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Abstract— We consider the problem of minimizing the
longitudinal braking distance for a single wheel rolling along a
surface with unknown tyre-road characteristics. The friction
coefficient is modelled by a nonlinear function of slip and
tyre-road parameter which corresponds to the actual road
conditions. Our method is based on recently proposed adaptive
control technique that uses adaptation algorithms in integro-
differential, or finite form. These algorithms are capable of
dealing with nonlinear parametrizations, and they also ensure
improved transient performance of the controlled system. We
show that, for a class of practically relevant parameterizations
of friction curves, it is possible to steer the system adaptively
to the desired state without invoking sliding-mode or gain-
scheduling control. At the same time we show that it is possible
to estimate the optimal value of the tyre slip ensuring maximal
braking force. These estimates, produced by essentially the
standard PI algorithm, are used in the control loop to enhance
efficiency of the brakes.

I. INTRODUCTION

Effective wheel-slip control during braking/traction of a
vehicle is one of the long-standing issues in the automotive
industry. The problem dates back to the early 1947, when
the first anti-lock braking systems where designed and
implemented in B-47 bombers. Subsequent developments
in automotive anti-lock braking systems promoted the un-
derstanding that not only anti-locking regimes are important
but maintaining the optimal slip is highly desirable as well.

A fairly large number of publications is available, ad-
dressing the problems of road-dependent friction curve
identification (see, for example, [7], [15], [10]) as well as
robust slip control [14], [8], [9]. From a control theoretic
point of view, the most advantageous strategy would be
to combine identification of the tyre-road conditions with
an adaptive/robust controller which calculates and ensures
the optimal slip in the system [17]. The ideal controller
should also be able to guarantee the desired dynamics of
the wheel without the chattering in the brakes, and should
prevent frequent large spikes of the braking torque.

As a candidate for a slip controller potentially replacing
the existing robust control schemes [9], [3], one might
consider the ideas of standard indirect adaptive control [12],
[16], [6]. The problem with standard techniques, however, is
that the uncertainty in the closed-loop system usually comes
from nonlinearly parameterized functions [13], [3]. The
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issue of nonlinear parametrization provides severe theoret-
ical challenges for conventional adaptive control methods,
especially if non-dominating solutions are sought for. On
the other hand, conventional adaptive control algorithms are
often not robust, which makes their application technically
challenging.

Recently, a new method for adaptive, non-dominating
control was developed [18], [22], [21], [20]. The method
is applicable to a large class of practically relevant, nonlin-
early parameterized systems with nonlinearities monotonic
in their parameters. It also guarantees improved transient
performance and robustness under mild assumptions of
sufficient excitation [19]. These features redder this method
suitable for applications to the brake control problem.

In our present study we concentrate on model-based
(indirect) adaptive control of the slipping wheel. For the
experimentally validated static tyre-road model of the fric-
tion coefficient1 [5], we propose a robust adaptive controller
with on-line estimation of the tyre-road conditions. These
conditions are described by a single parameter of the friction
curve.

We show that our controller is able to maintain the
desired slip and simultaneously provide asymptotic tracking
of the tyre-road parameter. This property allows for on-line
adjustment of the reference slip, which corresponds to the
maximal value of the friction curve. The main advantage
of our approach is that it does not require domination nor
damping in the control. It also does not require linearization
or overparametrization of the uncertainties. In addition it
guarantees integrability of the square of the error derivatives
and exponentially fast decay of the uncertainties with time.
This, in principle, allows us to improve significantly the
transient characteristics of the system, as compared with
other adaptive control approaches.

The paper is organized as follows. In Section II we
provide a brief summary of our theoretical results and
introduce our notation. Section III contains the formulation
of the problem and design of the controller. Section IV
describes results of computer simulation of the model with
our controller, followed by conclusions in Section V.

