatic and reliable
implementation.

Finally, very recent results have been published proving
the large sample efficiency of CVA, that shows the parame-
ter estimation error variance achieves the Cramer-Rao lower
bound for large samples. Thus no method of estimating such
a parametric model will achieve a smaller estimation error.
This is shown for the case of no inputs by Bauer (2005),
and is outlined for the case of inputs with feedback for
the ADAPTx algorithm in Larimore (2004). One of the
central methods used in both of these papers is the multistep
likelihood function developed in Larimore (1997a) and
called a pseudo-likelihood function in Bauer (2005). As
discussed in sections below, the multistep likelihood is
a key to the interpretation and theory for the nonlinear
CVA. Another key concept (Larimore, 2004) is viewing the
linear CVA method for the case of inputs with feedback
as a sequence of nested models successively projected onto
lower dimensional models as discussed in Cox and Hinkley
(1974).

IV. CLOSED-LOOP IDENTIFICATION

In this section an outline is given of the large sample
efficiency of adaptx for the case of unknown feedback. A
more detailed technical development will appear elsewhere.
Asymptotic efficiency means the parameter estimation error
approaches the minimum variance bound for large sample
size.

Over the past two decades, the computational methods,
statistical theory, and applications of canonical variate
analysis (CVA) have been developed considerably. The
basic algorithm (Larimore, 1983) has been significantly
improved with model order selection (Larimore, 1990a;
1990b), confidence bands on spectral functions such as
frequency response and power spectrum (Larimore, 1993),
monitoring and fault detection (Larimore, 1997a; Wang et
al, 1997; Juricek et al, 2004; Conner et al, 2004), and delay
estimation (Larimore, 2003).

There were early empirical demonstrations of near opti-
mal estimation approaching the Cramer-Rao lower bound
(Larimore et. al., 1984), with more detailed simulations
to follow (Deistler et al, 1995; Larimore, 1996a, 1996b;
Peternell et al, 1996). In the case of no inputs, this was
followed by considerable effort on the asymptotic theory,
as the sample size becomes large, showing the optimal
properties of asymptotic normality and minimum variance
(Bauer, 1998; 2005).

A much discussed aspect in the literature has been the
behavior of subspace system identification for the case of
colored inputs perhaps with feedback. The fundamental
problem is the necessity to compute and remove the effects
of future inputs on future outputs before the CVA is done
to determine the system state. But it appears that the
CVA solution itself is required to compute these effects
on future outputs. In Larimore (1996a, 1996b), simulation
results were presented that strongly suggest such efficiency
for that simulation model. The algorithm used in those
simulations, and incorporated in the first release of the
ADAPTxTM software (Larimore, 1992) as well as all
subsequent releases, is as follows:

• Fit ARX. Using conditional maximum likelihood
(ML), fit ARX models recursively on order and
evaluate the AICC statistic to determine the optimal
number � of delayed inputs and outputs to use in the
CVA computation.

• Remove effects of future inputs qt on future outputs
ft. Compute the multistep predictor matrix Ω using
the ARX model, and compute the corrected future
ft|qt = ft −Ωqt.

• CVA. Do a CVA between the past pt and corrected
future ft|qt to determine the states ordered by their
associated canonical correlation.

• Select State Order k. Compute the estimated one-step
prediction error covariance matrix for each state order
from 0 to order �Dim(yt), compute the associated
AICC for each order, and select the minimum AICC .
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• Estimate Model. Compute estimates of the state space
matrices and the one-step error covariance in the state
equations by regression.

• Alternate Model Forms. Solve the Riccati equation
and compute the innovations, overlapping parameteri-
zation, and ARMAX models.

It may seem surprising that the use of the ARX model
to remove the effects of future inputs from future outputs
results in an optimal procedure with asymptotic efficiency.
Questions that come to mind are the well known issues:

• High Order ARX. The ARX model can have far more
parameters to obtain a reasonable approximation to
the process than the state space model especially for
a process with moving average terms in the noise
requiring a high AR order.

• ARX Model Error. Such a high order ARX model
will have modeling error proportional to the number
of estimated parameters so the modeling error for
the ARX could be much larger than that potentially
achievable using a SS model.

• SS Model Error. Thus using the ARX model to remove
the effect of future inputs on future outputs could
result in additional error in the future outputs, and
consequently increase the error in fitting the SS model
in subsequent steps.

While these issues are well founded concerns, it will be
shown that there is much additional structure to the problem
that effectively projects these additional errors to zero.

The adaptx algorithm is discussed below in terms of a
number of statistical concepts and how they impact the
estimation problem. It has long been noted in the literature
(Larimore, 1990a) that the difficulty is the presence of
future inputs that introduce errors in the prediction of the
future outputs from the past, and this introduces errors in
the CVA step to determine the state. The use of the ARX
model avoids this problem for a number of reasons that will
become more evident in later sections. The basic concept is
given in Cox and Hinkley (1974, pp. 307, 321-4) concerning
nested models, projection, and sufficiency. The use of the
ARX model to remove future inputs from future outputs
has the following advantages:

• Linear Computation. Fitting of the ARX model permits
the approximate maximum likelihood identification
of a model using efficient and non-iterative linear
computations that are needed also to determine the
number of lags � of the past to use in the CVA
calculation.

• Order-recursive Computation. A process can be ap-
proximated arbitrarily closely by an ARX process, and
recent methods permit the use of an efficient (order �3

verses �4 multiplications) order-recursive computation
that is highly accurate with no error accumulation
(Larimore, 1990b, 2002).

