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Abstract— This paper presents a new fault tolerant control
based on LQ design method that may stabilize a given system
both in the nominal situation, as well as in the situation where
some of the actuators have failed. This new control result
basically follows the design guideline of the recently developed
adaptive two-stage LQ reliable control (ATSLQRC), and con-
siders the faults not confined to a preselect set of actuators. The
unified gain margin constraint of the ATSLQRC is presented.
It is also shown that the ATSLQRC serves as a guaranteed
cost control provided that its design parameters satisfy two
new proposed guaranteed cost gain margin constraints. A
numerical example is given to illustrate the effectiveness of
the proposed results. A potential application of the proposed
results to design a passive fault tolerant control is also
addressed.

I. INTRODUCTION

Fault tolerant controller designs guaranteeing stability
while permitting control component failures (i.e., actuator
failures and/or sensor failures) have received great attentions
in the literature [1]-[8]. However, most of aforementioned
results are either devoted to an H∞ framework or developed
for continuous-time systems [1], [2], [3], [5], [6], and
few results are dedicated to discrete-time LQ designs [4],
[7], [8]. In this paper, we shall study the fault tolerant
control design for discrete-time systems which are subject
to actuator failures in the framework of LQR design method.
Specifically, we shall focus on an extension of the reliable
LQ regulator of Veillette [3] to discrete-time systems. In an
early attempt [11], [12], the author proposed the two-stage
LQ reliable control (TSLQRC) to extend Veillette’s reliable
LQ design to discrete-time systems. In [13], a modified
version of the TSLQRC was proposed to improve the
gain margin results. Furthermore, a feasible version of the
TSLQRC named as the FTSLQRC [14] was also proposed
to overcome the inherently infeasible problem existed in
the original control structure of the TSLQRC. Recently
[15], to further improve the performance and stability gain
margins of the FTSLQRC, an adaptive version of the
TSLQRC, i.e., the ATSLQRC, which mainly employing
a novel actuator-failure-estimation technique to overcome
the aforementioned restricted gain margin results has been
proposed. Moreover, the problem that the ATSLQRC can
tolerate system uncertainties in the form of norm-bounded
parameter uncertainties was also considered in [15].

Although the gain margin results of the ATSLQRC are
appealing, they can only tolerate actuator outage within a
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preselected actuator set. Unfortunately, in practical fault tol-
erant control applications, actuator failures may exist in any
actuator set. Hence, the ATSLQRC may not be considered
in systems for which any actuator might fail. Thus, the main
aim of this paper is to explore and modify the gain margin
properties of the ATSLQRC when further considering the
possible actuator outage in the whole actuator set. In other
words, this paper presents a new fault tolerant control, based
on the previously proposed ATSLQRC, that may stabilize
a given system both in the nominal situation, as well as
in the situation where some (not confined to a preselect
set of actuators) of the actuators have failed. To facilitate
the development, the unified gain margin constraint of the
ATSLQRC is presented. It is shown that the ATSLQRC
serves as a guaranteed cost control provided that its design
parameters satisfy two new proposed guaranteed cost gain
margin constraints. A numerical example is also given to
illustrate the effectiveness of the proposed results. Recently,
a corresponding result dedicated to continuous-time systems
was given in [9].

As addressed in [8] that the approaches to fault tolerant
control can be divided into two main classes: Active fault
tolerant control and passive fault tolerant control. Although
an active fault tolerant control system might accommodate
actuator failures more efficiently, however the involved
failure estimating scheme may add the complexity of the
overall system. On the other hand, in the passive fault
tolerant control approach, a fixed controller is often enough
to achieve the system’s stability requirement. Although the
proposed ATSLQRC is a certain kind of active fault tolerant
control scheme, however this paper shows a possibility that
the ATSLQRC may be useful to design a fixed controller
to solve a passive fault tolerant control design problem in
which the system may suffer from the problem that any one
of the actuators might fail. Thus, a potential application of
the ATSLQRC to design a passive fault tolerant control is
also addressed. This result also suggests a possible approach
to solve the fault tolerant control problem in which several
actuators can fail simultaneously, which appears to be a
subject of future research raised by [8].