II. ADAPTIVE ALGORITHMS IN FINITE FORM

Let the following system be given:

ẋ = f(x,θ) + g(x)u, (1)

1During preparation of the manuscript the authors became aware of
the work [2] where the same problem is approached by use of nonlinear
observers. Although in [2] a more advanced, dynamic model of friction
is considered [1], our approach pays off in much simpler and robust
estimators. In particular, we show that our estimator can be realized by a
simple linear PI controller.
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where x ∈ R
n is a state vector, θ ∈ Ωθ ∈ R

d is a vector of
unknown parameters, u is the control input (scalar), and
functions f : R

n → R
n, g : R

n → R
n, are locally

bounded2. We assume that Ωθ is bounded, e.g., Ωθ is a
closed ball or hypercube in R

d.
As a measure of closeness of the system trajectories to

the desired solution, we introduce the smooth error function
ψ : R

n×R → R, ψ ∈ C1. The function ψ(x, t) is bounded
in t for every bounded x. The target manifold, therefore, is
given by

ψ(x, t) = 0

Consider the transverse dynamics of system (1) with respect
to ψ(x, t):

ψ̇ = Lf(x,θ)ψ(x, t) + Lg(x)ψ(x, t)u +
∂ψ(x, t)

∂t
, (2)

where Lf(x,θ) is Lie derivative of function ψ(x, t) with
respect to vector field f(x,θ). We assume that the inverse
Lg(x)ψ(x, t)−1 exists for any x ∈ R

n, t ∈ R+. Then there
exists control input u(x, θ̂, t), where θ̂ ∈ R

d is the vector
of estimates of unknown parameters θ, which transforms
equation (2) into the following form [20]:

ψ̇ = −ϕ(ψ) + z(x,θ, t) − z(x, θ̂, t) (3)

where z(x,θ, t) = Lf(x,θ)ψ(x, t) and

ϕ(ψ) ∈ C0, ϕ(ψ)ψ > 0 ∀ψ �= 0, lim
ψ→∞

∫ ψ

0

ϕ(ς)dς = ∞

Let function z(x,θ, t) in (3) satisfy the following set of
assumptions

Assumption 1: There exist function α(x, t) : Rn ×R →

Rd and constant D1 > 0 such that for any x, θ̂, θ̂
∗

, t > 0
the following inequalities hold:

(z(x, θ̂, t) − z(x, θ̂
∗

, t))(α(x, t)T (θ̂ − θ̂
∗

)) > 0

|z(x, θ̂, t) − z(x, θ̂
∗

, t)| ≤ D1|α(x, t)T (θ̂ − θ̂
∗

)|

Assumption 2: There exists a positive constant D2 > 0

such that for any x, θ̂, θ̂
∗

, t > 0 the following inequality
holds:

|z(x, θ̂, t) − z(x, θ̂
∗

, t)| ≥ D2|α(x, t)T (θ̂ − θ̂
∗

)|

Assumptions 1 and 2 state that the nonlinear function
z(x,θ, t) is monotonic w.r.t. to a linear functional of
parameters θ, and for every fixed x, t it satisfies a sort of
sector condition (illustrated in Fig. 1).

Theorem 1: Let function ψ(x, t) be given, Assumptions
1–2 hold, and Lfα(x, t) does not depend on θ explicitly.
Then for the system

ẋ = f(x,θ) + g(x)u (4)

2Function f(x) : R
n → R

m is said to be locally bounded if for any
‖x‖ < δ there exists a constant D(δ) > 0 such that the following holds:
‖f(x)‖ ≤ D(δ).

Fig. 1. Admissible parametrizations of function z(x, θ, t)

there exists a control function u(x, θ̂, t)

u(x, θ̂, t) = (Lg(x)ψ(x, t))−1(ϕ(ψ) −

L
f(x,θ̂)ψ(x, t) − ∂ψ(x, t)/∂t) (5)

and adaptation algorithms:

θ̂(x, t) = Γ(θ̂P (x, t) + θ̂I(t)), Γ > 0, (6)

θ̂P (x, t) = ψ(x, t)α(x, t)
˙̂
θI = ϕ(ψ(x, t))α(x, t) − ψ(x, t) ×

∂α(x, t)/∂t − ψ(x, t)Lfα(x, t) −

ψ(x, t)Lgα(x, t)u(x, θ̂, t)

such that the following statements hold:
P1) ψ(x, t) ∈ L2∩L∞, ψ̇ ∈ L2, z(x,θ, t)−z(x, θ̂, t) ∈

L2, x ∈ L∞;
P2) in addition, if derivatives ∂ψ(x, t)/∂x, ∂ψ(x, t)/∂t

are uniformly bounded in t, then ψ̇ ∈ L∞, z(x,θ, t) −
z(x, θ̂, t) ∈ L∞, limt→∞ ψ(x(t), t) = 0.