• ML is Immune to Colored Inputs and Feedback. The
ARX procedure is asymptotically ML and as such the

estimates of the plant model from input and output
data do not depend on knowledge of the spectrum of
the inputs or feedback system, i.e. there is no bias
in the estimates (Larimore, 1997b; Gustavsson et al,
1977)

• Nested Model. The ARX model class contains the
state space model that is fitted by regression so that
the subspace model is nested in the ARX model.
Specifically, the state space model parameters lie in
a subspace of the ARX model.

• Projection to Low Dimension. Because of the nested
model structure, fitting of the SS model by regression
projects the ARX model onto the low dimensional
state subspace of the ARX space of delayed inputs
and outputs.

• Decomposition of the ARX Model. The ARX model
decomposes into two pieces, the low-dimensional SS
model and the part of the ARX model orthogonal to
the SS model. This orthogonal piece projects to zero,
i.e. errors in this part of the ARX model go to zero
when projecting on the SS model.

• ARX Model is Sufficient for SS Model. From model
nesting, all of the information in the sample for
inference about the SS model is contained in the ARX
model parameter estimates.

• Multistep Likelihood Function. The equivalence of
the onestep and multistep likelihood functions plays
a key role in the technical details to demonstrate
orthogonality.

While there have been a number of recent papers on new
subspace algorithms to handle colored inputs and feedback,
there has been very little discussion concerning the asymp-
totic efficiency of these subspace methods. An exception
is Peternell et al (1996) who discuss two algorithms, one
imposing a block shift structure on the model involving
future inputs, and the other using an iteration to refit the
previous model for removing the effects of inputs. By
simulation, the first method was shown not to be efficient,
and the second appeared to be. But the iterative method
appears not to have been pursued, presumably because a
major advantage of CVA is the lack of any iteration.

A method was developed by Ljung and McKelvey (1996)
using ARX models to remove the effect of future inputs
on future outputs. However, the ARX model is used in
a completely different way to predict the future outputs
that are then used in place of the measurements. A major
disadvantage is that such a procedure will lead to biased
estimates of the noise covariance matrix. They mention the
potential illconditioning in fitting high order ARX models.
Illconditioning is avoided in the adaptx algorithm by
using the order-recursive factorization algorithm (Larimore
1990b, 2002, 2003) that has been demonstrated to be
accurate to machine precision even in the case of highly
rank deficient data (Larimore, 2002).

Shi (2001) and Shi and MacGregor (2001) discuss
several algorithms and consider the use of the ARX model
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to remove the effects of future inputs on future outputs
and show it gives unbiased estimates in the presence of
unknown feedback. There is no discussion of the efficiency
of the procedure.

An easy way to see the immunity of ML estimation
to feedback is based on simple conditional probability
relationships, as shown in Larimore (1997b). The fol-
lowing notation will be used in the development, Y N

1 =
(yN, . . . , y1) and similarly for UN

1 . Also let pt denote the
inputs and outputs in the strict past of t. The joint likelihood
function of the outputs Y N

1 and the inputs UN
1 conditional

on the initial state expressed by the past p1 at time t = 1
and as a function of the unknown parameters θ can be
expressed

p(Y N
1 , UN

1 |p1; θ) = [
N∏
t=1

p(yt|ut, pt; θ)][
N∏
t=1

p(ut|pt; θ)]

(12)
The probability densities above involve the conditional ran-
dom variable yt|(ut, pt) that is the usual output innovations
process of the plant input-output model. The conditional
random variable ut|pt is the innovation of the feedback
system with a required delay of one time step between
yt and ut. The joint likelihood function of (Y N

1 , UN
1 )

is expressed as the product of two terms that are thus
independently distributed. Each of these terms is the product
of probabilities of independently distributed innovations
processes.

The above factoring of the likelihood function into two
terms as in (12) always holds and is the consequence of
simple conditional probability rules. The real usefulness
comes, however, when the plant and feedback pieces of
the system can be parameterized separately. Suppose that
the parameter vector can be written as θ = (θp, θf ) where
the two subvectors respectively parameterize the plant and
feedback parts of the systems. In this case, the maximum
of the likelihood function is the product of the maxima
of each of the two pieces. Thus under the hypothesis that
the process is in a plant-feedback form with the only
relationships between them appearing in the plant inputs
and outputs, then ML estimation of the plant does not
depend upon the presence or absence of feedback. The
actual computation of the ML estimates for the ARX
model and other details are discussed in the next section.

V. PROJECTION IN ARX AND MARKOV MODELS

The fitting of ARX models using conditional ML and
the fitting of state space models using CVA involve the use
of regression. Projection is a very useful concept in regres-
sion that greatly clarifies some fundamental orthogonality
relationships among the identified parameters. The result
of this is the elimination of the effect of future inputs on
future outputs even in the presence of unknown feedback
in the system.

Consider the multivariate ARX model

y(t) =
�∑

s=1

α(s)y(t − s) +
�∑

s=0

β(s)u(t − s) + e(t) (13)

for t = � + 1, . . . ,N , and where � is the AR and X orders
and the error et is normally distributed with covariance
matrix Σ and independently for different t. The α(s) are
the autoregressive (AR) coefficients and the β(s) are the
exogenous (X) input coefficients.

In fitting the ARX model using least squares (LS), also
called conditional maximum likelihood (ML), the equations
(13) are used for t = � + 1, . . . ,N , and are transposed and
stacked up to give

Y = ZΘ + E (14)

where Y T = [y�+1, . . . , yN ] with the first � observations
of the output not used in the regression so it is con-
ditional on the first � observations. Also denote ΘT =
[α1, . . . , α�, β0, . . . , β�] and

ZT =

⎡
⎢⎣

y� · · · y1 u�+1 · · · u1
...

