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Abstract— Active Fault Tolerant Control Systems (FTCS)
can be modeled as stochastic systems with Markovian para-
meters. This paper addresses the modeling and analysis of such
systems by using the randomized algorithms. Such algorithms
are usually used to perform the robustness analysis or robust
control synthesis based on a probabilistic notion. This paper
extends the methods to Jump Linear Systems (JLS) and
stochastic FTCS for performance verification. It discusses how
to set up a model for FTCS from the imperfect FDI parameters
and how to transform it into a JLS model. Then, by combining
the stationary distribution of the Markov process and specific
performance at each state, it presents two algorithms to
estimate probability given the performance requirement or
estimate performance given the probability requirement. The
performance analysis can reveal some valuable results on the
influence of imperfect FDI and properties of integrated design,
as illustrated in the examples.

I. INTRODUCTION

Fault Tolerant Control Systems (FTCS) can be classified
into two categories: passive and active FTCS. Active FTCS
are composed of two subsystems: the Fault Detection and
Isolation (FDI) scheme and the reconfigurable controller.
In history, these two parts have been studied and developed
independently, which leads to the separate design in active
FTCS. However, existence of uncertainty in the process
model and/or unknown system disturbances usually cause
imperfect decision of FDI, which may corrupt the overall
stability and performance of the FTCS [1], [2]. Many
researchers have investigated this issue and proposed the
so-called integrated FTCS framework [3], [4], [5]. One of
the widely adopted framework is to model the fault and
FDI behavior by using two separate Markov processes.
The behavior of imperfect FDI is generally described by
time delay, false alarm rate or missing detection rate. A
method to estimate these parameters, especially the false
alarm rate, was proposed based on a probabilistic algorithms
[6]. Nevertheless there is little effort that aims to incorporate
these parameters in the modeling of FTCS.

This paper tries to find a way to calculate the transition
rates of Markov process based on the parameters of FDI in
order to obtain a valid model for FTCS that reflects the real
performance. Another motivation is to analyze the overall
performance of FTCS. By generating an integrated Markov
process and setting up a Jump Linear System (JLS) model
for FTCS, we propose to adopt a probabilistic approach
based on the randomized algorithms for the analysis of the
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stochastic FTCS. As we know, the modeling uncertainty
is a major cause of errors in FDI schemes, and the FDI
performance can be captured in terms of error probabilities.
In the context of FTCS, the overall system performance
is affected by modeling uncertainty indirectly through the
imperfect FDI. It is meaningful and desirable to carry on
the performance analysis of the overall FTCS by using
probability based criteria, so that the effect of FDI error
probabilities can be clearly interpreted and demonstrated.
To introduce the probability notion in the active FTCS,
the randomized algorithms which was originally proposed
in the robust control area offer a natural and appropriate
approach. The performance evaluation of the FTCS gives
valuable results on the influence of imperfect FDI and the
properties of integrated design of FTCS.

This paper is organized as follows. In section II, it first
gives the modeling of FTCS, then discusses how to describe
the imperfect FDI results. In section III, two algorithms
that extend the randomized algorithms to handle JLS are
presented: one is about estimating the probability given
the performance requirement, and the other estimating the
performance given the probability requirement. By com-
bining the two Markov processes into a single integrated
Markov process, the FTCS can be converted into JLS and
the algorithms can be thereby applied to carry out the
performance analysis. The numerical examples are also
provided for each method.

II. MODELING OF FTCS

A. Fault and FDI process

Fault occurrence in a system is essentially random due
to the unknown and many possible causes. By assuming a
memoryless property or constant failure rate, researchers
have been using a continuous-time homogenous Markov
process taking value from a finite state space to describe
a fault process, see [7] for details.

FDI is the scheme to detect and identify the faults
in the system. It can be considered to be a stochastic
hypothesis test on the residual signal generated from the
discrepancies between the model and the real process. In a
single sample test, if the information is discarded at each
sample and the noise is white, the FDI result is considered
to be memoryless, i.e., the future outcomes of the FDI are
independent of the past outcomes given the present outcome
[3]. So Markov process can also be used to characterize the
behavior of such a FDI process, which is conditioned on
the fault status of the system.
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According to the above analysis, FTCS can be modeled
as the following equations with Markovian parameters.