P3) Let α(x, t) be persistently exciting [11], and ϕ(ψ) =
Kψ. Then both ψ(x, t) and ‖θ− θ̂‖ converge exponentially
fast to the origin.

This theorem is a special case of the embedding theorem
in [21], [20], [19] and [18]. In the original paper the
requirement that Lfα(x, t) does not depend on θ explicitly
is replaced with that of existence of an auxiliary system
with special properties. Although the present formulation
is somewhat more restrictive than the original one, it is
wide enough to be relevant in our current study. Proof of
Theorem 1 trivially follows from the proof of Theorem 3
(with Proposition 1 ) in [19].

III. INDIRECT ADAPTIVE BRAKE CONTROL

In this section we consider the problem of minimizing the
braking distance for a single wheel rolling along a surface.
The surface properties are assumed to vary depending on
the current position of the wheel. Wheel dynamics can be
described by the following system of differential equations
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[14]:

ẋ1 = −
1

m
Fs(Fn,x, θ)

ẋ2 =
1

J
(Fs(Fn,x, θ)r − u) (7)

ẋ3 = −
1

x1
((

1

m
(1 − x3) +

r2

J
)Fs(Fn,x, θ) −

r

J
u),

where x1 is longitudinal velocity, x2 is angular velocity,

x3 = (x1 − rx2)/x1

is wheel slip, m is the mass of the wheel, J is the moment of
inertia, r is the radius of the wheel, u is control input (brake
torque), Fs(Fn,x, θ) is a function specifying the tyre-road
friction force depending on the surface-dependent parameter
θ and bounded load force Fn. This function, for example,
can be derived from steady-state behavior of the LuGre tyre-
road friction model [3],[5]:

Fs(Fn,x, θ) = Fnsign(x2)
σ0

L
g(x2, x3, θ)

x3

1−x3

σ0

L
x3

1−x3

+ g(x2, x3, θ)
, (8)

g(x2, x3, θ) = θ(µC + (µS − µC)e
−

|rx2x3|

|1−x3|vs ),

where µC , µS are Coulomb and static friction coefficients,
vs is the Stribeck velocity, σ0 is the normalized rubber
longitudinal stiffness, L is the length of the road contact
patch. In order to avoid singularities in the solutions of
model (7) we assume, as suggested in [14], that the system
is turned off when velocity x1 reaches a small neighborhood
of zero (i.e when x1 < δx1

, δx1
∈ R>0). As soon as the

system is turned off when x1 < δx1
, we can safely assume

that the slip is always nonzero3. Practical considerations
also suggest that the relevant slip values should not reach
the point x3 = 1 as explicit implementation of the friction
model (8) would require the values of x3/(1− x3). There-
fore we shall assume that there exist δ ∈ R>0 such that
0 < δ < x3 < 1 − δ4.

The typical shape of function Fs(Fn,x, θ) is illustrated
in Fig. 2. The value of slip x∗

3 corresponding to the maximal
value of the friction coefficient fluctuates broadly. As a rule
of thumb, the value of slip to be maintained during braking
is set around x3 = 0.2. This choice significantly simplifies
the design procedure of the slip controller. Yet, the choice
is not always optimal due to unpredictable changes of the
road surface. Hence in order to improve performance of
the brakes, effective on-line estimation of the optimal slip
is needed. One possible way to realize this is to estimate

3In fact model (8) assumes that the friction is zero for the zero values
of slip x3. On the other hand, it is the friction force which allows the
wheel to move.

4Given that the variables x2 and x1 are, in principle, available it is
always possible to monitor if the term x3 = (x1 − rx2)/x1 reaches a
neighborhood of the point x3 = 1. If the critical value of x3 is reached,
we can switch to the conventional controller, which steers the system back
to the relevant domain.
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Fig. 2. Tire-road friction coefficient Fs(1,x, θ) as a function of parameter
θ) and slip x3 for the fixed values of longitudinal velocity x1 = 30 m

sec

(upper plot). Projection of function g(x2, x3, θ) to axis x3 (bottom plot).
The thick black line depicts the set of points (x3, Fs(1,x, θ)) which
corresponds to the maximum value of Fs(1,x, θ)) for each θ.

the actual tyre-road friction parameter θ as a function of
slip and then calculate

x∗

3 = arg max
x3

Fs(Fn,x, θ) (9)

The value of x∗

3 is to be used in the main loop controller
which would steer the system state to x∗

3 ensuring the max-
imum deceleration force and the shortest braking distance.