...
yN−1 · · · yN−� uN · · · uN−�

⎤
⎥⎦

The linear model (14) applies to much more general
processes than ARX models, that will be denoted by ΘA

when needed. The LS and conditional ML estimates are
given as

Θ̂ = (ZTZ)−1ZTY

Σ̂ = Y TY − Θ̂TZTZΘ̂

The model for yt is the right hand side of (13) without the
noise et, which is the conditional expectation of yt given
the past pt and present input ut. This is the systematic part
of the model for Y . The ML estimates Θ̂ minimize the
error E = Y − Ŷ with

Ŷ = ZΘ̂ = Z1Θ̂1∗ + · · · +ZmΘ̂m∗

where Zi is the i-th column of Z and Θ̂i∗ is the i-th row
of Θ̂.

A subspace projection interpretation clarifies the nesting
of parameter spaces. Primarily the univariate case is dis-
cussed for conceptual simplicity (see Schaffe, 1959, pp. 43,
for a detailed discussion), but it extends to the multivariate
case (Anderson, 1984, pp. 295).

In the case that Y is a vector so that Θ̂ is a vector
of parameters, then Θ̂ is the linear combination of the
columns of Z that gives the model Ŷ for Y . Thus the
model ZΘ̂ is an N − � dimensional vector that lies in the
m-dimensional subspace generated by the m columns of Z,
denoted S(Z). Also the parameters Θ̂i can be associated
with the basis vectors Zi, respectively, and are coordinates
for the subspace. A change of coordinates can be used
to define a different parameterization of the subspace. In
the multivariate case that Y is a matrix, then the above
interpretation applies to each column Yi of Y using the
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corresponding column Θ̂∗i of Θ̂ so that the model for the
i-th components Yi of the observations is

Ŷi = ZΘ̂∗i = Z1Θ̂1i + · · · +ZmΘ̂mi (15)

This has the following projection interpretation. The es-
timated model Ŷ = ZΘ̂ = Z(ZTZ)−1ZTY involves the
orthogonal projection operator Z(ZTZ)−1ZT . The error
Y − Ŷ is orthogonal to the estimate Ŷ since substituting
the above for Ŷ reduces Ŷ T (Y − Ŷ ) to zero. So Ŷ is the
orthogonal projection of columns of Y onto the subspace
S(Z) span by the columns of Z with the projections defined
by the linear combinations (15) specified by the columns
of Θ̂.

Substituting Y = ZΘ + E into Ŷ = ZΘ̂ =
Z(ZTZ)−1ZTY gives

Ŷ = ZΘ +Z(ZTZ)−1ZTE (16)

Thus, under the hypotheses that the true process lies in
a lower dimensional subspace, the first observation is that
except for the noise, the estimate Ŷ is equal to the true
noiseless value ZΘ plus noise. The second observation is
that projecting the data on a lower dimensional subspace
reduces the degrees of freedom of the noise to the dimension
of the subspace. This is a major concept in obtaining
asymptotic efficiency.

In the case of static regression where the regressors Z
are not random variables but fixed known values, parameter
estimates are unbiased since

E[Θ̂ − Θ] = E[(ZTZ)−1ZT )Y − Θ]

= E[(ZTZ)−1ZT (ZΘ + E) − Θ] = 0

and the parameter estimation error between any two
columns Θ̂i and Θ̂j of Θ̂ is

Cov(Θ̂i, Θ̂j) = E (ZTZ)−1ZTEi.E
T
j.Z(ZTZ)−1

= (ZTZ)−1ZTσijZ(ZTZ)−1 = σij(ZTZ)−1

Suppose the space S(Z) decomposes into two subspaces
that are orthogonal so Za = (Z1, . . . , Zr) and Zb =
(Zr+1, . . . , Zm) with Z = (Za Zb) and the orthogonality
condition ZT

a Zb = 0. Then the corresponding decom-
position of the parameters Θ̂ = (Θ̂a; Θ̂b) have diagonal
covariance matrix with

Cov(Θ̂i, Θ̂j) = σijdiag((ZT
a Za)−1, (ZT

b Zb)−1)

so parameter estimates Θ̂a and Θ̂b are uncorrelated. The
converse is also true; if Θ̂a and Θ̂b are uncorrelated, then
Za and Zb are orthogonal.

Now given a subspace S(ZS ) of a larger space S(ZA),
the orthogonal compliment ZA−S can always be constructed
by orthonormalization, that in turn defines orthogonal
parameter estimates ΘS and ΘA−S . The ZS and ΘS are
said to be nested respectively in ZA and ΘA. Denoting the
restricted model as ŶS = ZSΘ̂S in such a nested structure,
the error ŶA − ŶS is orthogonal to the estimate ŶS as

} Subspaces S
Y

Y -Y A

^

S (ZA-S)

Vectors Y , Y
(arrow at midpoint)

Y -Y S

Y A-Y S

S (ZS)
S (ZA)

^Y A

^Y S

^^

^
^

Fig. 1. Nested Subspaces and Orthogonality Relationships.

illustrated in Fig. 1 and the and parameter estimates Θ̂S

and Θ̂A−S are uncorrelated.
In the case of estimating an ARX time series with Z

random rather than a static regression, the above properties
also hold asymptotically for large sample under appropriate
assumptions (Lütkepohl, 1993).

Now, consider any finite dimensional multivariable
Markov process with vector input ut and output yt of the
form

xt+1 = Φxt + Gut + wt (17)

yt = Hxt + Aut + Bwt + vt (18)

where xt is a k-order Markov state and wt and vt are
white noise processes that are independent with covariance
matrices Q and R respectively. An alternative representation
is the innovations form where the noise terms wt and
Bwt + vt are replaced, respectively, with Kνt and the
output innovation νt, where K is the Kalman gain obtained
from solving the Riccati equation. The state expressed as
xt = J∞

k p∞t in terms of the infinite past p∞t is

xt =
∞∑
i=1

(Φ −KH)i−1[(G −KA)ut−i +Kyt−i] (19)

that results from recursively substituting (17) for xt in
(17). Eq. (19) is equivalent to (17) provided that J∞

k (Θ)
is parameterized as in (17) and (18). By truncating, the
approximation xt = Jkpt is obtained. The approximation
error decreases as (Φ − KH)� that is exponential in the
length � of the past pt so it can be ignored asymptotically.
Since (18) with xt = Jkpt is in the ARX form (13)
with additional restrictions on the parameters, the Markov
model (17) and (18) is nested within the ARX model class,
asymptotically.