ẋ(t) = [A(ζ(t)) + ∆A(ζ(t))]x(t) + [B(ζ(t)) + ∆B(ζ(t))]

·u(η(t), t) + E(ζ(t))w(t), (1)

y(t) = [C(ζ(t)) + ∆C(ζ(t))]x(t) + [D(ζ(t)) + ∆D(ζ(t))]

·u(η(t), t) + F (ζ(t))w(t). (2)

In the model, x(t) ∈ R
n, u(η(t), t) ∈ R

m, y(t) ∈ R
l and

w(t) ∈ R
h represent the system state, control input, out-

put and exogenous unknown disturbance respectively. ζ(t)
and η(t) are assumed to be two separate continuous-time
Markov processes to represent the system fault process and
FDI process with finite state spaces S1 = {0, 1, 2, · · · , N1}
and S2 = {0, 1, 2, · · · , N2}. ζ(t) is a homogeneous process
while the transition rates of η(t) depend on the current state
of ζ(t). This non-homogeneous property of η(t) describes
the functions of FDI, whose states follow the real fault
states of the process with a random time delay and error
probabilities. To distinguish the system state x(t) and the
Markov states, the states of the Markov processes ζ(t) and
η(t) are referred to as fault and FDI modes respectively.

A(ζ(t)), B(ζ(t)), C(ζ(t)), D(ζ(t)), E(ζ(t)) and F (ζ(t))
are system matrices with compatible dimensions. ∆A(ζ(t)),
∆B(ζ(t)), ∆C(ζ(t)) and ∆D(ζ(t)) are uncertainty matri-
ces which are assumed to have known probabilistic dis-
tributions. The system matrices and uncertainties depend
on the current fault mode and the control input depends
on the FDI mode. So this model represents a set of linear
systems. When fault occurs and the fault process jumps to a
different mode, the system matrices change correspondingly
to reflect the effects of the faults on the system model; when
FDI scheme detects a fault and the FDI process jumps to a
different mode, the control input changes correspondingly
to reflect the reconfigurable control actions based on FDI
results.

For notational simplicity, for ζ(t) = i, η(t) = j, i ∈
S1, j ∈ S2, denote

Ai = A(ζ(t)), Bi = B(ζ(t)), Ci = C(ζ(t)), Di = D(ζ(t)),

Ei = E(ζ(t)), Fi = F (ζ(t)), ∆Ai = ∆A(ζ(t)),

∆Bi = ∆B(ζ(t)),∆Ci = ∆C(ζ(t)), ∆Di = ∆D(ζ(t)),

uj(t) = u(η(t), t).

For ζ(t) = i, i ∈ S1, assume the uncertainty matrices satisfy
the following conditions:

∆Ai = ĀiLΣĀiR, ∆Bi = B̄iLΣB̄iR,

∆Ci = C̄iLΣC̄iR, ∆Di = D̄iLΣD̄iR,

where ĀiL, ĀiR, B̄iL, B̄iR, C̄iL, C̄iR, D̄iL and D̄iR are un-
certainty weighting matrices. Σ with the condition of ‖Σ‖ ≤
1 is assumed to be uniformly distributed matrix in a unit
ball of lp-induced norm.

The transition probability of the fault process ζ(t) from
mode i to j, i, j ∈ S1, in the infinitesimal time interval of
�t, is given by,

pij(�t) =

{
αij�t + o(�t), i �= j,

1 + αii�t + o(�t), i = j,

where αij is the transition rate of the homogeneous Markov
process ζ(t) and o(�t) denotes the high order infinitesimal.
When ζ(t) = k, k ∈ S1, the transition probability of the FDI
process η(t) from mode i to j, i, j ∈ S2, in the infinitesimal
time interval of �t, is given by,

pij(�t) =

{
βk

ij�t + o(�t), i �= j,

1 + βk
ii�t + o(�t), i = j,

where βk
ij represents the transition rate from i to j for the

Markov process η(t) given ζ(t) = k. The transition rates
are given in the generator matrices of Markov processes
[15], [16].

To simplify the analysis, but without loss of generality,
we firstly deal with the case that the state spaces of ζ(t)
and η(t) are equal and both take values from {0, 1}, where
0 denotes fault-free situation and 1 the faulty mode. This
type of FTCS is referred to as the basic case of FTCS in the
sequel and the method can be extended to the systems with
multiple fault modes. The behavior of ζ(t) is governed by
its generator matrix G; the behavior of η(t) is decided by
the generator matrix H0 or H1 depending on the current
mode of ζ(t).

F =
[
α00 α01

α10 α11

]
,H0 =

[
β0

00 β0
01

β0
10 β0

11

]
,H1 =

[
β1

00 β1
01

β1
10 β1

11

]
.