In order to design an estimator of the friction coefficient,
we employ the model (8). Whereas the majority of para-
meters in (8) can be set or estimated a priori, the tyre-road
parameter θ depends explicitly on the actual conditions of
the road surface. We assume quasi-stationarity of the road
conditions, i.e., the road conditions (and the corresponding
parameter θ) can be thought of as a piecewise constant
function. According to (9), identification of parameter θ
automatically results in successful estimation of the optimal
slip x∗

3.
The main loop controller is derived in accordance with
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the standard certainty-equivalence principle, yielding:

u(x, θ̂, x∗

3) =
J

r
((

1

m
(1 − x3) +

r2

J
)Fs(Fn,x, θ̂) −

Ksx1(x3 − x∗

3)), Ks > 0 (10)

In order to estimate parameter θ by measuring the values
of variables x1, x2 and x3, we construct the following
subsystem:

˙̂x3 = −
1

x1
((

1

m
(1 − x3) +

r2

J
)Fs(Fn,x, θ̂) −

r

J
u)

+(x3 − x̂3)

and consider the dynamics of the error function ψ(x, t) =
ψ(x3, x̂3) = x3 − x̂3:

ψ̇ = −ψ −
1

x1
((

1

m
(1 − x3) +

r2

J
)(Fs(Fn,x, θ) −

Fs(Fn,x, θ̂)) (11)

Function κ = 1
x1

( 1
m

(1−x3)+
r2

J
)Fs(Fn,x, θ) is monotonic

in θ and satisfies Assumptions 1, 2 with

α(x, t) = αc, αc ∈ R+ (12)

In order to verify that κ is monotonic, note that function
(8)

Fs(Fn,x, θ) = Fnsign(x2)
σ0

L
g(x2, x3, θ)

x3

1−x3

σ0

L
x3

1−x3

+ g(x2, x3, θ)

is monotonic in g(x2, x3, θ) and grows as g(x2, x3, θ)
increases (x3/(1 − x3) is positive). Furthermore, func-
tion g(x2, x3, θ) is monotonic in θ (in fact, it is linear),
and the sequence g(x2, x3, θi) is nondecreasing for every
nondecreasing sequence θi. Hence we can conclude that
κ = 1

x1

( 1
m

(1 − x3) + r2

J
)Fs(Fn,x, θ) is monotonic in

both θ and g(x2, x3, θ). State x of system (7) is bounded
by virtue of the physical laws governing the motion of
the system. Therefore applying the arguments of continuity
and monotonicity of Fs(Fn,x, θ) w.r.t. g(x2, x3, θ), we can
bound the function Fs(Fn,x, θ)−Fs(Fn,x, θ′) as follows:

|Fs(Fn,x, θ) − Fs(Fn,x, θ′)| ≤ Dg,1|g(x2, x3, θ) −

g(x2, x3, θ
′)

x3

1 − x3
| =

Dg,1|g(x2, x3, 1)
x3

1 − x3
||θ − θ′|,

|Fs(Fn,x, θ) − Fs(Fn,x, θ′)| ≥ Dg,2|g(x2, x3, θ) −

g(x2, x3, θ
′)

x3

1 − x3
| =

Dg,2|g(x2, x3, 1)
x3

1 − x3
||θ − θ′|

Dg,1, Dg,2 > 0 (13)

Though we do not specifically address the issue of keeping
the slip within desired bounds, one can easily derive a
controller with such properties by choosing parameter Ks in
(10) sufficiently large and simultaneously keeping θ̂ within
the bounded domain by employing a projection technique.

The use of large gains Ks is only to ensure that δ ≤ x3 ≤
1 − δ. It does not necessarily mean that Ks is kept large
for the whole braking period. In fact, it would be enough
to apply this high-gain control only if the slip reaches a
certain critical value, which is close to the bounds of interval
[δ, 1− δ]. The gain can be set to its normal (desired) value
as soon as the slip returns back to normal values.