In the adaptx subspace algorithm, the fitting of the
Markov model is done in two steps. First, a reduced-
rank regression is done to estimate Ĵk of fixed rank in
xt = Ĵkpt and with no parametric constraints on Ĵk so it is
not parameterized as in (19). The reduced-rank regression
is performed using a canonical variate analysis between past
and future as developed in Larimore (1997a) for the case of
no inputs. The case of inputs with feedback is developed in
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the next section. In the second step, the constraints are then
introduced by regression using (17) and (18) with the state
given by xt = Ĵkpt. In particular, let X+ denote X with
the time index t replaced by t + 1, and project (X+ Y ) on
S(X U ) to obtain (Φ G;H A). Implicit in this regression
are additional constraints among the parameters that lead
to the various state space canonical forms (Candy et al,
1979).

This can be viewed as a succession of restrictions on
ML models starting with the ARX, then the reduced
rank regression using CVA, and finally the state space
regression using (17) and (18). The latter two involve
nonlinear parameterizations, and are developed in detail
in Larimore(2004).

VI. NONLINEAR CVA FOR REGRESSION

In this section, an outline is given for the extension
of the linear CVA method for linear dynamic processes
discussed in the previous section to the static nonlinear
regression problem. Nonlinear CVA (NLCVA) can be
viewed as a generalization of the linear problem (3) where
linear combinations of the observed variables are replaced
by nonlinear functions of the variables. This nonlinearity
considerably complicates the nature of the problem as well
as the methods available for solution. In the following
section, this approach will be extended to nonlinear dynamic
stochastic systems.

The discussion below of nonlinear CVA is an elemen-
tary description of the concepts in terms of the linear
CVA, which is much easier to understand. The original
development of the method in Larimore (1989) involves
a much more detailed theory using functional analysis
(Renyi, 1959; Csaki and Fischer, 1960, 1963; Brieman
and Friedman, 1985). NLCVA is directly related to recent
kernel computational methods that in some cases offer
an advantage (Friedman, 2004; Hastie, Tibshirani, and
Friedman, 2001; Scholkopf and Smola, 2002: Scholkopf
et al., 1998; Kass and Graepel, 2003; Bach and Jordan,
2002).

The nonlinear problem is posed analogous to the orig-
inal linear formulation by Hotelling (1936) except that
nonlinear functions are considered. Early work on the
nonlinear problem was done by Renyi (1959; see also
Csaki and Fischer, 1960, 1963). Consider random vectors
X = (x1, . . . , xm)T and Y = (y1, . . . , yn)T that have a
joint probability distribution, and consider the sets FX

and FY respectively of nonlinear functions f (X) and
g(Y ) that, without loss of generality, are assumed to be
centered and scaled so that they have zero mean and
variance 1 (i.e., E[f (x)]2 = E[g(y)]2 = 1). Then due
to the centering and scaling of f and g, the correlation
coefficient ρ(f (X), g(Y )) equals E[f (X)g(Y )] where E[ ]
is expectation or averaging.

The maximal correlation ρ∗(X, Y ) of X and Y is defined
as the maximum over the functions (f, g) in the respective

sets FX and FY of the correlation coefficient

ρ∗(X, Y ) = max
(f, g)

ρ(f (X), g(Y )) = max
(f, g)

E[f (X)g(Y )]

(20)
where f and g run over all Borel measurable functions with
zero mean and unit variance. Borel measurable functions are
very general and allow, for example, jump discontinuities.

The maximal correlation satisfies the following proper-
ties:

• Existence. ρ∗(X, Y ) is defined for every pair of random
vectors X and Y , neither of them being a constant with
probability 1.

• Symmetric. ρ∗(X, Y ) = ρ∗(Y,X).
• Nonnegative and bounded. 0 ≤ ρ∗(X, Y ) ≤ 1.
• Stochastic Independence. ρ∗(X, Y ) = 0 if and only if
X and Y are stochastically independent, also called
statistically independent.

• Deterministic Dependence. ρ∗(X, Y ) = 1 if there is a
strict dependence between X and Y , i.e. f (X) = g(Y )
for some nonzero Borel measurable functions f or
g, so there is deterministic dependence. The converse
requires some additional conditions.

• Invariance. Under 1-1 onto Borel-measurable transfor-
mations f and g,
ρ∗(f (X), g(Y )) = ρ∗(X, Y ).

• Normal Implies Linear. If the joint distribution of
X and Y is normal, then the maximal correlation
ρ∗(X, Y ) is achieved by considering only linear func-
tions f and g.

The correlation coefficient itself is generally a rather
poor measure of relationship between nonlinear functions of
random variables. What is remarkable is that the maximal
correlation characterizes independence and, under suitable
restrictions, strict (or deterministic) dependence. A central
concept discussed in this paper is to make full use of
these very strong properties of maximal correlation to
obtain minimal order descriptions of very general nonlinear
processes.