This paper is organized as follows. Section II introduces
the problem and the recently developed ATSLQRC. It is fol-
lowed by the derivation of the gain margin properties of the
ATSLQRC. Section IV presents a guaranteed cost control
design via the ATSLQRC. An illustrative example is given
in Section V to demonstrate the proposed method. Section
VI gives a potential application to a passive fault tolerant
control design. Finally, Section VII gives the conclusions.
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II. PROBLEM STATEMENT AND THE ATSLQRC

Consider the following discrete-time linear system:

xk+1 = Axk + Buk, (1)

where xk ∈ Rn is the system state, uk ∈ Rm is the control
input whose components may fail during system operation,
and matrices A and B are known constant matrices. The
quadratic performance index associated with the system is
given by

J =
∞∑

k=0

(x′
kQxk + u′

kRuk), (2)

where Q ≥ 0 and R > 0 are given weighting matrices, and
′ denotes transpose.

In this paper, we shall determine whether it is possible
to design a LQ regulator that is guaranteed to achieve an
upper performance bound for system (1), i.e., J ≤ J̄ < ∞,
in case some actuators may fail. Specifically, we consider
the actuator failure model as

uF
k = diag{NΩ̄, NΩ}uk, (3)

where NΩ̄ and NΩ are assumed as follows:

NΩ̄ = diag{n1
Ω̄, n2

Ω̄, · · · , np

Ω̄
}, ni

Ω̄ ≤ ni
Ω̄ ≤ n̄i

Ω̄, (4)

NΩ = diag{n1
Ω, n2

Ω, · · · , nm−p
Ω }, nj

Ω ≤ nj
Ω ≤ n̄j

Ω, (5)

in which 0 ≤ ni
Ω̄

≤ 1, n̄i
Ω̄

≥ 1, 0 ≤ nj
Ω ≤ 1, and

n̄j
Ω ≥ 1. Accordingly, the input matrix B and the weight-

ing matrix R are partitioned as B =
[

BΩ̄ BΩ

]
and

R = diag{RΩ̄, RΩ}, respectively. Note that in the above
formulations, Ω denotes a preselected subset of unreliable
actuators within which outages must be tolerated while Ω̄
denotes the complementary subset of actuators. Without loss
of generality, in this paper we focus on the following two
special actuator failure models: 1) NΩ̄ ≥ 0 & NΩ = 0 and
2) NΩ̄ = 0 & NΩ ≥ 0, where NS = 0 denotes the complete
outage of the actuators in the set S while NS ≥ 0 denotes
that there exists at least one actuator in the set S such that
outage will not occur.

For easy reference, the recently developed ATSLQRC
[15] is summarized as follows:

uk = −
[

N̂+
Ω̄,k

K̄Ω̄Ûk

N̂+
Ω,kK̄Ω

]
Axk, (6)

where N̂Ω̄,k and N̂Ω,k are the estimates of the perturbation
matrices NΩ̄ and NΩ, respectively, M+ is an arbitrary
generalized inverse of M satisfying MM+M = M , and

K̄Ω̄ = S−1
Ω̄

B ′̄
ΩP, SΩ̄ = B ′̄

ΩPBΩ̄ + RΩ̄, (7)

K̄Ω = S−1
Ω B′

ΩP̄ , SΩ = B′
ΩP̄BΩ + RΩ, (8)

P̄ = P (I − BΩ̄K̄Ω̄) = P − PBΩ̄S−1
Ω̄

B ′̄
ΩP, (9)

P = A′P (I − BΩ̄ΓΦ
Ω̄K̄Ω̄)A + Q − A′E0A, (10)

E0 = P (I − BΩ̄ΓΦ
Ω̄K̄Ω̄)BΩΓΦ

ΩK̄Ω, (11)

Ûk = I − BΩN̂Φ
Ω,kK̄Ω, N̂Φ

Ω,k = N̂Ω,kN̂+
Ω,k, (12)

where ΓΦ
Ω̄

and ΓΦ
Ω are two design parameters. Note that E0

in (11) is a modified version of the original term in [15],
which may yield an asymmetric DARE, i.e., the obtained
stabilizing solution P by (10) is not symmetric. In this paper
we also assume that the estimates N̂Ω̄,k and N̂Ω,k can be
accurately obtained, i.e., N̂Ω̄,k ≈ NΩ̄ and N̂Ω,k ≈ NΩ for
time k ≥ T .