Taking into account 0 < δ < x3 < 1 − δ, boundedness
of x and continuity of g(x2, x3, 1), we can rewrite (13):

|Fs(Fn,x, θ) − Fs(Fn,x, θ′)| ≤ D̄g,1
1 − δ

δ
|θ − θ′|

|Fs(Fn,x, θ) − Fs(Fn,x, θ′)| ≥ D̄g,2
δ

1 − δ
|θ − θ′|

D̄g,1 = Dg,1 max
x2,x3

{g(x2, x3, 1)}

D̄g,2 = Dg,2 max
x2,x3

{g(x2, x3, 1)} (14)

Therefore, Assumptions 1, 2 are satisfied with α(x, t) = αc

as specified in (12).
So far we have shown that Assumptions 1–2 hold, hence

we can apply Theorem 1. Taking into account that α =
const > 0, and ϕ(ψ) = ψ - this follows from (11) - we can
derive from (6) the following adaptation algorithm:

θ̂ = −γ((x3 − x̂3) + θ̂I), γ > 0 (15)

˙̂
θI = x3 − x̂3

where γ = Γα, and α = αc is persistently exciting (i.e.,∫ t+T

t
αT (x, τ)α(x, τ)dτ = α2

cT ). Based on Theorem 1
(P3), we conclude that adaptation algorithm (15) ensures
exponentially fast convergence of θ − θ̂, x3 − x̂3 to the
origin. Taking into account the smoothness of function
Fs(Fn,x, θ) for x1 > 0, we also conclude that control
function (10) guarantees exponentially fast convergence of
x3 to the desired x∗

3. The rate of convergence is determined
by constants Ks, γ > 0. This result can be summarized as
follows:

Corollary 1: Let system (7) be given and control func-
tion satisfies the following equations

u(x, θ̂, x∗

3) =
J

r
((

1

m
(1 − x3) +

r2

J
)Fs(Fn,x, θ̂) −

Ksx1(x3 − x∗

3)), Ks > 0

θ̂ = −γ((x3 − x̂3) + θ̂I), γ > 0
˙̂
θI = x3 − x̂3

Then for any bounded Fn > 0 and arbitrary small δ > 0
there exists Ks > 0 such that for every x∗

3, x3(0) ∈ [2δ, 1−
2δ], θ ∈ R+, and x1(t) > δ0 ∈ R+, the estimate θ̂(t) is
bounded, and x3(t)−x∗

3, and θ̂− θ converge exponentially
fast to the origin as long as x1(t) > δ0 ∈ R+.
Proof. We must show that x3 ∈ [δ, 1− δ] and θ̂ is bounded.
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First, notice that θ̂ is bounded. Indeed, differentiation of
θ̂ with respect to time results in the following equation

˙̂
θ = −γ

1

x1
((

1

m
(1 − x3) +

r2

J
)Fnsign(x2) ×

σ0

L
g(x2, x3, 1) x3

1−x3

σ0

L
x3

1−x3

+ g(x2, x3, 1)
(θ − θ̂), (16)

where x3 ∈ [0, 1] by definition and

σ0

L
g(x2, x3, 1) x3

1−x3

σ0

L
x3

1−x3

+ g(x2, x3, 1)

is nonnegative (positive for every 1 ≥ x3 ≥ δ). For any
initial conditions θ̂(0) and bounded θ, solutions θ̂(t) of
system (16) remain, therefore, bounded.

Let us prove that there exists Ks which keeps x3 in [δ, 1−
δ]. This follows explicitly from the boundedness of function
Fn and properties of function Fs given by (8); the values
of (g(x2, x3, θ̂), g(x2, x3, θ) are bounded for bounded θ,
and Fs is bounded for every x3 ∈ [0, 1] and bounded g).
Therefore, difference

1

x1
(

1

m
(1 − x3) +

r2

J
)(Fs(Fn,x, θ) − Fs(Fn,x, θ̂))

is always bounded by constant M . This implies existence of
Ks > 0 such that for any x∗

3, x3(0) ∈ [2δ, 1−2δ] solutions
of the controlled system (slip part)

ẋ3 =
1

x1
(

1

m
(1 − x3) +

r2

J
)(Fs(Fn,x, θ) −

Fs(Fn,x, θ̂)) − Ks(x
∗

3 − x3)

belong to [δ, 1−δ]. To show this, one can take the following
quadratic function V = 0.5(x3 − x∗

3)
2 and estimate its

derivative

V̇ = −2Ks(x3 − x∗

3)
2 + |(x3 − x∗

3)|M ≤ 0,

∀|x3 − x∗

3| ≥ δ, Ks ≥
M

δ
(17)

Inequality (17) implies that trajectories of system (17) con-
verge uniformly into |x3 − x∗

3| ≤ δ. Under assumption that
x∗

3, x3(0) ∈ [2δ, 1 − 2δ] this proves that x3(t) ∈ [δ, 1 − δ]
for any x1 > δ0. Q.E.D.