Now consider the nonlinear reduced-rank multivariate
regression problem. Extending the above notation, for a
given positive integer r consider the sets F r

X and F r
Y of all

Borel measurable r-dimensional vector functions f (X) =
(f1(X), . . . , fr(X))T and g(Y ) = (g1(Y ), . . . , gr(Y )), where
each component is zero mean and unit variance as above.
The sets F r

X and F r
Y are linear vector spaces on which we

define the inner product < , > (also called the dot product)

< f, g >= trEf (X)gT (Y ) = E

r∑
i=1

fi(X)gTi (Y ) = trΣfg

(21)
where the covariance matrix notation Σfg = Ef (X)g(Y )T

is used and where tr( ) is the trace, i.e. the sum of the
diagonal elements. The pseudonorm is given by

‖ f ‖=< f, f >1/2 . (22)
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The spaces F r
X and F r

y are separable Hilbert spaces under
the inner product.

A number of results can be shown using the theory of
operators on Hilbert spaces. In particular, it can be shown
that under regularity conditions on the joint probability
distribution function P (X, Y ), there always exist functions
f and g attaining the maximal correlation.

It was shown in Larimore (1989, 1992b) that the
generalization of the nonlinear reduced-rank multivariate
regression can be phrased as the following minimization
problem.

Problem 1: Rank r Nonlinear Prediction. For a given
positive integer r, find r-dimensional vector functions f (X)
and g(Y ) that minimize the relative prediction error

max
(f, g)

‖ g(Y ) − ĝ(f (X)) ‖Σ†
gg

(23)

where ĝ = E(g|f ) is the conditional expectation of g(Y )
given f (X).

The solution to this problem, as shown in Larimore
(1989, 1992b), is similar to the solution of the linear CVA
problem (3) as follows.

Theorem 2: Nonlinear CVA. For any choice of rank r,
there exist multivariable functions f and g of dimension
r satisfying Σff = Σgg = Ir and Σfg = D = Diag(d1,≥
. . . ≥ dk > 0, . . . , 0) that maximize

max
(f, g)

tr(ΣgfΣfg) =
r∑

i=1

d2
i (24)

For any choice of rank r, the first r canonical correlations di
are unique to within a sign change, and the rank r nonlinear
prediction problem is solved by the first r components of
f and g.

The problem can also be phrased in terms of choosing the
components of the canonical functions f and g sequentially
and pairwise as follows.

Theorem 3: Sequential Selection. The vector functions
f and g giving an optimal solution to the nonlinear
prediction problem (23) are obtained sequentially by the
following procedure: For each r, find the pair of functions
(fr, gr) that are uncorrelated with the previously selected
functions fr−1 = (f1, . . . , fr−1)T and gr−1 = (g1, . . . , gr−1)T

respectively and maximize the correlation, i.e. such that

dr = max
(fr, gr)

ρ(fr(X), gr(Y )). (25)

VII. REDUNDANCY OF NONLINEAR CVA

CVA provides a very useful procedure for construction of
states for a nonlinear process. Such a state vector however
is not of minimal order. In this section, some indication of
what goes wrong is discussed, and particularly for the case
of the normal distribution. A starting point that suggests a
much more basic relationship is the following (Lancaster,
1966,1969).

Theorem 4: If X and Y are jointly normal variables, then
the maximal correlation occurs for linear transformations

f (X) and g(Y ), and if the maximal correlation is positive
then strictly nonlinear transformations will strictly decrease
the correlation.

The result does not generalize to the multivariate case for
the reasons discussed in the following section – statistically
or functionally dependent variables may be orthogonal in
the case of nonlinear transformations of the variables. In this
section, the term linear canonical variables and linear CVA
will mean the usual CVA considering only linear functions
of the random variables. The strongest multivariate result
appears to be that given in Lancaster (1966)

Theorem 5: Let X and Y be jointly normal random
vectors, and let the nonlinear transformations fi(X) and
gj(Y ) be recursively defined so that E(fi(X)fj(X)) =
E(gi(Y )gj(Y )) = 0 for i < j. Then f1 and g1 have maximal
correlation if they are respectively the first pair of linear
canonical variables; and if for i > 1 we have ρi > ρ2

1, then
the maximal correlation of fi and gi are given respectively
by the ith pair of linear canonical variables.

The condition ρi > ρ2
1 is sufficient to insure that nonlinear

functions that are orthogonal to the previously defined
canonical variables will not have large enough correlation.
If however the condition of orthogonality is replaced by that
of independence or equivalently zero maximal correlation,
then the following multivariate generalization is obtained
(Larimore, 1989).

Theorem 6: Let X and Y be jointly normal random
vectors of dimensions k and � respectively, and let the
nonlinear transformations fj(X) and gj(Y ) be recursively
defined such that ρ∗(fi(X), fj(X)) = ρ∗(gi(Y ), gj(Y )) = 0
for i < j. Then the functions fj and gj have maximal
correlation if they are respectively the jth pair of linear
canonical variables cj and dj . For ρj > 0, fj and gj
are strictly linear functions respectively of c1, . . . , ck and
d1, . . . , d� .

With the added requirement of independence among the
canonical variables, the univariate result of Theorem 4 is
generalized to the multivariate case by Theorem 6. Thus
in the case of joint normality, among all possible functions
the independent canonical variables involve linear functions,
are normally distributed, and the corresponding prediction
problem among the canonical variables is linear.

VIII. INDEPENDENT CVA AND NORMALITY

In this section, the construction of an independent
canonical variate analysis (ICVA) is discussed.

For a nonlinear process, the number of orthogonal
canonical variables with nonzero canonical correlations may
not equal the minimal state order as it does for linear
processes. The problem is that two canonical variables
that are by definition orthogonal may be such that one
is a deterministic function of the other. Thus there is
no new information in the second that is not available
in the first. So there may be considerable redundancy in
the canonical variables, i.e. some nonlinear functions of
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different canonical variables may be highly correlated or
functionally dependent.