From [15], one knows that the stability and performance
gain margins of the above ATSLQRC may be given as
follows: 0 < ni

Ω̄
< ∞ and 0 ≤ nj

Ω < ∞. However,
in practical control applications, the actuators in the set
Ω̄ may also encounter actuator outage, i.e., ni

Ω̄
= 0 for

some i. Thus, the main aim of this paper is to explore
the gain margin properties of the ATSLQRC when further
considering the possible actuator outage in the set Ω̄.
Furthermore, a potential application of the proposed results
to solve a passive fault tolerant control design problem is
also presented.

III. GAIN MARGIN PROPERTIES OF THE
ATSLQRC

To facilitate latter development, in this section we will
present the key result which states the unified gain margin
constraint of the ATSLQRC in the following Theorem.

Theorem 1. The state-feedback system obtained by apply-
ing the ATSLQRC (6)-(12) to system (1), which guarantees
the following performance bound

J ≤ J0 + x′
T (P + a · P̃T )xT , (13)

where a ∈ R and

J0 =
T−1∑
k=0

{
x′

k(Q + A′Q̄kA)xk

}
, (14)

P̃k = F ′
kP̃k+1Fk + A′Q̄kA, (15)

Q̄k = Û ′
kK̄ ′̄

Ω(NΦ
Ω̄,k)′RΩ̄NΦ

Ω̄,kK̄Ω̄Ûk

+K̄ ′
Ω(NΦ

Ω,k)′RΩNΦ
Ω,kK̄Ω, (16)

Fk = (I − BΩ̄NΦ
Ω̄,kK̄Ω̄)ÛkA

+BΩ(N̂Φ
Ω,k − NΦ

Ω,k)K̄ΩA, (17)

in which NΦ
Ω,k = NΩN̂+

Ω,k and NΦ
Ω̄,k

= NΩ̄N̂+
Ω̄,k

, if for
time k ≥ T the matrices ΓΦ

Ω̄
, ΓΦ

Ω, NΦ
Ω̄

, and NΦ
Ω satisfy the

following unified gain margin constraint:

K̄ ′
ΩDΩK̄Ω + PBΩ̄(I − ΓΦ

Ω̄)K̄Ω̄ + a · Q̄k

≥ Û ′
kK̄ ′̄

ΩDΩ̄K̄Ω̄Ûk + Υk + E0, (18)

where

DΩ = SΩ − (I − NΦ
Ω,k)′SΩ(I − NΦ

Ω,k), (19)

DΩ̄ = (I − NΦ
Ω̄,k)′SΩ̄(I − NΦ

Ω̄,k), (20)

Υk = Û ′
k(PBΩ̄ − K̄ ′̄

ΩSΩ̄)(I − NΦ
Ω̄,k)K̄Ω̄Ûk

+(K̄ ′
ΩSΩ − P̄BΩ)NΦ

Ω,kK̄Ω, (21)

E0 = P (I − BΩ̄ΓΦ
Ω̄K̄Ω̄)BΩΓΦ

ΩK̄Ω. (22)
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Proof: First, we note that the performance index (2),
in the presence of actuator failures (3), can be represented
as follows:

J = J0 +
∞∑

k=T

{
x′

k(Q + A′Q̄kA)xk

}
. (23)

Next, using the following substitution: Q → Q − A′E0A
and applying the same procedures as given in deriving (34)
of [14], one obtains

F ′
k(P + aP̃k+1)Fk − (P + aP̃k) + Q + A′Q̄kA

= −A′ {PBΩ̄(I − ΓΦ
Ω̄)K̄Ω̄ + {•} + aQ̄k − E0

}
A, (24)

where

{•} = K̄ ′
ΩDΩK̄Ω − Û ′

kK̄ ′̄
ΩDΩ̄K̄Ω̄Ûk − Υk. (25)

Finally, using (24) one can easily show that the performance
index (23) can be represented alternatively as follows:

J = J0 + x′
T (P + aP̃T )xT −

∞∑
k=T

(Axk)′{•}1Axk, (26)

where

{•}1 = PBΩ̄(I − ΓΦ
Ω̄)K̄Ω̄ + {•} − E0 + aQ̄k. (27)

From (26), the performance bound (13) holds if matrix {•}1

is positive semidefinite, which establishes the constraint
(18). This completes the proof.
Note that the above unified gain margin constraint (18) is a
modified version of the original term in [15] to compensate
for the resulted asymmetric DARE (10).