IV. SIMULATIONS

We illustrate our theoretical results with a numerical sim-
ulation. We consider system (7) – (15) with the following
setup of parameters: σ0 = 200, L = 0.25, µC = 0.5,
µS = 0.9, vs = 12.5, r = 0.3, m = 200, J = 0.23,
Fn = 3000, Ks = 30, γ = 100. The effectiveness of
algorithm (15) is illustrated in Figures 3 and 4 (the solid
thick lines correspond to our adaptive controller with on-line
estimation of the optimal values of slip, and the dashed lines
correspond to the controller with preset constant x∗

3 in the
rage [0.1, 0.2]). Figure 3 shows trajectories of the system

for the road conditions given by the piece-wise constant
function:

θ(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.3, s ∈ [0, 10]
1.3, s ∈ (10, 20]
0.7, s ∈ (20, 30]
0.4, s ∈ (30, 40]
1.5, s ∈ (40, 50]
0.6, s ∈ (50,∞)

, s =

∫ t

0

x1(τ)dτ (18)

Both our adaptive controllers (with constant x∗

3 and x∗

3(t)
calculated according to (9)) show acceptable performance.
Estimates θ̂ approach the actual values of parameter θ
sufficiently fast (see Fig. 4) for the controller to calculate
the optimal slip value x∗

3 and steer the system toward this
point. The control torque remains within realistic bounds
(see also [14] where the plots containing the actual values
of the braking torque generated in the experimental ABS
are provided).

The effectiveness of the identification-based control can
be confirmed by comparing the braking distance in the
system with on-line estimation of x∗

3 with θ = θ̂ according
to (9) with the one in which the values of x∗

3 were kept
constant. For the specified model parameters and the road
conditions 18, the simulated braking distance obtained with
our on-line estimation procedure of x∗

3 is 49.7 meters.
This result compares favorably with the values obtained for
preset values of x∗

3, which range between 53.2 and 49.9 (for
x∗

3 = 0.1 and x∗

3 = 0.2, respectively). Similar advantages
of our method are observed for other parameter settings and
initial conditions.

0 0.5 1 1.5 2 2.5 3
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30

0 0.5 1 1.5 2 2.5 3
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50

100

0 0.5 1 1.5 2 2.5 3
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0.5

1

x
1

x
2

x
3

t, sec 

t, sec 
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Fig. 3. Trajectory plots of system (7). The top panel is longitudinal
velocity, the middle panel is angular speed, the bottom panel is the slip.
Estimates of the optimal slip values obtained from (9) with θ̂(s) are shown
by the solid thin line; the trajectory of the slip x̂3 in the system with
controller estimating x∗

3
on-line is shown by the solid thick line; dynamics

of the slip with in the system with pre-set x∗

3
in adaptive controller is

depicted by a dashed line.

V. CONCLUSIONS AND FUTURE WORK

We provided a non-dominating adaptive controller for
the problem of effective adaptive brake control. Despite
nonlinear parametrization of the friction coefficient in the
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Fig. 4. Plots of the braking torque u and estimate θ̂ of the tyre-road
condition given by (18). The top panel is the plots of the braking torques.
Solid thick line shows the braking torque in the system with on-line
calculation of the optimal slip x∗

3
, dashed line stands for the braking torque

in the system with pre-set values of the desired slip x∗

3
= 0.1. The second

panel shows estimate θ̂ as a function of time. It can be seen from the
pictures that θ̂(t) virtually coincides with the parameter θ of the actual
tyre-road conditions

model, it is possible to design an estimator of the tyre-road
parameter which converges exponentially fast to the values
corresponding to the actual road conditions. The estimation
algorithm given is robust (defined by exponential stability
of the estimator) and hardware implementable. In fact, the
proposed estimation algorithm can be realized via standard
PI controllers widely used in industry.

Our current algorithm for effective brake control relies on
explicit measurement of the longitudinal velocity. The most
promising improvement would be to eliminate the needs for
velocity sensors in the system. Combination of the nonlinear
velocity observers (for instance, those proposed in [4]) may
be a theme of our future study.
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