On the other hand the concept of minimal rank in
the choice of the state involves functional independence
between the different state components. The functional
independence is expressed in the linear independence of the
rows of the partial derivative matrix of the functions. CVA
does not require functional independence of the canonical
variables, but only orthogonality.

Suppose that two canonical variables g1 and g2 are such
that there is no functional redundancy between them in
the sense that for any functions e and f , e(g1) and f (g2)
are uncorrelated. This is equivalent to the statement that
the maximal correlation is zero, i.e. ρ∗(g1, g2) = 0, which
from Section VI is the case if and only if g1 and g2

are stochastically independent random variables. Thus we
seek a stochastically independent canonical variate analysis
(ICVA), i.e. in the Sequential Selection Theorem 3 replace
the orthogonality condition < g(r−1), gr > = 0 with the
mutual independence condition ρ∗(g(r−1)(Y ), gr(Y )) = 0

Further work is needed to establish conditions under
which such a development will lead to a solution. In
particular, some regularity conditions are required so that at
each step after the choice of gi, there exist M−i independent
generators so that nonlinear functions of them span the
subspace orthogonal to Fg(i−1) . Then the canonical variables
will be minimal with rank equal to that of the state space.

In the remainder of this section, regularity conditions
are studied that permit the construction of independent
canonical variables. In particular, we wish to show that
for any sets W and X of random variables, there exists
a set U (W,X) of random variables, where each of the
components ui(W,X) is a function of W,X, and are such
that W and U are mutually independent and generate the
same space as W and X. In the statement and proof of
the theorem, the standard statistical notation is used where
upper case W denotes a random variable or random vector
and lower case w denotes a particular real value of a
random variable or vector. One version of such a theorem
is given below after stating the regularity condition that the
probability density function must satisfy.

Condition 1: Density Function. The density pW,X (w, x)
of the joint distribution PW,X (w, x) with respect to the
product PW (w)PX (x) of the marginals exists, is continuous
and nonzero.

Theorem 7: Independent Generators. Under Condition 1
there exists a transformation U (W,X) such that the map:
(W,X) → (W,U ) is 1-1 and W and U are mutually
independent.

Proof: For simplicity, first the case of W possibly a
vector and X a scalar is considered. From Condition 1,
the probability densities exist and are nonzero. Since
p(w, u) = p(u|w)p(w) and w and u are independent if and
only if p(w, u) = p(u)p(w), it follows that w and u are
independent if and only if p(u|w) = p(u), i.e. if and only
if the conditional density is equal to the marginal density.

Thus we construct a transformation of x to a variable u such
that this is true. Let FW (w) = P (W < w) be the cumulative
distribution function for the scalar random variable W .
Consider the conditional random variable X|w with density
pX|w (X|w) which can be transformed to the uniform random
variable t defined in terms of the cumulative distribution

t(w, x) = FX|w (x) (26)

and transformed back to the scalar random variable u with
the same density as the marginal p(x) by the function

u(w, x) = F−1
X (t(w, x)) (27)

The cumulative distribution of U |w of U for fixed vector
w is

FU |w (u) = FX (u), (28)

the marginal density of X which does not depend upon w.
The marginal density of U is

pU (u) =
∫
pU,X (u, w)dw =

∫
pU |x(u|w)pW (w)dw (29)

=
∫
pX (u)pW (w)dw = pX (u) = pU |w (u|w) (30)

By construction, the map: (W,X) → (W,U ) is 1-1.
Now consider the case of X a vector. Then by in-

duction using the case proven for a scalar X, the trans-
formation (W,U1, . . . , Ui, Xi+1) → (W,U1, . . . , Ui, Ui+1) is
constructed that is 1-1 with W,U1, . . . , Ui independent of
Ui+1 which proves the theorem.

Now, the independent canonical variate analysis is
constructed using the sequential selection theorem with
stochastic independence in place of orthogonality.

Theorem 8: Independent CVA. Assume Condition 1 on
the density of the sets (X, Y ) and consider the nonlinear
prediction problem (23) with the additional requirement
that the components of f (X) are mutually stochastically
independent and similarly for g(Y ). Then there exist vector
functions f and g giving an optimal solution that are
obtained sequentially by the following procedure: For each
r, find the pair of functions (fr, gr) such that fr(X)
is stochastically independent of the previously selected
random vector fr−1(X) = (f1, . . . , fr−1)T , and gr(Y )
is independent of gr−1(Y ) = (g1(Y ), . . . , gr−1(Y ))T , and
simultaneously maximize the correlation

dr = max
(fr, gr)

ρ(fr(X), gr(Y )). (31)

Furthermore, the canonical variables are jointly normally
distributed.

Proof: Suppose that the theorem is true for r − 1 so
that there exist functions fr−1 = (f1, . . . , fr−1)T and gr−1 =
(g1, . . . , gr−1)T with fr−1(X) mutually independent and
gr−1(Y ) mutually independent that pairwise maximize the
correlation (31). Then by Theorem 7 with W = fr−1(X),
there exist independent random variables U (W,X) as
functions of W and X that are independent of W so that the
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transformation (W,X) → (W,U ) is 1 to 1 and generates
the same space of random variables. Similarly, taking
W = gr−1(Y ), there exist independent random variables
V (W,Y ) as functions of W and Y that are independent
of W so that the transformation (W,Y ) → (W,V ) is 1
to 1 and generates the same space of random variables.
Now define the functions fr and gr as those maximizing
the correlation ρ(f (U )g(V )). Since the random variables
U are independent of fr−1(X), so is the function fr(U ) =
fr(U (W,X)) = fr(U (fr−1(X), X)) that is a function only
of X. Similarly gr(V ) is a function only of Y and is
independent of gr−1(Y ). Thus the theorem holds for r. By
construction in the proof of Theorem 7, it is trivial to
construct transformations from each of fr(U ) and gr(V ) to
gaussian variables, so that the canonical variables are joint
gaussian random variables. Thus the independent canonical
variables can be selected as gaussian under the assumed
regularity conditions.