Now, we are in the position to simplify the unified gain
margin constraint (18) according to the considered two
actuator failure models as below.

Case 1: NΩ̄ ≥ 0 and NΩ = 0. In this case, one has
NΦ

Ω,k = 0, N̂Φ
Ω,k = 0, and NΦ

Ω̄,k
a diagonal matrix in which

all principal values are either zero or one and at least one
value is one. Constraint (18) then becomes

PBΩ̄(I − ΓΦ
Ω̄)K̄Ω̄ + a · Q̄k

≥ (PBΩ̄ − K̄ ′̄
ΩNΦ

Ω̄,kSΩ̄)(I − NΦ
Ω̄,k)K̄Ω̄

+P̄BΩΓΦ
ΩK̄Ω + PBΩ̄

(
I − ΓΦ

Ω̄

)
K̄Ω̄BΩΓΦ

ΩK̄Ω,

which can be reformulated as

a · Q̄k − P̄BΩΓΦ
ΩK̄Ω

+PBΩ̄(I − ΓΦ
Ω̄)K̄Ω̄

(
I − BΩΓΦ

ΩK̄Ω

)
≥ (PBΩ̄ − K̄ ′̄

ΩNΦ
Ω̄,kSΩ̄)(I − NΦ

Ω̄,k)K̄Ω̄. (28)

Note that for the special case NΦ
Ω̄,k

= I , which denotes that
within the set Ω̄ actuator outage is not taken into account
by the design, (28) is always satisfied if one chooses ΓΦ

Ω =
0 and ΓΦ

Ω̄
≤ I . These are the chosen conditions of the

previously proposed modified TSLQRC [13].
Case 2: NΩ̄ = 0 and NΩ ≥ 0. In this case, one has

NΦ
Ω̄,k

= 0 and N̂Φ
Ω,k = NΦ

Ω,k a diagonal matrix in which

all principal values are either zero or one and at least one
value is one. Constraint (18) then becomes

K̄ ′
ΩDΩK̄Ω + PBΩ̄(I − ΓΦ

Ω̄)K̄Ω̄ + a · Q̄k

≥ (I − BΩN̂Φ
Ω,kK̄Ω)′PBΩ̄K̄Ω̄(I − BΩN̂Φ

Ω,kK̄Ω)

+PBΩ̄

(
I − ΓΦ

Ω̄

)
K̄Ω̄BΩΓΦ

ΩK̄Ω

+P̄BΩΓΦ
ΩK̄Ω +

(
K̄ ′

ΩSΩ − P̄BΩ

)
NΦ

Ω,kK̄Ω,

which can be reformulated as

a · Q̄k − P̄BΩΓΦ
ΩK̄Ω

+PBΩ̄(I − ΓΦ
Ω̄)K̄Ω̄

(
I − BΩΓΦ

ΩK̄Ω

)
≥ (I − BΩN̂Φ

Ω,kK̄Ω)′PBΩ̄K̄Ω̄(I − BΩN̂Φ
Ω,kK̄Ω)

−P̄BΩNΦ
Ω,kK̄Ω − K̄ ′

ΩNΦ
Ω,kSΩ(I − NΦ

Ω,k)K̄Ω. (29)

Note that for the special case N̂Φ
Ω,k = NΦ

Ω,k = I , (29) is
always satisfied if one chooses ΓΦ

Ω̄
= 0 and ΓΦ

Ω ≤ I .
Based on the above discussions, we conclude the fol-

lowing remark: the ATSLQRC may serve as a guaranteed
cost control which achieves the performance bound (13) for
actuators that may completely fail in either of the two sets
Ω̄ and Ω (but of course not both) provided that the design
parameters ΓΦ

Ω̄
and ΓΦ

Ω both satisfy the constraints (28) and
(29). Thus, we have the following Theorem.