The function of FDI is to identify the fault mode, ζ(t).
However, no perfect model and noise-free environment exist
in real world. As a result, there are error probabilities
associated with the FDI decisions. Such imperfect FDI
decisions usually compromises the entire control system
performance or even result in instability. Therefore, the
characteristics and effects of imperfect FDI have to be
examined. In the rest of this section, we first define the
characteristic parameters of the FDI and then reveal some
connections between these parameters with transition rates
of the Markov chain η(t) in the integrated FTCS framework.

It should be mentioned that the following definitions are
most appropriate for the two modes case, i.e., S1 = S2 =
0, 1, which only contains the normal mode 0 and one failure
mode 1. Nevertheless, they can be readily modified when
considering multiple-failure cases.

Definition 1 (Detection Time Delay (DTD)): A period
of time taken by the FDI process to respond to and indicate
the fault mode upon its occurrence, which in this case is a
random variable depending on the model uncertainty, noise
and detection algorithms.

To define other parameters, we make the following as-
sumptions:
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• DTD ≤ T , i.e., the upper bound of DTD is T . T is
the maximum time delay of FDI that can be tolerated
by the system, which reflects the hard deadline concept
introduced in [8]. Any detection result should be given
with T ; otherwise, there occurs a missing detection.

• The probability that the FDI mode changes consecu-
tively within the time duration T is negligible. Hereby
this time T is counted from the moment that the actual
fault occurs.

Definition 2 (False Alarm Rate (FAR)): When the sys-
tem is normal or ζ(t) is in fault-free mode, the probability
that FDI η(t) jumps to faulty modes within T .

Definition 3 (Missing Detection Rate (MDR)): After a
fault occurs, the probability that FDI does not respond and
remains in the current (fault-free) mode within T .

Definition 4 (Recovery Rate From False Alarm (RRFFA)):
The probability that when the system is in normal mode,
the FDI returns to this normal mode within a time T since
it jumps to the fault mode.

Definition 5 (Correct Detection Rate(CDR)): The prob-
ability that the FDI mode indicates the fault mode upon
its occurrence within a maximum time delay T , i.e., η(t)
follows ζ(t) within time T .

From these definitions, FAR and RRFFA are complemen-
tary, and the same can be said for MDR and CDR. Hence
approximately we write that, RRFFA + FAR = 1 and CDR
+MDR = 1.

For ζ(t), the transition rates depend on the properties
of the fault and we assume they are fixed and known.
However, for η(t), the transition rates should be determined
by the performance of FDI, such as FAR, MDR and
DTD. Although the modeling of FTCS by using Markovian
parameters is well accepted [4], and methods for estimating
imperfect FDI parameters are also investigated [6], there is
rare effort on how to relate these FDI parameters to those
of the Markov chain used to model the FDI process. Based
on the above definitions and assumptions, we are ready to
reveal the relationship between the transition rates of η(t)
and the FDI parameters.

1) Consider β0
01 as the rate at which η(t) leaves mode 0

to mode 1 when the system ζ(t) is in mode 0. This is
the false alarm scenario, then

FAR = Pr{η(t0) = 0, η(t) = 1, t − t0 ≤ T |ζ(t) = 0}
=

∫ T

0

β0
01e

−β0
01tdt = 1 − e−β0

01T ,

where Pr represents probability operation. Thus, β0
01 =

− 1
T ln(1 − FAR). In the above computation, we have

used the fact that the waiting time between two con-
secutive jumps of Markov process is exponentially
distributed [15], [16].

2) β0
10 is the rate at which η(t) leaves mode 1 to 0 when

the process is in mode 0, so FDI recovers from its false

alarm.

1 − FAR = Pr{η(t0) = 1, η(t) = 0,

t − t0 ≤ T |ζ(t) = 0}
=

∫ T

0

β0
10e

−β0
10tdt = 1 − e−β0

10T .

Thus, β0
10 = − 1

T ln(FAR).
3) β1

01 is the rate of η(t) leaving mode 0 to mode 1, which
represents the correct detection.

1 − MDR = Pr{η(t0) = 0, η(t) = 1,

t − t0 ≤ T |ζ(t) = 1}
=

∫ T

0

β1
01e

−β1
01tdt = 1 − e−β1

01T .

Thus, β1
01 = − 1

T ln(MDR)
4) β1

10 is the rate of η(t) leaving mode 1 to mode 0, which
represents a missed detection.