IX. NONLINEAR MARKOV PROCESSES

In this section, various aspects and representations of
Markov processes are developed. The fundamental proper-
ties of the state of a Markov process are reviewed. Given
a state for a Markov process, the development of the state
space innovations representation is immediate.

A fundamental concept in the CVA approach is the
past and future of a process. Suppose that data are given
consisting of observed outputs yt and observed inputs ut
at time points labeled t = 1, . . . ,N that are equal spaced
in time. Associated with each time t is a past vector pt
consisting of the past outputs and inputs occurring prior to
time t as well as a future vector ft consisting of outputs
at time t or later, specifically

pt = (yTt−1, y
T
1−2, . . . , u

T
t−1, u

T
1−2, . . .)

T , ft = (yTt , y
T
t+1, . . .)

T

(32)
For simplicity, consider first purely stochastic processes

with no observed deterministic input to the system. A
fundamental property of a nonlinear, strict sense Markov
process of finite state order is the existence of a finite
dimensional state xt which is a nonlinear function of the
past pt

xt = Ct(pt) (33)

with Ct(·) a nonlinear function. The state xt has the property
that the conditional probability of the future ft conditioned
on the past pt is identical to that of the future ft conditioned
on the finite dimensional state xt so

P{ft|pt} = P{ft|xt} (34)

Thus, only a finite amount of information from the past is
relevant to the future evolution of the process.

To extend this concept to processes involving determin-
istic controls or inputs, the effects of future inputs must
first be removed from the future outputs. Let qt denote
the future inputs qTt = (uTt , u

T
t+1, . . . , ) and consider the

conditional random variable ft|qt. Then the process is a

controlled Markov processes of order k if there exists a
k-order state such that the conditional distribution of ft|qt
given the past pt is identical to the conditional distribution
of ft|qt given the state xt so

P{(ft|qt)|pt} = P{(ft|qt)|xt} (35)

This is equivalent of the statement that

P{ft|(qt, pt)} = P{ft|(qt, xt)} (36)

Now suppose that the state xt is given from CVA of the
past and future as in the previous sections with X = pt and
Y = ft, and we wish to obtain the generally nonlinear state
equations describing the state evolution and observed output
from the observed inputs and unobserved disturbances. First
we define, for a given selection for the state xt of the
process, the innovations process νt which is the error in
the optimal nonlinear prediction E(yt|xt) of the process yt
from the state xt given by

νt = yt − E(yt|xt) (37)

Then the following shows that the vector (νt, ut, xt) is a state
at time t+1 and thus the state evolution can be obtained as
a nonlinear function of these variables (Larimore, 1988).

Theorem 9: State Space Representation. Suppose that
the joint and marginal densities among pt, ft, qt, ut, and yt
are nonzero. Then the state at time t + 1 is a function of
xt, ut, and yt, and the state evolves as

xt+1 = φ(xt, ut, νt) (38)

where the innovation process νt is an orthogonal increment
process orthogonal to (pt, ut)[∞] defined by

yt = µt(xt, ut) + νt (39)

where µt(xt, ut) is the projection of yt on F(xt,ut).
The importance of this is in the evolution of the state

equations. Let xt+1 be a minimal order state. Then from
the above, the variables (νt, ut, xt) generate the subspace
F(νt,ut,xt) containing the state xt+1 so that xt+1 can be found
by projection

xt+1 = E(xt+1|(νt, ut, xt)) = φt(νt, ut, xt) (40)

using the conditional expectation operator E{·|·}.
For nonlinear processes for which Theorem 8 holds, an

independent CVA (ICVA) procedure parallels that of the
linear CVA. It is first necessary to remove the effect of
future inputs qt on future outputs ft. This is done by fitting
a nonlinear ARX model involving linear combinations of
nonlinear functions of the past. The ICVA then results in a
likelihood function given by (11) involving the canonical
variables as states and a normally distributed error. It is then
a matter of determining the nonlinear functions φ of (38)
and µ of (39) by a nonlinear regression of xt+1 and yt on xt
and ut. Future work will involve the investigation of general
conditions for existence of the ICVA and computational
methods for obtaining the canonical variables.
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X. APPLICATIONS OF CVA

A. Adaptive Control of Aircraft Wing Flutter

A particularly impressive application involved a wind
tunnel test of on-line adaptive control of unstable aircraft
wing flutter using CVA system identification and linear
quadratic gaussian (LQG) control design (Larimore and
Mehra, 1984; Peloubet et al., 1990). The system had 2 in-
puts, 6 outputs, and substantial wind tunnel turbulence. This
example illustrates the use of a single system identification
and control design procedure to successfully identify over
100,000 multivariable systems with up to 30 states for a
wide range of system dynamics and structural configura-
tions. There were no failures of the system identification
algorithm that was operating completely automatically
(Peloubet et al, 1990).

In the wing flutter problems, the dynamic system is a
globally nonlinear systems. However, an approximate linear
system about the operating point provides a useful model
for feedback control. The linearized dynamic model can be
determined directly and automatically from the measured
input and output data. Then the identified dynamic model
can be used to automatically design a feedback control
to suppress the vibration. For the wind tunnel test, most
of the time during the test the model aircraft was flying
beyond the critical flutter speed where the flutter dynamics
were unstable. The LQG controller developed from the
CVA identified model was being used during the whole
experiment to stabilize the model dynamics that were
unstable most of the time.