Theorem 2. The state-feedback system obtained by ap-
plying the ATSLQRC (6)-(12) to system (1), which can
achieve the performance bound (13) for actuators that may
completely fail in either of the two sets Ω̄ and Ω provided
that the design parameters ΓΦ

Ω̄
and ΓΦ

Ω both satisfy the
following two constraints:

(I) Ξ ≥ 0 if Θ ≥ 0, (30)

(II) Ξ ≥ −Θ if Θ < 0, (31)

where

Ξ = a · Q̄k − P̄BΩΓΦ
ΩK̄Ω − Π

+PBΩ̄(I − ΓΦ
Ω̄)K̄Ω̄

(
I − BΩΓΦ

ΩK̄Ω

)
, (32)

Θ = P̄BΩNΦ
Ω,kK̄Ω + K̄ ′

ΩNΦ
Ω,kSΩ(I − NΦ

Ω,k)K̄Ω + Π

−(I − BΩN̂Φ
Ω,kK̄Ω)′PBΩ̄K̄Ω̄(I − BΩN̂Φ

Ω,kK̄Ω),
(33)

Π = (PBΩ̄ − K̄ ′̄
ΩNΦ

Ω̄,kSΩ̄)(I − NΦ
Ω̄,k)K̄Ω̄. (34)

Proof: It suffices to verify the following two condi-
tions: 1) Θ ≥ 0 implies Ξ ≥ 0 ≥ −Θ and 2) Θ < 0
implies Ξ ≥ −Θ ≥ 0. This completes the proof.

IV. A GUARANTEED COST CONTROL DESIGN
VIA THE ATSLQRC

In this section, we will present an optimal guaranteed
cost control design based on the two simplified constraints,
i.e., (30) and (31). To simplify the design, the design
parameters of the ATSLQRC, i.e., ΓΦ

Ω̄
and ΓΦ

Ω, are taken
as the following specific forms: ΓΦ

Ω̄
= γΦ

Ω̄
I and ΓΦ

Ω = γΦ
ΩI .
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Hence, the discrete-time algebraic Riccati equation (DARE)
by (10) is rewritten as follows:

P = A′P (I − γΦ
Ω̄BΩ̄K̄Ω̄)(I − γΦ

ΩBΩK̄Ω)A + Q. (35)

In order to have a stabilizing solution of the DARE (35),
the parameters γΦ

Ω̄
and γΦ

Ω are constrained as follows: 0 ≤
γΦ
Ω̄
≤ 1 and 0 ≤ γΦ

Ω ≤ 1.
Next, we note that if the estimates of actuator failures

can be accurately obtained for T = 1 (see [14] for
details), then one can always choose the initial estimates
of actuator failures as large as possible such that Q̄0 → 0
and x′

1Px1 → x′
0A

′PAx0. Thus, the upper performance
bound (2) is given by x′

0(Q + A′PA)x0. Furthermore, we
assume the following more conservative design:

NΦ
Ω̄,k = I, N̂Φ

Ω,k = NΦ
Ω,k = I, (36)

which means that actuator outages only exist in either of
the two sets Ω̄ and Ω but not both. Hence, using (30)-
(34), (36), and a = 0 (we refer this kind of gain margin
determination problem to guaranteed cost control design
problem), we have the performance gain margins (PGM)
of the ATSLQRC in the following Lemma (the proof is
straightforward and omitted).