MDR = Pr{η(t0) = 1, η(t) = 0,

t − t0 ≤ T |ζ(t) = 1}
=

∫ T

0

β1
10e

−β1
10tdt = 1 − e−β1

10T .

Thus, β1
10 = − 1

T ln(1-MDR).

B. Integrated Markov chain and Jump Linear System

In the above modeling, two Markov processes are used to
describe the failure and FDI separately. The overall behavior
of the FTCS is governed by a combination of these two
Markov processes, which can be described by an integrated
Markov process, denoted by φ(t). For example, for the
binary state space of S1 and S2 in the above model, the
augmented state space is {(0, 0), (0, 1), (1, 0), (1, 1)}
and each of the state in this state space has concrete physical
meaning in the context of FTCS:

1) (0,0): normal case, i.e., the system has no fault and the
FDI also indicates it.

2) (0,1): the false alarm case. faulty.
3) (1,0): the missing detection case.
4) (1,1): the correct detection case.

The characteristics of the integrated Markov process can be
described as follows [9]. Suppose that the generator matrix
of φ(t) is represented by G = [γ(ij)(kl)]4×4, then we have:

γ(ij)(kl) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αii + βi
jj , i = k, j = l;

βi
jl, i = k, j �= l;

αik, i �= k, j = l;
0, i �= k, j �= l.

(3)

• It is assumed that the probability of fault mode ζ(t)
and FDI mode η(t) change at the same time is
negligible.

• The transition rate that the combined state remains
unchanged is computed according to the property of
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exponential distribution: if T1 and T2 are exponen-
tially distributed with rate µ1 and µ2, then T3 =
Min{T1, T2} is also exponentially distributed with
mean µ1 + µ2 [16]. Therefore, we have the first
equation in (3).

• If any one sub-state of ζ(t) and η(t) changes, the
transition rate equal to the corresponding transition
rate of the process.

Then, the behavior of FTCS is governed by the single
Markov process φ(t), and the system described in (1) and
(2) becomes a Jump Linear System(JLS):

ẋ(t) = [Aφ(t) + ∆Aφ(t)]x(t) + [Bφ(t) + ∆Bφ(t)]
·uφ(t)(t) + Eφ(t)w(t) (4)

y(t) = [Cφ(t) + ∆Aφ(t)]x(t) + [Dφ(t) + ∆Aφ(t)]
uφ(t)(t) + Fφ(t)w(t) (5)

Therefore one can apply the existing results for JLS to the
FTCS.

III. ALGORITHMS FOR JUMP LINEAR SYSTEMS

The modelling uncertainties are inevitable in any systems.
In FTCS, they cause the imperfect FDI which may further
corrupt the overall performance of FTCS [1]. Classical ro-
bustness analysis usually considers the worst-case scenario
of uncertainties, meaning that the stability and desired per-
formance characteristics should always be satisfied with the
parameters within the largest uncertain range. However, in
practice, if the worst case occurs quite rarely, the designed
controller is often too conservative and its performance is
not satisfactory [10], [12]. On the other hand, by assuming
a probabilistic distribution of the parameter uncertainties,
the probability that a specific performance is satisfied can
be evaluated by randomized algorithms. This alternative
criterion has clear meaning in practical engineering where
the required performance objectives are always associated
with some minimum probability levels [13]. Therefore, it
is more attractive to the practical engineers. Furthermore,
by allowing the performance level to be violated but with a
small probability, it can actually improve the performance
level for most uncertainty range and thereby avoid the
conservativeness in certain sense. In the sequel, we call this
description as probabilistic performance. Here in this work,
we extend the randomized algorithms for performance ver-
ification to JLS including the FTCS described in (4) and
(5).

A. Estimation of probability given performance requirement

Given a performance criterion J((t)), which is dependent
on the uncertainty Σ and Markov state φ(t), we intend to
estimate the following probability:

Pr{J(t) ≤ γ}
where γ is constant to represent specific performance level.
More precisely, in a statistical sense, given precision level

ε ∈ (0, 1) and confidence level β ∈ (0, 1), we need an
estimate p̂ of the probability such that:

Pr{|Pr{J(t) ≤ γ} − p̂| ≤ ε} ≥ 1 − β (6)

In the following, J(t) is set as the H∞ norm of the closed-
loop system at t. Based on the randomized algorithms in
[11], the following algorithm is proposed for the model in
Eq. (4)-(5).