In the final days of the three weeks of windtunnel testing,
a particularly unstable configuration of stores (tanks, mis-
siles, etc) were hung from the wing for testing. The testing
was conducted as usual to the point were it appeared close to
being unstable even with the real-time system identification
and on-line control system design and feedback. At one
point the system went unstable and broke the wing ending
the testing. In post analysis, it was determined that the
controller in combination with the identified wing flutter
model was stable but only very marginally so. Of course
the identified model is only an estimate of the true wing
flutter dynamics and has some error associated with it. From
comparison of the dispersion of repeated identifications
of the wing flutter, it was determined that the model
identification error exceeded the robustness of the associated
controller. As a result, the controller in combination with the
true flutter dynamics was unstable. Measurements indicated
that there was amplitude doubling every 4 cycles, or
equivalently every 0.25 seconds.

The lesson learned was that it is critical to have an
assessment of the accuracy of the identified model, and
to use this in determining the robustness of the controller
to modeling errors. At the time of the tests, there was no
means of doing this. Subsequently, methods for computing
confidence bands for the accuracy of the identified model
were developed (Larimore, 1993) based on the assumed

maximum likelihood accuracy of CVA that was proven in
Larimore (2004).

B. Monitoring and Fault Detection

Several monitoring and fault detection methods have
been developed based on the ML properties of CVA.
Larimore (1997a) developed a likelihood ratio test, ∆AIC,
for model change. It was used by Wang et al. (1997)in
CSTR simulations, and distribution theory was developed
by Conner et al. (2004) showing that it is optimal. Juricek
et al. (2004) compared several failure detection methods
based on CVA methods to conventional methods.

C. Nonlinear Identification of the Lorenz Attractor

The Markov process considered is the Lorenz attractor
(Lorenz, 1963) with process excitation noise. The differ-
ential equations are discretized with ∆t = 0.01, and white
process noise is added to the state equations so that the
discrete time equations used for simulation become

x
(1)
t+1 = x

(1)
t + ∆tσ(x(2)

t − x
(1)
t ) + n

(1)
t (41)

x
(2)
t+1 = x

(2)
t + ∆t[ρx(1)

t − x
(2)
t − x

(1)
t x

(3)
t ] + n

(2)
t (42)

x
(3)
t+1 = x

(3)
t − ∆t[βx(3)

t + x
(1)
t x

(2)
t ] + n

(3)
t (43)

The values of the parameters used in the simulation are
σ = 10, ρ = 28 and β = 8/3 which results in the much
studied chaos of the system. The noise covariance matrix
of the white process excitation noise (n(1)

t , n
(2)
t , n

(3)
t )T used

in the simulation is 10−2 × I3 with I3 the 3-dimensional
identity matrix. The presence of process excitation noise
provides a much more difficult identification problem since
the process no longer is exactly predictable given exact
arithmetic. Most studies of identification of chaos consider
only the presence of additive white noise which can be
reduced by simple averaging of the observations. The time
correlation introduced by the nonlinear process dynamics
presents a much more difficult problem for identification.

For system identification, the measurement observation
data are yt = x

(1)
t , the first component of the discretized

Lorenz process observed at 1000 time points. The presence
of the noise on the process was very noticeable. It is
show (Larimore, 1989, 1992b) that the entire 3-dimensional
dynamics of the process can be reconstructed from the
measured first component.

The measurements y consisting of only the first com-
ponent x(1) of the Lorenz attractor are used to compute
nonlinear functions of the past as basis functions for
canonical variate analysis. The past pt consists of functions
that are powers and products of up to degree three in the
first three lags (yt−1, yt−2, yt−3) of the measurements y so
that functions of the form

fi1,i2,i3 (yt−1, yt−2, yt−3) = y
i1
t−1y

i2
t−2y

i3
t−3 for i1 + i2 + i3 ≤ 3

(44)
are considered. There are 20 such basis functions. The
future ft is the vector of outputs up to 20 lags into the
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future so
ft = (ft, . . . , ft+20)T (45)

A canonical variate analysis of sample covariances of the
past and future are given in Table I. Note that the canonical

Canonical
Index Correlation

1 0.9999
2 0.9746
3 0.9043
4 0.6062
5 0.3022
6 0.1782
7 0.1626
8 0.1539
9 0.1309

10 0.0969
11 0.0940
12 0.0827
13 0.0686
14 0.0581
15 0.0461
16 0.0149
17 0.0102
18 0.0041
19 0.0011

TABLE I

Canonical Correlations for Lorenz Attractor.

correlations drop until a floor is hit at 0.1782, and from
this point on the canonical correlations fall off slowly. This
is typical behavior of sample canonical correlations and
most likely the canonical correlations less than or equal to
0.1782 are not statistically significant. This suggests that
there are 5 statistically significant canonical variables. The
canonical state is chosen as the first 5 canonical variables.

D. Other Applications of Nonlinear CVA

Several other research teams have independently applied
the methodology of Larimore (1989) including Verhoeven
et al (2002), Pilgram et al (2000), and DeCicco and Cinar
(2000). Verhoeven et al (2002) and Pilgram et al (2000)
apply NLCVA to financial data of the S& P500 and foreign
exchange rates respectively. They compare the NLCVA
model with a GARCH(1,1) model of Engle (1982) and
Bollerslev (1986) for modeling volatility. The GARCH is a
model developed specifically for modeling financial data
volatility, and has been used with great success. Engle
recently received the Nobel prize for his contributions to
ARCH and GARCH modeling of volatility in financial
systems. What is intriguing is that the NLCVA model that
is identified with no knowledge about financial systems
or prior information performs significantly better than the
GARCH model that was developed and refined over a
number of years specifically for that purpose. This suggests
at least in some cases that black box nonlinear modeling
can outperform detailed models that are constructed with
a particular structure based upon somewhat imperfect prior
information.
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