Lemma 1. The state-feedback system obtained by apply-
ing the ATSLQRC (6)-(12) to system (1), which can achieve
the performance bound

J ≤ x′
0(Q + A′PA)x0, (37)

and accommodate the following gain perturbations:

0 ≤ ni
Ω̄ < ∞, 0 ≤ nj

Ω < ∞, (38)

provided that 0 ≤ γΦ
Ω̄
≤ 1 and 0 ≤ γΦ

Ω ≤ 1 both satisfy the
following two guaranteed cost gain margin constraints:

(I) Ξ ≥ 0 if Θ ≥ 0, (39)

(II) Ξ ≥ −Θ if Θ < 0, (40)

where

Ξ =
(
1 − γΦ

Ω̄

)
PBΩ̄K̄Ω̄

(
I − γΦ

ΩBΩK̄Ω

)
−γΦ

Ω P̄BΩK̄Ω, (41)

Θ = P̄BΩK̄Ω

−(I − BΩK̄Ω)′PBΩ̄K̄Ω̄(I − BΩK̄Ω). (42)

Then, we consider the practical issue how to solve (39)
and (40). We first note that matrix Θ in (42) is a key fault
indicator that shows which actuator failure model is the
more influential one. If Θ ≥ 0, then one obtains that the true
of constraint (39) will always promise the constraint in (40).
In other words, the outage in the set Ω will yield the worst
system’s performance. We call the set Ω in this case by the
dominant set. Thus, considering that the actuator outage
may occur in the whole set, we only need to check the
requirement: Ξ ≥ 0, which is then named as the dominant
constraint, to guarantee the whole system’s performance

cost. In such a case, we search for the range 0 ≤ γΦ
Ω̄
≤ 1,

and then find the minimum and the maximum values of
γΦ
Ω , which are denoted by γΦ

Ω,min and γΦ
Ω,max, respectively,

that will make matrix Ξ in (41) be a positive semidefinite
one. On the other hand, if Θ < 0, then one obtains that the
dominant set is Ω̄ and the outage in the set Ω̄ will yield
the worst system’s performance. In this case, we search
for the range 0 ≤ γΦ

Ω ≤ 1, and then find the minimum
and the maximum values of γΦ

Ω̄
that will make matrix

[Ξ+Θ] be a positive semidefinite one. We name the above
obtained values of γΦ

Ω̄
and γΦ

Ω as the feasible solutions of
the ATSLQRC.

Finally, the proposed optimal guaranteed cost control is
obtained via finding the optimal γΦ

Ω and γΦ
Ω̄

of the above
obtained feasible solutions that will achieve either 1) the
minimal uppermost-performance cost denoted by J̄min (the
cost associated with the worst-case condition) or 2) the
minimal lowermost-performance cost denoted by Jmin (the
cost associated with the nominal condition).

V. AN ILLUSTRATIVE EXAMPLE

To illustrate the proposed guaranteed cost control design
method, the author considered the system in [12], which is
given as follows:

A =

⎡
⎢⎢⎣

1.00 0.05 0.05 0.10
−0.05 0.95 0.05 0.00
0.10 0.10 1.01 0.06
0.00 0.05 0.00 1.00

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

0.00 0.00
0.09 0.00
0.00 0.00
0.00 0.05

⎤
⎥⎥⎦ , Q =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ ,

R =
[

1 0
0 1

]
, x0 =

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦ , P0 = I4.

The actuator failure model is described as follows:

0 ≤ nΩ̄ ≤ 30, 0 ≤ nΩ ≤ 30. (43)

The diagnostic filter of the ATSLQRC, which estimates the
actuator faults, is given as follows:[

n̂Ω̄,k

n̂Ω,k

]
= B̄+

k (xk − Axk−1),

B̄k =
[

BΩ̄K̄Ω̄ÛkAxk BΩK̄ΩAxk

]
, (44)

Ûk = I − n̂Ω,k−1BΩK̄Ω.

It should be mentioned that B̄k given by (44) is of full
column rank for this simulation example, which guarantees
the faults estimates can be accurately obtained. To simplify
the discussions, the actuator failures considered in this
simulation example are focused on unknown fixed constants
which are in the range of the specified failure model (43).