Algorithm 1 (Probability estimation)

1) Let ε′ = ε, compute the Chernoff bound: M ≥
ln(2/β′)

2ε′2 .
2) Generate M samples of Σ according to its distribu-

tion. For each fixed value, i, of φ(t) in its state space,
the system becomes a standard state space model.
Apply the method introduced in [11] to obtain the
estimate p̂i of the probability that the performance
satisfies the requirement in the following sense for a
particular state i:

Pr{|Pr{J(t) ≤ γ} − p̂i| ≤ ε′} ≥ 1 − β.

3) Compute the static distribution π of η(t) based on the
generator matrix G:

πG = 0,
N∑

i=1

πi = 1.

4) Compute the probability estimate that the overall
jump linear system satisfies the performance require-
ment:

p̂ =
N∑

i=1

p̂i · Pr{φ(t) = i}.

5) Compute the bound of the estimate:

p̂L =
N∑

i=1

(pi − ε′) · πi (7)

p̂U =
N∑

i=1

(pi + ε′) · πi (8)

such that

Pr{p̂L ≤ Pr{J(t) ≤ γ} ≤ p̂U} ≥ 1 − β (9)

6) If p̂L ≥ p̂ − ε and p̂U ≤ p̂ + ε, then stop; otherwise,
reduce ε′ by a small ratio, compute a new Chernoff
bound M and then go to step 2).

B. Estimation of performance given probability requirement

Since the higher value of the performance level γ (i.e., the
more relaxed performance requirement), the easier the sys-
tem can satisfy this performance requirement, there exists
a monotone relationship between the probability level and
the performance level. Based on this monotone relationship,
given the probability level p, a bi-section algorithm is used
to search for the minimum performance level γ such that
Pr{|Pr{J(t) ≤ γ} − p| ≤ ε} ≥ 1 − β, where ε ∈ (0, 1)
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and β ∈ (0, 1) are the given precision and confidence
requirement.

Algorithm 2 (Performance estimation)

1) Set ε′ = ε, tol = ε, compute the Chernoff bound
M̄ .

2) Generate M ≥ M̄ samples according to the distribu-
tion of Σ, and evaluate the performance of the system
at each sample for every discrete state.

3) Find the maximum and minimum performance level
for all the samples and for all Markov states, which is
set to be the upper and lower bound of performance
level: Jup and Jlo.The corresponding probability upper
bound and lower bound are: pup = 1 and plo = 0.

4) Let Jm = (Jup + Jlo)/2, use the previous algorithm
to estimate p̂.

5) If p̂ > p, pup = p, Jup = Jm; else, plo = p, Jlo =
Jm.

6) If |pup − plo| < tol, stop; else, go to step 4).
7) Compute Jm = (Jup+Jlo)/2 and estimate p̂ and error

bound for Jm. If it satisfies the precision requirement,
stops; else, decrease ε and tol by a small ratio,
compute new Chernoff bound and go to step 2).

The randomized algorithms given in the section III-A
and III-B can be applied to FTCS for the performance
analysis. Based on the relations of the FDI parameters and
the transition rates of the Markov chain, we attempt to study
the effects of the model uncertainty on the FDI decision and
in turn on the overall performance. For this purpose, a case
study is performed, the simulation results and discussions
are included in the next section.

IV. CASE STUDY AND SIMULATION RESULTS

A. Example 1: estimation of Performance for a jump linear
system

Consider a simple jump linear system, the nonzero ma-
trices in its model are given as follows:

A1 =
[−0.759 −0.051
−0.051 −0.634

]
, B1 =

[−1.234
−0.288

]
,

C1 =
[−1.717 0.223

]
, E1 = 0.367;

A2 =
[−1.607 −0.564
−0.564 −1.758

]
, B2 =

[
0

0.738

]
,

C2 =
[
0 1.622

]
, E2 = 0.935;

A3 =
[−0.791 −0.503
−0.503 −1.791

]
, B3 =

[−1.256
−0.347

]
,

C3 =
[−3.765 −4.698

]
, E3 = −1.021.

The generator matrix for the Markov chain is given as:

G =

⎡
⎣−3 2 1

0.5 −2 1.5
1 4 −5

⎤
⎦ .

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8
convergence history: performance upper bound and lower bound at each iteration

Iterations

P
er

fo
rm

an
ce

 b
ou

nd
s

Performance upper bound
Performance lower bound

Fig. 1. Trajectory of the performance bounds.