Applying the searching procedure given in the last section
to the considered system, we obtained the feasible solutions
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Fig. 1. The feasible solutions of γΦ
Ω and γΦ

Ω̄
of the ATSLQRC

TABLE I

TWO OPTIMAL PERFORMANCE COSTS OF THE ATSLQRC

γΦ
Ω̄

γΦ
Ω nΩ̄ nΩ J J∗

0 30 353.50
J̄min 0.038 0.875 30 0 326.37 3205.45

30 30 259.84
0 30 460.48

Jmin 0.09 1 30 0 231.27 524.67
30 30 189.36

of γΦ
Ω and γΦ

Ω̄
in Fig. 1, from which it is clear that the

dominant set in this example is Ω̄. From Fig. 1 one could
roughly say that the smaller the value of γΦ

Ω is chosen
the narrower the range of feasible γΦ

Ω̄
may have. Since

the feasible solutions do not include the case γΦ
Ω = 0, it

is clear that the conventional TSLQRC control structure
[11]-[14] can not be applied to the general fault tolerant
control where any actuator may completely fail. Further, the
conventional optimal control, which is obtained by choosing
γΦ
Ω̄

= 1 and γΦ
Ω = 1, is also not applicable to the present

addressed problem. Also note that the choice: γΦ
Ω̄

= 0 and
γΦ
Ω = 1, which corresponds to the more conservative design

suggested by Veillette [3], is still not applicable.
As a final step, we search for the optimal γΦ

Ω and γΦ
Ω̄

that will achieve the optimal criterion: J̄min or Jmin.
Two optimal performance costs of the ATSLQRC, which
corresponds to J̄min and Jmin, are illustrated by Tab.
1. Also listed in Tab. 1 are their corresponding actual
performance costs denoted by J and upper performance
bounds denoted by J∗.

From Tab. 1, we observed the following: 1) the larger
the values of γΦ

Ω and γΦ
Ω̄

are chosen, the smaller the upper
performance bound may result, and 2) the smaller the
upper performance bound is obtained, the larger the worst
performance cost (corresponding to the case nΩ̄ = 0 and
nΩ = 30) and the smaller the nominal performance cost
(corresponding to the case nΩ̄ = 30 and nΩ = 30) will

result. The reason behind these observations is mainly due
to the fact that the larger the values of γΦ

Ω and γΦ
Ω̄

are chosen
the smaller the stabilizing solution of the DARE (35). And
hence the smaller performance bound and less reliability
will be achieved. Similar results can also be found in [11]
and [13].

VI. APPLICATION TO A PASSIVE FAULT
TOLERANT CONTROL DESIGN

In this section, we shall show that the unified gain margin
constraint of the ATSLQRC given in Theorem 1 can be
applied to solve a passive fault tolerant control design
problem [8], which is stated as below. Consider a system
of the form

xk+1 = Axk + B1u
1
k + B2u

2
k + · · · + Bmum

k . (45)

Assume that each of the pairs (A,Bi), i = 1, · · · ,m,
is stabilizable. Then, the reliable control design problem
is to derive a fixed controller Kkxk (assuming full state
feedback) such that the nominal control law

uk =
[

u1
k u2

k · · · um
k

]′ = Kkxk,

as well as each of the m control laws

uk =

⎡
⎢⎢⎢⎣

0
u2

k
...

um
k

⎤
⎥⎥⎥⎦ , uk =

⎡
⎢⎢⎢⎣

u1
k

0
...

um
k

⎤
⎥⎥⎥⎦ , · · · , uk =

⎡
⎢⎢⎢⎣

u1
k

u2
k
...
0

⎤
⎥⎥⎥⎦ , (46)

internally stabilizes system (45).
To apply the ATSLQRC to the above fault tolerant control

design problem, we first define the sets Ω̄ and Ω as follows:
Ω̄ = {1, 2, · · · , p} and Ω = {p + 1, p + 2, · · · ,m}, where p
is a suitable chosen number. Since the actuator fault is in
the form of outage, we only need to consider the following
two special actuator failures: 1) NΩ̄ = I & NΩ = 0 and 2)
NΩ̄ = 0 & NΩ = I . In order to derive a fixed structure of
the controller, the estimated faults are chosen by N̂Ω̄,k = I

and N̂Ω,k = I . Accordingly, the dedicated control is given
as follows:

uk = −
[

K̄Ω̄(I − BΩK̄Ω)
K̄Ω

]
Axk. (47)

The problem remains to find γΦ
Ω and γΦ

Ω̄
which satisfy

the unified gain margin constraint (18), in which a is
chosen by a = 1 (we refer this kind of gain margins
determination problem to reliable control design problem).
The relationship between γΦ

Ω and γΦ
Ω̄

is then given in
the following Lemma (the proof is straightforward and is
omitted).