The uncertainty weighting matrices for fault process state
mode 1 are:

Ā1L = Ā1R = diag{0.2, 0.2},
B̄1L = diag{0.2, 0.2}, B̄1R = [0.2 0.2]T ,

C̄1L = [0.2 0.2], C̄1R = diag{0.2, 0.2}.
where the notation, ‘diag{·, ·}’, represents a diagonal matrix
with the given nonzero elements. The other uncertainty
matrices for the mode 2 and 3 are of same structure but
with elements set as 0.5 and 0.6, respectively.

Following the procedures in Algorithm 1 given in Section
III-A, set the H∞ performance level as γ = 3.06, the
precision ε = 0.02 and β = 0.05, we obtain the following
results for the individual mode i = 1, 2, 3: p̂1 =
0.6197, p̂2 = 1, p̂3 = 0.0035. Then the probability
estimate of the overall system for the given performance
level and its bounds are: p̂ = 0.7172, p̂lo = 0.6972, p̂up =
0.7285.

This estimate can be verified by performing a simulation
of the above jump linear system. The ratio between the time
of satisfactory performance with the total simulation time
is computed to be 0.7097 when the simulation time is 2000
seconds. It is close to the above estimate p̂ and within the
precision bounds. Hence the Algorithm 1 provides a valid
estimation of the probability.

Next we intend to search for the best achievable per-
formance level by using the bi-section algorithm when set
p = 0.7, ε = 0.025, β = 0.05. The results are:
Pr{|Pr{J(t) < 3.0483} − 0.7| < 0.025} > 0.95. The
convergence trajectories when set ε′ = tol = 0.02 are
shown in the Fig. 1. These results can also be similarly
verified by simulation.

B. Example 2: performance evaluation of FTCS

We now examine the closed-loop performance of FTCS
for the example given in [5]. The system matrices are given
as follows:

A1 = A2 =
[
1 0
0 0.8

]
, B1 =

[
0 1

−0.25 0.25

]
,

2222



B2 =
[

0 0.2
−0.25 0.05

]
, C1 = C2 = [1 2],

E1 =
[
0.05
0.05

]
, E2 =

[
0.05
0.1

]
.

The uncertainty only appears in ∆B1 and ∆B2:

B1L = B1L = B2L = B2R =
[
0.1 0
0 0.1

]
.

The generator matrices of for failure process ζ(t) and FDI
η(t) are:

F =
[−0.5 0.5

1 −1

]
, H0 = H1 =

[−0.1 0.1
0.1 −0.1

]
.

The following two controllers in [14] are used for the FTCS.

K1 =
[

1.2018 8.9006
−7.4239 −2.1148

]
,K2 =

[−0.22009 8.4035
−7.7094 −1.7643

]
.

The generator matrix G of the integrated Markov process
φ(t) and its static distribution π are:

G =

⎡
⎢⎢⎣
−0.6 0.1 0.5 0
0.1 −0.6 0 0.5
2 0 −2.1 0.1
0 2 0.1 −2.1

⎤
⎥⎥⎦ , π = [0.4 0.4 0.1 0.1].

As we can see from π, this system mainly stay in mode
(0, 0) and (0, 1), i.e., the normal mode and the false alarm
mode. Now, let’s look at the performance of the controller
at each mode. Here, H∞ norm is used to describe the
performance.
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Fig. 2. Performance degradation at each mode.

The performance level for all modes are shown in Fig.
2, together with their stationary distributions. From this
figure, the performance of the system is the best in the
normal mode (0,0). One interesting point is that in the false
alarm case, i.e., mode (0,1), the system has the next-to-best
performance. This is because that the system stays mainly in
the modes (0,0) and (0,1), so the design is more tailored to
cover the case when the system in normal case. On the other
hand, the performance in the missing detection and correct
detection cases with the controller K2 is much worse. This
is not too surprising when considering the performance

degradation in the context of FTCS. When a fault occurs,
even if the controller is reconfigured to compensate for
such a fault, the system performance can not be completely
recovered by the fault tolerant control, which reflects the
performance degradation.

V. CONCLUDING REMARKS

In this paper, we extend the randomized algorithms to
JLS and FTCS with uncertainties. The basic idea is to
analyze the performance under various Markov states by
the randomized algorithms and then estimate the overall
performance based on the stationary distribution of Markov
Chain. To analyze FTCS, we first set up the system model
with two Markovian parameters considering imperfect FDI,
then combine them into an integrated Markov chain and
thereby transform it into a JLS model. Under such models,
the above algorithms can be applied. The example shows
that the integrated design can achieve a balanced perfor-
mance under different states and thereby achieve better
overall performance.
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