Lemma 2. The state-feedback system obtained by apply-
ing the fixed controller (47) to system (1), which remains
stable and can accommodate the faults in (46) provided that
0 ≤ γΦ

Ω̄
≤ 1 and 0 ≤ γΦ

Ω ≤ 1 both satisfy the following
two guaranteed cost gain margin constraints:

(I) Ξ ≥ −Ψ if ∆ ≥ 0, (48)

(II) Ξ ≥ −Ψ − ∆ if ∆ < 0, (49)
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where Ξ is given by (41) and

Ψ = (I − BΩK̄Ω)′K̄ ′̄
ΩRΩ̄K̄Ω̄(I − BΩK̄Ω), (50)

∆ = Θ + K̄ ′
ΩRΩK̄Ω − Ψ, (51)

in which Θ is given by (42).
From Lemma 2, it is clear that if γΦ

Ω̄
and γΦ

Ω both satisfy
(48) and (49), then the fixed controller (47) tends to stabilize
both the nominal system as well as the faulty system in
which the actuators in either of (not both) the two sets Ω̄
and Ω may completely fail.

Then, we want to show that the above results can be
directly applied to the faults (46). Without loss of generality,
we only consider the following two special cases. The first
one is illustrated by the fault: u1

k = 0 and ui
k �= 0, where

i = 2, · · · ,m, and the other up+1
k = 0 and uj

k �= 0, where
j = 1, · · · , p, p + 2, · · · ,m. In the first case, one has

NΦ
Ω,k = I, NΦ

Ω̄,k = N1 = diag{01×1, I(p−1)×(p−1)}. (52)

Using (18), (41), and (50)-(52), one has

Ξ + Ψ + ∆
≥ −Û ′

kPBΩ̄N1S
−1
Ω̄

B ′̄
ΩPÛk

−Û ′
kK̄ ′̄

ΩN1

(
RΩ̄ + B ′̄

ΩPBΩ̄(I − N1)
)
K̄Ω̄Ûk. (53)

Since the RHS of (53) is negative semidefinite, it is clear
that (49) implies (53), which verifies the first case. On the
other hand, one has

NΦ
Ω̄,k = I, NΦ

Ω,k = N1, (54)

for the second case. Using (18), (41), (50), and (52), one
has

Ξ + Ψ
≥ −P̄BΩN1S

−1
Ω B′

ΩP̄

−K̄ ′
ΩN1

(
RΩ + B′

ΩP̄BΩ(I − N1)
)
K̄Ω. (55)

Since the RHS of (55) is negative semidefinite, it is clear
that (48) implies (55). This has verified the second case.

The results of this section suggest that the passive reliable
control design problem considered here may be solved
by using a more simple and compact method, which is
just like a modified optimal control, as compared to that
given by [8], where the dynamical order of the resulting
controller for some systems may have to be considerably
large, or by [10], where the controller order is reduced
by a time-scheduling switch of multiple models. Also, the
guaranteed cost performance of this new passive control can
be easily addressed (the same as that discussed in the last
section). Moreover, the proposed two-stage design method
may also suggest a possible approach to solve the fault
tolerant control problem in which several actuators can fail
simultaneously, which appears to be a subject of future
research raised by [8].

VII. CONCLUSIONS

A new fault tolerant control which can stabilize the
system not only during its nominal condition but also in
the case that several actuators may completely fail simul-
taneously is proposed. The existence of this controller is
promised through verifying a new proposed guaranteed cost
gain margin constraint. A guaranteed cost control design
method and a passive fault tolerant control design method
are presented to show the applications of the proposed
results. This research suggests that the proposed control
serves as an effective method to derive a practical fault
tolerant control system where any one of the actuators
might fail. And, the proposed two-stage design method
may also suggest a possible approach to solve the fault
tolerant control problem in which several actuators can fail
simultaneously.
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